Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Hepatic Ischemia-Reperfusion Injury (IRI) is a critical complication in liver transplantation and resection, driven by oxidative stress and sterile inflammation mediated by damage-associated molecular patterns (DAMPs). Current therapeutic challenges arise from interconnected cell death pathways and redundant inflammatory mechanisms.

Objective

This review synthesizes mechanistic insights into DAMP signaling and regulated cell death modalities in IRI, aiming to identify translational gaps and propose precision-targeted therapies.

Methods

A literature search in PubMed using keywords “IRI,” “DAMPs,” and cell death modes was conducted without date restrictions. Peer-reviewed studies on human/animal models were included, with qualitative synthesis of DAMP-cell death interactions.

Results

During ischemia, mitochondrial dysfunction releases HMGB1, ATP, and mtDNA, activating Kupffer cell TLR4/RAGE and cGAS-STING pathways, triggering NLRP3 inflammasome- driven cytokine storms. Reperfusion amplifies ROS bursts, lipid peroxidation, and iron overload, creating a self-sustaining cycle of damage. Cell death modalities exhibit spatiotemporal specificity: hepatocyte ferroptosis dominates early injury, while macrophage pyroptosis and necroptosis predominate in steatotic livers during late phases. HMGB1 lactylation and mtDNA-cGAS signaling emerge as key regulators. Machine perfusion (, hypothermic oxygenated perfusion) reduces biliary complications mitochondrial resuscitation, outperforming conventional drug-based therapies.

Conclusion

Current single-pathway targeting shows limited efficacy due to IRI’s complexity. Future strategies should integrate temporal targeting (ferroptosis inhibitors pre-reperfusion; pyroptosis blockers post-reperfusion), DAMP-neutralizing agents (anti-HMGB1 antibodies), and precision preservation combining multi-omics biomarkers with pharmacological preconditioning. Addressing metabolic vulnerabilities in fatty livers and refining cell death-specific interventions are critical for bridging translational gaps.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303401342250514102731
2025-05-19
2025-12-15
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/26/1/EMIDDT-26-E18715303401342.html?itemId=/content/journals/emiddt/10.2174/0118715303401342250514102731&mimeType=html&fmt=ahah

References

  1. AlmazrooO.A. MiahM.K. VenkataramananR. Drug metabolism in the liver.Clin. Liver Dis.201721112010.1016/j.cld.2016.08.00127842765
    [Google Scholar]
  2. KubesP. JenneC. Immune responses in the liver.Annu. Rev. Immunol.201836124727710.1146/annurev‑immunol‑051116‑05241529328785
    [Google Scholar]
  3. PeraltaC. Jiménez-CastroM.B. Gracia-SanchoJ. Hepatic ischemia and reperfusion injury: Effects on the liver sinusoidal milieu.J. Hepatol.20135951094110610.1016/j.jhep.2013.06.01723811302
    [Google Scholar]
  4. LiuJ. ManK. Mechanistic insight and clinical implications of ischemia/reperfusion injury post liver transplantation.Cell. Mol. Gastroenterol. Hepatol.20231561463147410.1016/j.jcmgh.2023.03.00336940849
    [Google Scholar]
  5. RacanelliV. RehermannB. The liver as an immunological organ.Hepatology2006432S54S6210.1002/hep.2106016447271
    [Google Scholar]
  6. AhmedO. RobinsonM.W. O’FarrellyC. Inflammatory processes in the liver: Divergent roles in homeostasis and pathology.Cell. Mol. Immunol.20211861375138610.1038/s41423‑021‑00639‑233864004
    [Google Scholar]
  7. GongT. LiuL. JiangW. ZhouR. DAMP-sensing receptors in sterile inflammation and inflammatory diseases.Nat. Rev. Immunol.20202029511210.1038/s41577‑019‑0215‑731558839
    [Google Scholar]
  8. ZindelJ. KubesP. DAMPs, PAMPs, and LAMPs in immunity and sterile inflammation.Annu. Rev. Pathol.202015149351810.1146/annurev‑pathmechdis‑012419‑03284731675482
    [Google Scholar]
  9. ZhongC. YangJ. ZhangY. FanX. FanY. HuaN. TRPM2 mediates hepatic ischemia-reperfusion injury via Ca2+-induced mitochondrial lipid peroxidation through increasing ALOX12 expression.Research20236015910.34133/research.0159
    [Google Scholar]
  10. WuT. ZhangC. ShaoT. ChenJ. ChenD. The role of NLRP3 inflammasome activation pathway of hepatic macrophages in liver ischemia–reperfusion injury.Front. Immunol.20221390542310.3389/fimmu.2022.90542335757691
    [Google Scholar]
  11. BrunnerS.M. JungerH. RuemmeleP. SchnitzbauerA.A. DoeneckeA. KirchnerG.I. FarkasS.A. LossM. SchererM.N. SchlittH.J. Fichtner-FeiglS. Bile duct damage after cold storage of deceased donor livers predicts biliary complications after liver transplantation.J. Hepatol.20135861133113910.1016/j.jhep.2012.12.02223321317
    [Google Scholar]
  12. Gracia-SanchoJ. CaparrósE. Fernández-IglesiasA. FrancésR. Role of liver sinusoidal endothelial cells in liver diseases.Nat. Rev. Gastroenterol. Hepatol.202118641143110.1038/s41575‑020‑00411‑333589830
    [Google Scholar]
  13. HiraoH. NakamuraK. Kupiec-WeglinskiJ.W. Liver ischaemia–reperfusion injury: A new understanding of the role of innate immunity.Nat. Rev. Gastroenterol. Hepatol.202219423925610.1038/s41575‑021‑00549‑834837066
    [Google Scholar]
  14. G BardalloR. Panisello-RosellóA. Sanchez-NunoS. AlvaN. Roselló-CatafauJ. CarbonellT. Nrf2 and oxidative stress in liver ischemia/reperfusion injury.FEBS J.2022289185463547910.1111/febs.1633634967991
    [Google Scholar]
  15. KeB. ShenX.D. GaoF. JiH. QiaoB. ZhaiY. FarmerD.G. BusuttilR.W. Kupiec-WeglinskiJ.W. Adoptive transfer of ex vivo HO-1 modified bone marrow-derived macrophages prevents liver ischemia and reperfusion injury.Mol. Ther.20101851019102510.1038/mt.2009.28520029397
    [Google Scholar]
  16. Abu-AmaraM. YangS.Y. SeifalianA.M. FullerB. DavidsonB.R. Remote ischemic preconditioning by hindlimb occlusion prevents liver ischemic/reperfusion injury.Ann. Surg.2011254117818010.1097/SLA.0b013e318221ff3421606831
    [Google Scholar]
  17. AnthuberM. FarkasS. RihlM. MengerM.D. SchildbergF.W. JauchK.W. MessmerK. Angiotensin-converting enzyme inhibition by enalapril: A novel approach to reduce ischemia/reperfusion damage after experimental liver transplantation.Hepatology199725364865110.1002/hep.5102503269049213
    [Google Scholar]
  18. PalumboT. NakamuraK. LassmanC. KidaniY. BensingerS.J. BusuttilR. Kupiec-WeglinskiJ. ZarrinparA. Bruton tyrosine kinase inhibition attenuates liver damage in a mouse warm ischemia and reperfusion model.Transplantation2017101232233110.1097/TP.000000000000155227820779
    [Google Scholar]
  19. ZhangC. ZhangY. LiuY. LiuY. KageyamaS. ShenX. GaoF. ZhengS. BusuttilR.W. ShawG.D. JiH. Kupiec-WeglinskiJ.W. A Soluble form of p selectin glycoprotein ligand 1 requires signaling by nuclear factor erythroid 2–related factor 2 to protect liver transplant endothelial cells against ischemia–reperfusion injury.Am. J. Transplant.20171761462147510.1111/ajt.1415927977895
    [Google Scholar]
  20. HimmelreichG. HundtK. NeuhausP. BechsteinW.O. RoissantR. RiessH. Evidence that intraoperative prostaglandin E1 infusion reduces impaired platelet aggregation after reperfusion in orthotopic liver transplantation.Transplantation199355481982510.1097/00007890‑199304000‑000268475558
    [Google Scholar]
  21. KleinM. GeogheganJ. WangemannR. BöcklerD. SchmidtK. ScheeleJ. Preconditioning of donor livers with prostaglandin I2 before retrieval decreases hepatocellular ischemia-reperfusion injury.Transplantation19996781128113210.1097/00007890‑199904270‑0000710232562
    [Google Scholar]
  22. BogettiD. SankaryH.N. JarzembowskiT.M. ManzelliA. KnightP.S. ThielkeJ. ChejfecG. CotlerS. OberholzerJ. TestaG. BenedettiE. Thymoglobulin induction protects liver allografts from ischemia/reperfusion injury.Clin. Transplant.200519450751110.1111/j.1399‑0012.2005.00375.x16008596
    [Google Scholar]
  23. MeurisseN. MertensM. FieuwsS. GilboN. JochmansI. PirenneJ. MonbaliuD. Effect of a combined drug approach on the severity of ischemia-reperfusion injury during liver transplant.JAMA Netw. Open20236223081910.1001/jamanetworkopen.2023.081936853611
    [Google Scholar]
  24. DarW.A. SullivanE. BynonJ.S. EltzschigH. JuC. Ischaemia reperfusion injury in liver transplantation: Cellular and molecular mechanisms.Liver Int.201939578880110.1111/liv.1409130843314
    [Google Scholar]
  25. YeL. HeS. MaoX. ZhangY. CaiY. LiS. Effect of hepatic macrophage polarization and apoptosis on liver ischemia and reperfusion injury during liver transplantation.Front. Immunol.202011119310.3389/fimmu.2020.0119332676077
    [Google Scholar]
  26. TangD. KangR. ZehH.J. LotzeM.T. The multifunctional protein HMGB1: 50 years of discovery.Nat. Rev. Immunol.2023231282484110.1038/s41577‑023‑00894‑637322174
    [Google Scholar]
  27. RenW. ZhaoL. SunY. WangX. ShiX. HMGB1 and Toll- like receptors: Potential therapeutic targets in autoimmune diseases.Mol. Med.202329111710.1186/s10020‑023‑00717‑337667233
    [Google Scholar]
  28. TsungA. SahaiR. TanakaH. NakaoA. FinkM.P. LotzeM.T. YangH. LiJ. TraceyK.J. GellerD.A. BilliarT.R. The nuclear factor HMGB1 mediates hepatic injury after murine liver ischemia-reperfusion.J. Exp. Med.200520171135114310.1084/jem.2004261415795240
    [Google Scholar]
  29. McDonaldK.A. HuangH. TohmeS. LoughranP. FerreroK. BilliarT. TsungA. Toll-like receptor 4 (TLR4) antagonist eritoran tetrasodium attenuates liver ischemia and reperfusion injury through inhibition of high-mobility group box protein B1 (HMGB1) signaling.Mol. Med.201420163964810.2119/molmed.2014.0007625375408
    [Google Scholar]
  30. HuangH. TohmeS. Al-KhafajiA.B. TaiS. LoughranP. ChenL. WangS. KimJ. BilliarT. WangY. TsungA. Damage‐associated molecular pattern–activated neutrophil extracellular trap exacerbates sterile inflammatory liver injury.Hepatology201562260061410.1002/hep.2784125855125
    [Google Scholar]
  31. DavaanyamD. SeolS.I. OhS.A. LeeH. LeeJ.K. Hepatocyte activation and liver injury following cerebral ischemia promote HMGB1-mediated hepcidin upregulation in hepatocytes and regulation of systemic iron levels.Exp. Mol. Med.202456102171218310.1038/s12276‑024‑01314‑y39349828
    [Google Scholar]
  32. QuX. XuD. YangT. TianY. KingC.T. WangX. ShengM. LinY. BianX. LiC. JiangL. XiaQ. FarmerD.G. KeB. Macrophage Dvl2 deficiency promotes NOD1-Driven pyroptosis and exacerbates inflammatory liver injury.Redox Biol.20257910345510.1016/j.redox.2024.10345539644526
    [Google Scholar]
  33. van GolenR.F. ReiniersM.J. MarsmanG. AllesL.K. van RooyenD.M. PetriB. Van der MarkV.A. van BeekA.A. MeijerB. MaasM.A. ZeerlederS. VerheijJ. FarrellG.C. LukenB.M. TeohN.C. van GulikT.M. MurphyM.P. HegerM. The damage-associated molecular pattern HMGB1 is released early after clinical hepatic ischemia/reperfusion.Biochim. Biophys. Acta Mol. Basis Dis.2019186561192120010.1016/j.bbadis.2019.01.01430658161
    [Google Scholar]
  34. DuS. ZhangX. JiaY. PengP. KongQ. JiangS. LiY. LiC. DingZ. LiuL. Hepatocyte HSPA12A inhibits macrophage chemotaxis and activation to attenuate liver ischemia/reperfusion injury via suppressing glycolysis-mediated HMGB1 lactylation and secretion of hepatocytes.Theranostics202313113856387110.7150/thno.8260737441587
    [Google Scholar]
  35. SongZ. HanH. GeX. DasS. DesertR. AthavaleD. ChenW. KomakulaS.S.B. LantvitD. NietoN. Deficiency of neutrophil high-mobility group box-1 in liver transplant recipients exacerbates early allograft injury in mice.Hepatology202378377178610.1097/HEP.000000000000034637016762
    [Google Scholar]
  36. SelznerM. SelznerN. JochumW. GrafR. ClavienP.A. Increased ischemic injury in old mouse liver: An ATP-dependent mechanism.Liver Transpl.200713338239010.1002/lt.2110017318856
    [Google Scholar]
  37. GuanL.Y. FuP.Y. LiP.D. LiZ.N. LiuH.Y. XinM.G. LiW. Mechanisms of hepatic ischemia-reperfusion injury and protective effects of nitric oxide.World J. Gastrointest. Surg.20146712212810.4240/wjgs.v6.i7.12225068009
    [Google Scholar]
  38. WangJ. KubesP. A reservoir of mature cavity macrophages that can rapidly invade visceral organs to affect tissue repair.Cell2016165366867810.1016/j.cell.2016.03.00927062926
    [Google Scholar]
  39. Amores-IniestaJ. Barberà-CremadesM. MartínezC.M. PonsJ.A. Revilla-NuinB. Martínez-AlarcónL. Di VirgilioF. ParrillaP. Baroja-MazoA. PelegrínP. Extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection.Cell Rep.201721123414342610.1016/j.celrep.2017.11.07929262323
    [Google Scholar]
  40. KaltenmeierC. WangR. PoppB. GellerD. TohmeS. YazdaniH.O. Role of immuno-inflammatory signals in liver ischemia-reperfusion injury.Cells20221114222210.3390/cells1114222235883665
    [Google Scholar]
  41. BillinghamL.K. StoolmanJ.S. VasanK. RodriguezA.E. PoorT.A. SziborM. JacobsH.T. ReczekC.R. RashidiA. ZhangP. MiskaJ. ChandelN.S. Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation.Nat. Immunol.202223569270410.1038/s41590‑022‑01185‑335484407
    [Google Scholar]
  42. LiR. WangJ. LiR. ZhuF. XuW. ZhaG. HeG. CaoH. WangY. YangJ. ATP/P2X7-NLRP3 axis of dendritic cells participates in the regulation of airway inflammation and hyper-responsiveness in asthma by mediating HMGB1 expression and secretion.Exp. Cell Res.2018366111510.1016/j.yexcr.2018.03.00229545090
    [Google Scholar]
  43. HuangH. NaceG.W. McDonaldK.A. TaiS. KluneJ.R. RosboroughB.R. DingQ. LoughranP. ZhuX. Beer-StolzD. ChangE.B. BilliarT. TsungA. Hepatocyte-specific high-mobility group box 1 deletion worsens the injury in liver ischemia/reperfusion: A role for intracellular high-mobility group box 1 in cellular protection.Hepatology20145951984199710.1002/hep.2697624375466
    [Google Scholar]
  44. WestA.P. ShadelG.S. Mitochondrial DNA in innate immune responses and inflammatory pathology.Nat. Rev. Immunol.201717636337510.1038/nri.2017.2128393922
    [Google Scholar]
  45. NastasiC. MannarinoL. D’IncalciM. DNA Damage response and immune defense.Int. J. Mol. Sci.20202120750410.3390/ijms2120750433053746
    [Google Scholar]
  46. DvorkinS. CambierS. VolkmanH.E. StetsonD.B. New frontiers in the cGAS-STING intracellular DNA-sensing pathway.Immunity202457471873010.1016/j.immuni.2024.02.01938599167
    [Google Scholar]
  47. MaM. JiangW. ZhouR. DAMPs and DAMP-sensing receptors in inflammation and diseases.Immunity202457475277110.1016/j.immuni.2024.03.00238599169
    [Google Scholar]
  48. HuangY. JiangW. ZhouR. DAMP sensing and sterile inflammation: Intracellular, intercellular and inter-organ pathways.Nat. Rev. Immunol.2024241070371910.1038/s41577‑024‑01027‑338684933
    [Google Scholar]
  49. JiaoJ. JiangY. QianY. LiuG. XuM. WangF. SunX. GaoY. SuL. ShiY. KongX. Expression of STING is increased in monocyte-derived macrophages and contributes to liver inflammation in hepatic ischemia-reperfusion injury.Am. J. Pathol.2022192121745176210.1016/j.ajpath.2022.09.00236174680
    [Google Scholar]
  50. ZhanY. XuD. TianY. QuX. ShengM. LinY. KeM. JiangL. XiaQ. KaldasF.M. FarmerD.G. KeB. Novel role of macrophage TXNIP-mediated CYLD–NRF2–OASL1 axis in stress-induced liver inflammation and cell death.JHEP Rep. Innov. Hepatol.20224910053210.1016/j.jhepr.2022.10053236035360
    [Google Scholar]
  51. XuJ. WuD. ZhouS. HuH. LiF. GuanZ. ZhanX. GaoY. WangP. RaoZ. MLKL deficiency attenuated hepatocyte oxidative DNA damage by activating mitophagy to suppress macrophage cGAS-STING signaling during liver ischemia and reperfusion injury.Cell Death Discov.2023915810.1038/s41420‑023‑01357‑636765043
    [Google Scholar]
  52. KongE. ZhangY. GengX. ZhaoY. YueW. FengX. Inhibition of Sirt3 activates the cGAS-STING pathway to aggravate hepatocyte damage in hepatic ischemia–reperfusion injury mice.Int. Immunopharmacol.202412811147410.1016/j.intimp.2023.11147438185036
    [Google Scholar]
  53. NaimA. PanQ. BaigM.S. Matrix metalloproteinases (MMPS) in liver diseases.J. Clin. Exp. Hepatol.20177436737210.1016/j.jceh.2017.09.00429234202
    [Google Scholar]
  54. WirthF. LuboschA. HamelmannS. NakchbandiI.A. Fibronectin and its receptors in hematopoiesis.Cells2020912271710.3390/cells912271733353083
    [Google Scholar]
  55. ShomaliN. HatamnezhadL.S. TarziS. TamjidifarR. XuH. ShotorbaniS.S. Heat shock proteins regulating toll-like receptors and the immune system could be a novel therapeutic target for melanoma.Curr. Mol. Med.2021211152410.2174/18755666MTA2pNTIk032392112
    [Google Scholar]
  56. JinC. ClevelandJ.C. AoL. LiJ. ZengQ. FullertonD.A. MengX. Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: The proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4.Mol. Med.201420128028910.2119/molmed.2014.0005824918749
    [Google Scholar]
  57. LeishmanS. AljadeedN.M. QianL. CockcroftS. BehmoarasJ. AnandP.K. Fatty acid synthesis promotes inflammasome activation through NLRP3 palmitoylation.Cell Rep.202443811451610.1016/j.celrep.2024.11451639024103
    [Google Scholar]
  58. WangW. DernstA. MartinB. LorenziL. Cadefau-FabregatM. PhulphagarK. WagenerA. BuddenC. StairN. WagnerT. FärberH. JaenschA. StahlR. DuthieF. SchmidtS.V. CollR.C. MeissnerF. CuarteroS. LatzE. ManganM.S.J. Butyrate and propionate are microbial danger signals that activate the NLRP3 inflammasome in human macrophages upon TLR stimulation.Cell Rep.202443911473610.1016/j.celrep.2024.11473639277863
    [Google Scholar]
  59. KrenkelO. HundertmarkJ. AbdallahA.T. KohlheppM. PuengelT. RothT. BrancoD.P.P. MossanenJ.C. LueddeT. TrautweinC. CostaI.G. TackeF. Myeloid cells in liver and bone marrow acquire a functionally distinct inflammatory phenotype during obesity-related steatohepatitis.Gut202069355156310.1136/gutjnl‑2019‑31838231076404
    [Google Scholar]
  60. QianA. ZhouL. ShiD. PangZ. LuB. Portulaca oleracea alleviates CCl4-induced acute liver injury by regulating hepatic S100A8 and S100A9.Chin. Herb. Med.202215111011636875440
    [Google Scholar]
  61. MolesA. MurphyL. WilsonC.L. ChakrabortyJ.B. FoxC. ParkE.J. MannJ. OakleyF. HowarthR. BrainJ. MassonS. KarinM. SekiE. MannD.A. A TLR2/S100A9/CXCL-2 signaling network is necessary for neutrophil recruitment in acute and chronic liver injury in the mouse.J. Hepatol.201460478279110.1016/j.jhep.2013.12.00524333183
    [Google Scholar]
  62. HouC. WangD. ZhaoM. BallarP. ZhangX. MeiQ. WangW. LiX. ShengQ. LiuJ. WeiC. ShenY. YangY. WangP. ShaoJ. XuS. WangF. SunY. ShenY. MANF brakes TLR4 signaling by competitively binding S100A8 with S100A9 to regulate macrophage phenotypes in hepatic fibrosis.Acta Pharm. Sin. B202313104234425210.1016/j.apsb.2023.07.02737799387
    [Google Scholar]
  63. LuoS. LuoR. DengG. HuangF. LeiZ. Programmed cell death, from liver Ischemia–Reperfusion injury perspective: An overview.Heliyon202410133248010.1016/j.heliyon.2024.e3248039040334
    [Google Scholar]
  64. SzondyZ. SarangZ. KissB. GarabucziÉ. KöröskényiK. Anti-inflammatory mechanisms triggered by apoptotic cells during their clearance.Front. Immunol.2017890910.3389/fimmu.2017.0090928824635
    [Google Scholar]
  65. ZhaoJ. HuY. PengJ. Targeting programmed cell death in metabolic dysfunction-associated fatty liver disease (MAFLD): A promising new therapy.Cell. Mol. Biol. Lett.20212611710.1186/s11658‑021‑00254‑z33962586
    [Google Scholar]
  66. ZhaoJ. JiangP. GuoS. SchrodiS.J. HeD. Apoptosis, autophagy, netosis, necroptosis, and pyroptosis mediated programmed cell death as targets for innovative therapy in rheumatoid arthritis.Front. Immunol.20211280980610.3389/fimmu.2021.80980635003139
    [Google Scholar]
  67. GongY.N. GuyC. OlausonH. BeckerJ.U. YangM. FitzgeraldP. LinkermannA. GreenD.R. ESCRT-III acts downstream of MLKL to regulate necroptotic cell death and its consequences.Cell20171692286300.e1610.1016/j.cell.2017.03.02028388412
    [Google Scholar]
  68. QuX. YangT. WangX. XuD. YuY. LiJ. JiangL. XiaQ. FarmerD.G. KeB. Macrophage RIPK3 triggers inflammation and cell death via the XBP1–Foxo1 axis in liver ischaemia–reperfusion injury.JHEP Rep. Innov. Hepatol.202351110087910.1016/j.jhepr.2023.10087937841640
    [Google Scholar]
  69. XuD. QuX. TianY. JieZ. XiZ. XueF. MaX. ZhuJ. XiaQ. Macrophage Notch1 inhibits TAK1 function and RIPK3- mediated hepatocyte necroptosis through activation of β-catenin signaling in liver ischemia and reperfusion injury.Cell Commun. Signal.202220114410.1186/s12964‑022‑00901‑836114543
    [Google Scholar]
  70. LiC. ShengM. LinY. XuD. TianY. ZhanY. JiangL. CoitoA.J. BusuttilR.W. FarmerD.G. Kupiec-WeglinskiJ.W. KeB. Functional crosstalk between myeloid Foxo1–β- catenin axis and Hedgehog/Gli1 signaling in oxidative stress response.Cell Death Differ.20212851705171910.1038/s41418‑020‑00695‑733288903
    [Google Scholar]
  71. NiH.M. ChaoX. KaseffJ. DengF. WangS. ShiY.H. LiT. DingW.X. JaeschkeH. Receptor-interacting serine/threonine-protein kinase 3 (RIPK3)–mixed lineage kinase domain-like protein (MLKL)–mediated necroptosis contributes to ischemia-reperfusion injury of steatotic livers.Am. J. Pathol.201918971363137410.1016/j.ajpath.2019.03.01031026418
    [Google Scholar]
  72. JunzheJ. MengL. WeifanH. MinX. JiachengL. YihanQ. KeZ. FangW. DongweiX. HailongW. XiaoniK. Potential effects of different cell death inhibitors in protecting against ischemia-reperfusion injury in steatotic liver.Int. Immunopharmacol.202412811154510.1016/j.intimp.2024.11154538244517
    [Google Scholar]
  73. BerthelootD. LatzE. FranklinB.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death.Cell. Mol. Immunol.20211851106112110.1038/s41423‑020‑00630‑333785842
    [Google Scholar]
  74. ShiJ. GaoW. ShaoF. Pyroptosis: Gasdermin-mediated programmed necrotic cell death.trends biochem. sci.201742424525410.1016/j.tibs.2016.10.00427932073
    [Google Scholar]
  75. LiJ. ZhaoJ. XuM. LiM. WangB. QuX. YuC. HangH. XiaQ. WuH. SunX. GuJ. KongX. Blocking GSDMD processing in innate immune cells but not in hepatocytes protects hepatic ischemia–reperfusion injury.Cell Death Dis.202011424410.1038/s41419‑020‑2437‑932303674
    [Google Scholar]
  76. KadonoK. KageyamaS. NakamuraK. HiraoH. ItoT. KojimaH. DeryK.J. LiX. Kupiec-WeglinskiJ.W. Myeloid Ikaros–SIRT1 signaling axis regulates hepatic inflammation and pyroptosis in ischemia-stressed mouse and human liver.J. Hepatol.202276489690910.1016/j.jhep.2021.11.02634871625
    [Google Scholar]
  77. LiuY LiS ZhangG CaiJ. NOD1 induces pyroptotic cell death to aggravate liver ischemia-reperfusion injury in mice.MedComm20223317010.1002/mco2.170
    [Google Scholar]
  78. XiaoY. ZhaoC. TaiY. LiB. LanT. LaiE. DaiW. GuoY. GanC. KostallariE. TangC. GaoJ. STING mediates hepatocyte pyroptosis in liver fibrosis by Epigenetically activating the NLRP3 inflammasome.Redox Biol.20236210269110.1016/j.redox.2023.10269137018971
    [Google Scholar]
  79. LiuZ. WangM. WangX. BuQ. WangQ. SuW. LiL. ZhouH. LuL. XBP1 deficiency promotes hepatocyte pyroptosis by impairing mitophagy to activate mtDNA-cGAS-STING signaling in macrophages during acute liver injury.Redox Biol.20225210230510.1016/j.redox.2022.10230535367811
    [Google Scholar]
  80. ZhongW. RaoZ. RaoJ. HanG. WangP. JiangT. PanX. ZhouS. ZhouH. WangX. Aging aggravated liver ischemia and reperfusion injury by promoting STING‐mediated NLRP3 activation in macrophages.Aging Cell20201981318610.1111/acel.1318632666684
    [Google Scholar]
  81. WuJ. WangY. JiangR. XueR. YinX. WuM. MengQ. Ferroptosis in liver disease: New insights into disease mechanisms.Cell Death Discov.20217127610.1038/s41420‑021‑00660‑434611144
    [Google Scholar]
  82. GuoJ. SongZ. YuJ. LiC. JinC. DuanW. LiuX. LiuY. HuangS. TuoY. PeiF. JianZ. ZhouP. ZhengS. ZouZ. ZhangF. GongQ. LiangS. Hepatocyte-specific TMEM16A deficiency alleviates hepatic ischemia/reperfusion injury via suppressing GPX4-mediated ferroptosis.Cell Death Dis.20221312107210.1038/s41419‑022‑05518‑w36572666
    [Google Scholar]
  83. LiC. WuY. ChenK. ChenR. XuS. YangB. LianZ. WangX. WangK. XieH. ZhengS. LiuZ. WangD. XuX. Gp78 deficiency in hepatocytes alleviates hepatic ischemia-reperfusion injury via suppressing ACSL4-mediated ferroptosis.Cell Death Dis.2023141281010.1038/s41419‑023‑06294‑x38065978
    [Google Scholar]
  84. MalkoP. JiangL.H. TRPM2 channel-mediated cell death: An important mechanism linking oxidative stress-inducing pathological factors to associated pathological conditions.Redox Biol.20203710175510.1016/j.redox.2020.10175533130440
    [Google Scholar]
  85. HuangQ. RuY. LuoY. LuoX. LiuD. MaY. ZhouX. LinghuM. XuW. GaoF. HuangY. Identification of a targeted ACSL4 inhibitor to treat ferroptosis-related diseases.Sci. Adv.20241013eadk120010.1126/sciadv.adk120038552012
    [Google Scholar]
  86. LinH. MaC. ZhuangX. LiuS. LiuD. ZhangM. LuY. ZhouG. ZhangC. WangT. ZhangZ. LvL. ZhangD. RuanX.Z. XuY. ChaiR. YuX. SunJ.P. ChuB. Sensing steroid hormone 17α-hydroxypregnenolone by GPR56 enables protection from ferroptosis-induced liver injury.Cell Metab.2024361124022418.e1010.1016/j.cmet.2024.09.00739389061
    [Google Scholar]
  87. FangX. ZhangJ. LiY. SongY. YuY. CaiZ. LianF. YangJ. MinJ. WangF. Malic enzyme 1 as a novel anti‐ferroptotic regulator in hepatic ischemia/reperfusion injury.Adv. Sci.20231013220543610.1002/advs.20220543636840630
    [Google Scholar]
  88. HanL. MaC. WuZ. XuH. LiH. PanG. AhR–STAT3–HO‐1/COX‐2 signalling pathway may restrict ferroptosis and improve hMSC accumulation and efficacy in mouse liver.Br. J. Pharmacol.2024181112514110.1111/bph.1620837538043
    [Google Scholar]
  89. SugawaraY. KubotaK. OguraT. EsumiH. InoueK. TakayamaT. MakuuchiM. Protective effect of prostaglandin E1 against ischemia/reperfusion-induced liver injury: Results of a prospective, randomized study in cirrhotic patients undergoing subsegmentectomy.J. Hepatol.199829696997610.1016/S0168‑8278(98)80125‑69875644
    [Google Scholar]
  90. SyversenS.W. JørgensenK.K. GollG.L. BrunM.K. SandangerØ. BjørlykkeK.H. SextonJ. OlsenI.C. GehinJ.E. WarrenD.J. KlaasenR.A. NorabergG. BruunT.J. DotterudC.K. LjosåM.K.A. HaugenA.J. NjållaR.J. ZettelC. YstrømC.M. BragnesY.H. SkorpeS. ThuneT. SeebergK.A. MichelsenB. BlomgrenI.M. StrandE.K. MielnikP. TorpR. MørkC. KvienT.K. JahnsenJ. BolstadN. HaavardsholmE.A. Effect of therapeutic drug monitoring vs standard therapy during maintenance infliximab therapy on disease control in patients with immune-mediated inflammatory diseases.JAMA2021326232375238410.1001/jama.2021.2131634932077
    [Google Scholar]
  91. GordonM. SinopoulouV. AkobengA.K. SarianA. MoranG.W. Infliximab for maintenance of medically-induced remission in Crohn’s disease.Cochrane Database Syst. Rev.202422CD01260938372447
    [Google Scholar]
  92. ChaiyanarmS. SatiraphanP. ApiraksattaykulN. JitprapaikulsanJ. OwattanapanichW. RungjirajittranonT. NanthasiW. Infliximab in neurosarcoidosis: A systematic review and meta‐analysis.Ann. Clin. Transl. Neurol.202411246647610.1002/acn3.5196838087813
    [Google Scholar]
  93. NasrallaD. CoussiosC.C. MergentalH. AkhtarM.Z. ButlerA.J. CeresaC.D.L. ChiocchiaV. DuttonS.J. García-ValdecasasJ.C. HeatonN. ImberC. JassemW. JochmansI. KaraniJ. KnightS.R. KocabayogluP. MalagòM. MirzaD. MorrisP.J. PallanA. PaulA. PavelM. PereraM.T.P.R. PirenneJ. RavikumarR. RussellL. UpponiS. WatsonC.J.E. WeissenbacherA. PloegR.J. FriendP.J. A randomized trial of normothermic preservation in liver transplantation.Nature20185577703505610.1038/s41586‑018‑0047‑929670285
    [Google Scholar]
  94. MarkmannJ.F. AbouljoudM.S. GhobrialR.M. BhatiC.S. PelletierS.J. LuA.D. OttmannS. KlairT. EymardC. RollG.R. MaglioccaJ. PruettT.L. ReyesJ. BlackS.M. MarshC.L. SchnickelG. KinkhabwalaM. FlormanS.S. MeraniS. DemetrisA.J. KimuraS. RizzariM. SahariaA. LevyM. AgarwalA. CigarroaF.G. EasonJ.D. SyedS. WashburnW.K. ParekhJ. MoonJ. MaskinA. YehH. VagefiP.A. MacConmaraM.P. Impact of portable normothermic blood-based machine perfusion on outcomes of liver transplant.JAMA Surg.2022157318919810.1001/jamasurg.2021.678134985503
    [Google Scholar]
  95. van RijnR. SchurinkI.J. de VriesY. van den BergA.P. CerisueloC.M. MuradD.S. ErdmannJ.I. GilboN. de HaasR.J. HeatonN. van HoekB. HuurmanV.A.L. JochmansI. van LeeuwenO.B. de MeijerV.E. MonbaliuD. PolakW.G. SlangenJ.J.G. TroisiR.I. VanlanderA. de JongeJ. PorteR.J. Hypothermic machine perfusion in liver transplantation — a randomized trial.N. Engl. J. Med.2021384151391140110.1056/NEJMoa203153233626248
    [Google Scholar]
  96. DavidL. BorgesJ.P. HollingsworthL.R. VolchukA. JansenI. GarlickE. SteinbergB.E. WuH. NINJ1 mediates plasma membrane rupture by cutting and releasing membrane disks.Cell2024187922242235.e1610.1016/j.cell.2024.03.00838614101
    [Google Scholar]
  97. KayagakiN. StoweI.B. AlegreK. DeshpandeI. WuS. LinZ. KornfeldO.S. LeeB.L. ZhangJ. LiuJ. SutoE. LeeW.P. SchneiderK. LinW. SeshasayeeD. BhangaleT. ChalouniC. JohnsonM.C. JoshiP. MossemannJ. ZhaoS. AliD. GoldenbergN.M. SayedB.A. SteinbergB.E. NewtonK. WebsterJ.D. KellyR.L. DixitV.M. Inhibiting membrane rupture with NINJ1 antibodies limits tissue injury.Nature202361879671072107710.1038/s41586‑023‑06191‑537196676
    [Google Scholar]
  98. CinelliL. MuttilloE.M. FelliE. BaiocchiniA. GiannoneF. MarescauxJ. MutterD. De MathelinM. GiouxS. FelliE. DianaM. Surgical models of liver regeneration in pigs: A practical review of the literature for researchers.Cells202312460310.3390/cells1204060336831271
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303401342250514102731
Loading
/content/journals/emiddt/10.2174/0118715303401342250514102731
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test