Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Introduction

Previous studies suggest a link between Basal Metabolic Rate (BMR) and obstetrical disorders; however, causality remains unclear. We investigated the causal effects of BMR on 14 obstetric disorders and evaluated the potential mediating effects of blood metabolites in these relationships.

Methods

Using Genome-Wide Association Study (GWAS) summary data, we conducted both univariate and multivariable Mendelian Randomization (MVMR) analyses. The primary causal inference was based on Inverse Variance Weighted (IVW), MR-Egger, weighted median, and sensitivity analyses (Cochran’s Q, MR-PRESSO). Mediation analysis was employed to quantify the proportion of effects operating through metabolite-regulated pathways.

Results

BMR was inversely associated with hyperemesis gravidarum (OR=0.73, 95% CI: 0.59-0.90, =0.008), Intrahepatic Cholestasis of Pregnancy (ICP) (OR=0.67, 95% CI: 0.56-0.80, <0.001), poor fetal growth (OR=0.80, 95% CI:0.71-0.90, =0.001), and preterm delivery (OR=0.78, 95% CI:0.70-0.87, <0.001). MVMR identified elevated BMR and mannose levels as protective against ICP, with BMR showing a positive correlation with mannose. Mediation analysis revealed that BMR reduced ICP risk partly through increased mannose (OR = 1.38, 95% CI: 1.19-1.59, = 2.03 × 10−5), accounting for 29.93% of the effect.

Discussion

Elevated BMR significantly reduced risks of intrahepatic cholestasis (HR=0.67), fetal distress (HR=0.80), and preterm birth (HR=0.78), mediated partly by mannose levels. Mendelian randomization established causality, linking metabolic adaptation to improved pregnancy outcomes. However, these findings, based on European genetic data, limit generalizability, and unmeasured confounders may persist despite MR methods.

Conclusion

Higher BMR may lower risks of hyperemesis gravidarum, ICP, poor fetal growth, and preterm delivery. Mannose mediates the protective effect of BMR on ICP, highlighting potential metabolic pathways for intervention.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303400445250718112316
2025-07-24
2026-01-02
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/26/1/EMIDDT-26-E18715303400445.html?itemId=/content/journals/emiddt/10.2174/0118715303400445250718112316&mimeType=html&fmt=ahah

References

  1. SayL. ChouD. GemmillA. TunçalpÖ. MollerA.B. DanielsJ. GülmezogluA.M. TemmermanM. AlkemaL. Global causes of maternal death: A WHO systematic analysis.Lancet Glob. Health201426e323e33310.1016/S2214‑109X(14)70227‑X25103301
    [Google Scholar]
  2. BienstockJ.L. EkeA.C. HueppchenN.A. Postpartum hemorrhage.N. Engl. J. Med.2021384171635164510.1056/NEJMra151324733913640
    [Google Scholar]
  3. JiangL. TangK. MageeL.A. von DadelszenP. EkeromaA. LiX. ZhangE. BhuttaZ.A. A global view of hypertensive disorders and diabetes mellitus during pregnancy.Nat. Rev. Endocrinol.2022181276077510.1038/s41574‑022‑00734‑y36109676
    [Google Scholar]
  4. DaruJ. ZamoraJ. Fernández-FélixB.M. VogelJ. OladapoO.T. MorisakiN. TunçalpÖ. TorloniM.R. MittalS. JayaratneK. LumbiganonP. TogoobaatarG. ThangaratinamS. KhanK.S. Risk of maternal mortality in women with severe anaemia during pregnancy and post partum: A multilevel analysis.Lancet Glob. Health201865e548e55410.1016/S2214‑109X(18)30078‑029571592
    [Google Scholar]
  5. RanaS. LemoineE. GrangerJ.P. KarumanchiS.A. Preeclampsia.Circ. Res.201912471094111210.1161/CIRCRESAHA.118.31327630920918
    [Google Scholar]
  6. TurbevilleH.R. SasserJ.M. Preeclampsia beyond pregnancy: Long-term consequences for mother and child.Am. J. Physiol. Renal Physiol.20203186F1315F132610.1152/ajprenal.00071.202032249616
    [Google Scholar]
  7. Ladd-AcostaC. VangE. BarrettE.S. BulkaC.M. BushN.R. CardenasA. DabeleaD. DunlopA.L. FryR.C. GaoX. GoodrichJ.M. HerbstmanJ. HivertM.F. KahnL.G. KaragasM.R. KennedyE.M. KnightA.K. Mohazzab-HosseinianS. MorinA. NiuZ. O’SheaT.M. PalmoreM. RudenD. SchmidtR.J. SmithA.K. SongA. SpindelE.R. TrasandeL. VolkH. WeisenbergerD.J. BretonC.V. SmithP.B. NewbyK.L. JacobsonL.P. ParkerC.B. GershonR.C. CellaD. BastainT. FarzanS.F. HabreR. KarrC. MasonA. McEvoyC.T. TepperR.S. CroenL.A. OkenE. KerverJ. BaroneC.J. McKaneP. PanethN. ElliottM.R. GernJ. MillerR.S. Analysis of pregnancy complications and epigenetic gestational age of newborns.JAMA Netw. Open20236223067210.1001/jamanetworkopen.2023.067236826815
    [Google Scholar]
  8. ArmisteadB. JohnsonE. VanderKampR. Kula-EversoleE. KadamL. DrewloS. Kohan-GhadrH.R. Placental regulation of energy homeostasis during human pregnancy.Endocrinology20201617bqaa07610.1210/endocr/bqaa07632417921
    [Google Scholar]
  9. TaousaniE. SavvakiD. TsirouE. PoulakosP. MintzioriG. ZafrakasM. TarlatzisB.C. VavilisD. GoulisD.G. Regulation of basal metabolic rate in uncomplicated pregnancy and in gestational diabetes mellitus.Hormones201716323525010.1007/BF0340151829278510
    [Google Scholar]
  10. KaurS. EwingH.T. WarringtonJ.P. Blood-brain barrier dysfunction in hypertensive disorders of pregnancy.Curr. Hypertens. Rep.2023251246347010.1007/s11906‑023‑01288‑837996623
    [Google Scholar]
  11. BorgesM.C. ClaytonG.L. FreathyR.M. FelixJ.F. Fernández-SanlésA. SoaresA.G. KilpiF. YangQ. McEachanR.R.C. RichmondR.C. LiuX. SkotteL. IrizarA. HattersleyA.T. BodinierB. ScholtensD.M. NohrE.A. BondT.A. HayesM.G. WestJ. TyrrellJ. WrightJ. BouchardL. MurciaM. BustamanteM. Chadeau-HyamM. JarvelinM.R. VrijheidM. PerronP. MagnusP. GaillardR. JaddoeV.W.V. LoweW.L.Jr FeenstraB. HivertM.F. SørensenT.I.A. HåbergS.E. SerbertS. MagnusM. LawlorD.A. Integrating multiple lines of evidence to assess the effects of maternal BMI on pregnancy and perinatal outcomes.BMC Med.20242213210.1186/s12916‑023‑03167‑038281920
    [Google Scholar]
  12. YangJ. HeY. WuY. ZhangD. HuangH. Association between abnormal body mass index and pregnancy outcomes in patients following frozen embryo transfer: A systematic review and meta-analysis.Reprod. Biol. Endocrinol.202119114010.1186/s12958‑021‑00809‑x34503525
    [Google Scholar]
  13. WangX. MaoD. XuZ. WangY. YangX. ZhuoQ. TianY. HuanY. LiY. Predictive equation for basal metabolic rate in normal-weight chinese adults.Nutrients20231519418510.3390/nu1519418537836469
    [Google Scholar]
  14. BohnM.K. AdeliK. Physiological and metabolic adaptations in pregnancy: Importance of trimester-specific reference intervals to investigate maternal health and complications.Crit. Rev. Clin. Lab. Sci.2022592769210.1080/10408363.2021.197892334587857
    [Google Scholar]
  15. SatterfieldM.C. EdwardsA.K. BazerF.W. DunlapK.A. SteinhauserC.B. WuG. Placental adaptation to maternal malnutrition.Reproduction20211624R73R8310.1530/REP‑21‑017934314369
    [Google Scholar]
  16. DudzikD. AtanasovaV. BarbasC. BarthaJ.L. First-trimester metabolic profiling of gestational diabetes mellitus: Insights into early-onset and late-onset cases compared with healthy controls.Front. Mol. Biosci.202511145231210.3389/fmolb.2024.145231239881810
    [Google Scholar]
  17. LiS. ZhuJ. ZhaoY. AnP. ZhaoH. XiongY. Metabolic disorder of nutrients—an emerging field in the pathogenesis of preeclampsia.Front. Nutr.202512156061010.3389/fnut.2025.156061040123939
    [Google Scholar]
  18. HuangH. LiJ. ChenT. LuM. ZhuomaG. ChenL. GanY. YeH. The correlation between blood lipids and intrahepatic cholestasis syndrome during pregnancy.J. Obstet. Gynaecol.2024441236992910.1080/01443615.2024.236992938963226
    [Google Scholar]
  19. TangM. XiongL. CaiJ. FuJ. LiuH. YeY. YangL. XingS. YangX. Intrahepatic cholestasis of pregnancy: Insights into pathogenesis and advances in omics studies.Hepatol. Int.2024181506210.1007/s12072‑023‑10604‑y37957532
    [Google Scholar]
  20. LigthelmR.J. BorzìV. GumprechtJ. KawamoriR. WenyingY. ValensiP. Importance of observational studies in clinical practice.Clin. Ther.20072961284129210.1016/j.clinthera.2007.07.004
    [Google Scholar]
  21. BirneyE. Mendelian randomization.Cold Spring Harb. Perspect. Med.2022124a04130234872952
    [Google Scholar]
  22. LawlorD.A. HarbordR.M. SterneJ.A.C. TimpsonN. Davey SmithG. Mendelian randomization: Using genes as instruments for making causal inferences in epidemiology.Stat. Med.20082781133116310.1002/sim.303417886233
    [Google Scholar]
  23. DuL. WangB. WenJ. ZhangN. No causal association between insomnia and bladder cancer: A bidirectional two-sample Mendelian randomization study.Eur. J. Med. Res.202429131610.1186/s40001‑024‑01920‑638849949
    [Google Scholar]
  24. MulimH.A. PedrosaV.B. PintoL.F.B. TiezziF. MalteccaC. SchenkelF.S. BritoL.F. Detection and evaluation of parameters influencing the identification of heterozygous-enriched regions in Holstein cattle based on SNP chip or whole-genome sequence data.BMC Genomics202425172610.1186/s12864‑024‑10642‑239060982
    [Google Scholar]
  25. NgJ.C.M. SchoolingC.M. Sex-specific Mendelian randomization phenome-wide association study of basal metabolic rate.Sci. Rep.20251511436810.1038/s41598‑025‑98017‑940274879
    [Google Scholar]
  26. HuangS.C. ChenK.H. TsengW.H.S. YangL.Y. HsiaoC.C. FangY.C. LeeC.H. Basal metabolic rate correlates with excess postexercise oxygen consumption across different intensities.BMC Sports Sci. Med. Rehabil.2025171310.1186/s13102‑024‑01045‑739762866
    [Google Scholar]
  27. ChenY. LuT. Pettersson-KymmerU. StewartI.D. Butler-LaporteG. NakanishiT. CeraniA. LiangK.Y.H. YoshijiS. WillettJ.D.S. SuC.Y. RainaP. GreenwoodC.M.T. FarjounY. ForgettaV. LangenbergC. ZhouS. OhlssonC. RichardsJ.B. Genomic atlas of the plasma metabolome prioritizes metabolites implicated in human diseases.Nat. Genet.2023551445310.1038/s41588‑022‑01270‑136635386
    [Google Scholar]
  28. LiuY. FengD. ZhangH. WangL. Dissecting causal relationships between gut microbiota, 1400 blood metabolites, and intervertebral disc degeneration.Neurospine202522121122110.14245/ns.2449172.58640211528
    [Google Scholar]
  29. LewisM.J. WangS. locuszoomr: An R package for visualizing publication-ready regional gene locus plots.Bioinform. Adv.202551vbaf00610.1093/bioadv/vbaf006
    [Google Scholar]
  30. MengZ. AoB. WangW. NiuT. ChenY. MaX. HuangY. Relationships between screen time and childhood attention deficit hyperactivity disorder: A Mendelian randomization study.Front. Psychiatry202415144119110.3389/fpsyt.2024.144119139376970
    [Google Scholar]
  31. TyrmiJ.S. KaartokallioT. LokkiA.I. JääskeläinenT. KortelainenE. RuotsalainenS. KarjalainenJ. RipattiS. KiviojaA. LaiskT. KettunenJ. PoutaA. KivinenK. KajantieE. HeinonenS. KereJ. LaivuoriH. EkholmE. HietalaR. Keski-NisulaL. MäkikallioK. UotilaJ. SainioS. SaistoT. VääräsmäkiM. Aalto-ViljakainenT. GeorgiadisL. Heikkinen-ElorantaJ. KlemettiM.M. Suomalainen-KönigS. WedenojaS. LeminenS. LähdesmäkiA. MehtäläS. SalménC. PalotieA. DalyM. Riley-GillsB. JacobH. PaulD. MatakidouA. PlattA. RunzH. JohnS. OkafoG. LawlessN. PlengeR. MaranvilleJ. McCarthyM. HunkapillerJ. EhmM.G. AuroK. LongerichS. FoxC. MälarstigA. KlingerK. RaipalD. GreenE. GrahamR. YangR. O´DonnellC. MäkeläT.P. KaprioJ. VirolainenP. HakanenA. KilpiT. PerolaM. PartanenJ. PitkärantaA. JunttilaJ. SerpiR. LaitinenT. KosmaV-M. LaukkanenJ. HautalahtiM. TuovilaO. PakkanenR. WaringJ. Riley-GillisB. RahimovF. TachmazidouI. ChenC-Y. DingZ. JungM. BiswasS. PendergrassR. PulfordD. RaghavanN. Huertas-VazquezA. SulJ-H. HuX. MozaffariS. WaterworthD. RenaudN. ObeidatM´. SchleutkerJ. ArvasM. CarpénO. HinttalaR. MannermaaA. Aalto-SetäläK. KähönenM. MäkeläJ. KälviäinenR. JulkunenV. SoininenH. RemesA. HiltunenM. PeltolaJ. RaivioM. TienariP. RinneJ. KallionpääR. PartanenJ. AbbasiA. ZiemannA. SmaouiN. LehtonenA. EatonS. LahdenperäS. BowersN. TengE. XuF. AddisL. EicherJ. LiQ.S. HeK. KhramtsovaE. FärkkiläM. KoskelaJ. PikkarainenS. JussilaA. KaukinenK. BlomsterT. KiviniemiM. VoutilainenM. LuT. McCarthyL. HartA. GuanM. MillerJ. KalpalaK. MillerM. EklundK. PalomäkiA. IsomäkiP. PiriläL. Kaipiainen-SeppänenO. HuhtakangasJ. MarsN. LertratanakulA. CloseD. HochfeldM. GordilloJ.E. FariasF. BingN. PelkonenM. KauppiP. KankaanrantaH. HarjuT. LahesmaaR. MackayA. LassiG. ChenH. BettsJ. MishraR. MoudedM. NgoD. NiiranenT. VauraF. SalomaaV. MetsärinneK. AittokallioJ. HernesniemiJ. GordinD. SinisaloJ. TaskinenM-R. TuomiT. HiltunenT. ElliottA. ReeveM.P. ChallisB. ChuA. ReillyD. MendelsonM. ParkkinenJ. MeretojaT. JoensuuH. MattsonJ. SalminenE. AuranenA. KarihtalaP. AuvinenP. EleniusK. PitkänenE. PopovicR. SchutzmanJ. KulkarniD. PorelloA. LobodaA. LehtonenH. McDonoughS. VuotiS. KaarnirantaK. TurunenJ.A. OllilaT. UusitaloH. LiuM. LoomisS. StraussE. ChenH. TasanenK. HuilajaL. Hannula-JouppiK. SalmiT. PeltonenS. KouluL. ChoyD. WuY. PussinenP. SalminenA. SaloT. RiceD. NieminenP. PalotieU. SiponenM. SuominenL. MäntyläP. GursoyU. AnttonenV. SipiläK. KurraV. Kotaniemi-TalonenL. HeikinheimoO. KallialaI. AaltonenL. JokimaaV. KettunenJ. UimariO. Morin-PapunenL. NiinimäkiM. PiltonenT. WidenE. TukiainenT. VälimäkiN. LaakkonenE. SilvenH. SlizE. ArffmanR. SavukoskiS. PujolN. KumarJ. HovattaI. IsometsäE. VeerapenK. OllilaH. SuvisaariJ. AlsT.D. MäkitieA. Bizaki-VallaskangasA. Toppila-SalmiS. WillbergT. SaarentausE. AarnisaloA. RahikkalaE. AittomäkiK. ÅbergF. KurkiM. RipattiS. KarjalainenJ. HavulinnaA. MehtonenJ. PaltaP. HassanS. ParoloP.D.B. ZhouW. MaashaM. LemmeläS. RivasM. NiemiM.E. LiuA. LehistoA. GannaA. LlorensV. HeyneH. RämöJ. RodosthenousR. StrauszS. PalotieT. PalinK. Garcia-TabuencaJ. SiirtolaH. KiiskinenT. LeeJ. TsuoK. KristianssonK. HyvärinenK. RitariJ. PylkäsK. KarjalainenM. MantereT. KangasniemiE. HeikkinenS. PitkänenN. LessardS. ChatelainC. TerhoP. SoiniS. PunkkaE. SiltanenS. KuopioT. JalankoA. ShenH-Y. KajanneR. AavikkoM. KanaiM. LaivuoriH. LahtelaL.E. KaunistoM. KilpeläinenE. SipiläT.P. DadaO.A. GhazalA. KytöläA. WeldatsadikR. DonnerK. LoukolaA. LaihoP. SistonenT. KaiharjuE. LaukkanenM. JärvensivuE. LähteenmäkiS. MännikköL. WongR. ToivolaA. BrunfeldtM. MattssonH. KoskelainenS. HiekkalinnaT. PaajanenT. PärnK. KalsM. LuoS. SinhaV. NiemiM. Gracia-TabuencaJ. HelminenM. LuukkaalaT. VähätaloI. PitkänenJ. SmithS. SoutheringtonT. MetspaluA. EskoT. NelisM. MilaniL. MägiR. HudjashovG. Genetic risk factors associated with preeclampsia and hypertensive disorders of pregnancy.JAMA Cardiol.20238767468310.1001/jamacardio.2023.131237285119
    [Google Scholar]
  32. HershbergerC. MariamA. PantaloneK.M. BuseJ.B. Motsinger-ReifA.A. RotroffD.M. Polygenic subtype identified in ACCORD trial displays a favorable type 2 diabetes phenotype in the UKBiobank population.Hum. Genomics20241817010.1186/s40246‑024‑00639‑z38909264
    [Google Scholar]
  33. FerkingstadE. SulemP. AtlasonB.A. SveinbjornssonG. MagnussonM.I. StyrmisdottirE.L. GunnarsdottirK. HelgasonA. OddssonA. HalldorssonB.V. JenssonB.O. ZinkF. HalldorssonG.H. MassonG. ArnadottirG.A. KatrinardottirH. JuliussonK. MagnussonM.K. MagnussonO.T. FridriksdottirR. SaevarsdottirS. GudjonssonS.A. StaceyS.N. RognvaldssonS. EiriksdottirT. OlafsdottirT.A. SteinthorsdottirV. TraganteV. UlfarssonM.O. StefanssonH. JonsdottirI. HolmH. RafnarT. MelstedP. SaemundsdottirJ. NorddahlG.L. LundS.H. GudbjartssonD.F. ThorsteinsdottirU. StefanssonK. Large-scale integration of the plasma proteome with genetics and disease.Nat. Genet.202153121712172110.1038/s41588‑021‑00978‑w34857953
    [Google Scholar]
  34. HemaniG. ZhengJ. ElsworthB. WadeK.H. HaberlandV. BairdD. LaurinC. BurgessS. BowdenJ. LangdonR. TanV.Y. YarmolinskyJ. ShihabH.A. TimpsonN.J. EvansD.M. ReltonC. MartinR.M. Davey SmithG. GauntT.R. HaycockP.C. The MR-Base platform supports systematic causal inference across the human phenome.eLife201873440810.7554/eLife.3440829846171
    [Google Scholar]
  35. BurgessS. ButterworthA. ThompsonS.G. Mendelian randomization analysis with multiple genetic variants using summarized data.Genet. Epidemiol.201337765866510.1002/gepi.2175824114802
    [Google Scholar]
  36. EllervikC. BoulakhL. TeumerA. MarouliE. KuśA. Buch HesgaardH. HeegaardS. BlankersL. SterenborgR. ÅsvoldB.O. WinklerT.W. MediciM. KjaergaardA.D. Thyroid function, diabetes, and common age-related eye diseases: A mendelian randomization study.Thyroid202434111414142310.1089/thy.2024.025739283829
    [Google Scholar]
  37. YeF. HuangY. ZengL. LiN. HaoL. YueJ. LiS. DengJ. YuF. HuX. The genetically predicted causal associations between circulating 3-hydroxybutyrate levels and malignant neoplasms: A pan-cancer Mendelian randomization study.Clin. Nutr.2024431113715210.1016/j.clnu.2024.09.04439378563
    [Google Scholar]
  38. CarterA.R. SandersonE. HammertonG. RichmondR.C. Davey SmithG. HeronJ. TaylorA.E. DaviesN.M. HoweL.D. Mendelian randomisation for mediation analysis: Current methods and challenges for implementation.Eur. J. Epidemiol.202136546547810.1007/s10654‑021‑00757‑133961203
    [Google Scholar]
  39. WallaceC. Eliciting priors and relaxing the single causal variant assumption in colocalisation analyses.PLoS Genet.2020164100872010.1371/journal.pgen.100872032310995
    [Google Scholar]
  40. TanJ.S. LiuN.N. GuoT.T. HuS. HuaL. Genetically predicted obesity and risk of deep vein thrombosis.Thromb. Res.2021207162410.1016/j.thromres.2021.08.026
    [Google Scholar]
  41. BurgessS. ThompsonS.G. Interpreting findings from Mendelian randomization using the MR-Egger method.Eur. J. Epidemiol.201732537738910.1007/s10654‑017‑0255‑x28527048
    [Google Scholar]
  42. VerbanckM. ChenC.Y. NealeB. DoR. Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases.Nat. Genet.201850569369810.1038/s41588‑018‑0099‑729686387
    [Google Scholar]
  43. LondonV. GrubeS. ShererD.M. AbulafiaO. Hyperemesis gravidarum: A review of recent literature.Pharmacology20171003-416117110.1159/00047785328641304
    [Google Scholar]
  44. KhammarniaM. Ansari-MoghaddamA. kakhkiF.G. ClarkC.C.T. BarahoueiF.B. Maternal macronutrient and energy intake during pregnancy: A systematic review and meta-analysis.BMC Public Health202424147810.1186/s12889‑024‑17862‑x38360655
    [Google Scholar]
  45. AsfawD. JordanovI. ImpeyL. NambureteA. LeeR. GeorgievaA. Multimodal deep learning for predicting adverse birth outcomes based on early labour data.Bioengineering202310673010.3390/bioengineering1006073037370663
    [Google Scholar]
  46. CornishR.P. MagnusM.C. UrhojS.K. SantorelliG. SmithersL.G. OddD. FraserA. HåbergS.E. Nybo AndersenA.M. BirnieK. LynchJ.W. TillingK. LawlorD.A. Maternal pre-pregnancy body mass index and risk of preterm birth: A collaboration using large routine health datasets.BMC Med.20242211010.1186/s12916‑023‑03230‑w38178112
    [Google Scholar]
  47. ParrettiniS. CaroliA. TorloneE. Nutrition and metabolic adaptations in physiological and complicated pregnancy: Focus on obesity and gestational diabetes.Front. Endocrinol.20201161192910.3389/fendo.2020.61192933424775
    [Google Scholar]
  48. HuX. ZhangL. Uteroplacental circulation in normal pregnancy and preeclampsia: Functional adaptation and maladaptation.Int. J. Mol. Sci.20212216862210.3390/ijms2216862234445328
    [Google Scholar]
  49. ChiharaH. OtsuboY. YoneyamaY. SawaR. SuzukiS. PowerG.G. ArakiT. Basal metabolic rate in hyperemesis gravidarum: Comparison to normal pregnancy and response to treatment.Am. J. Obstet. Gynecol.2003188243443810.1067/mob.2003.7412592252
    [Google Scholar]
  50. ManzoorM. ChenD. LinJ. WangY. XiangL. QiJ. Isoquercitrin promotes hair growth through induction of autophagy and angiogenesis by targeting AMPK and IGF-1R.Phytomedicine202513615628910.1016/j.phymed.2024.15628939615213
    [Google Scholar]
  51. WangC. LiuZ.Y. HuangW.G. YangZ.J. LanQ.Y. FangA.P. HouM.J. LuoX.L. ZhangY.J. ChenS. ZhuH.L. Choline suppresses hepatocellular carcinoma progression by attenuating AMPK/mTOR-mediated autophagy via choline transporter SLC5A7 activation.Hepatobiliary Surg. Nutr.202413339341110.21037/hbsn‑22‑47638911213
    [Google Scholar]
  52. MengX. ChenC. QianJ. CuiL. WangS. Energy metabolism and maternal-fetal tolerance working in decidualization.Front. Immunol.202314120371910.3389/fimmu.2023.120371937404833
    [Google Scholar]
  53. ZhangC. WangY. HeM. WangC. CaoK. ZhongY. WangX. YangM. ZhangG. LuJ. YiH. LiuH. XuC. Mannose enhances immunotherapy efficacy in ovarian cancer by modulating gut microbial metabolites.Cancer Res.202585132468248410.1158/0008‑5472.CAN‑24‑320940245117
    [Google Scholar]
  54. QiuY. SuY. XieE. ChengH. DuJ. XuY. PanX. WangZ. ChenD.G. ZhuH. GreenbergP.D. LiG. Mannose metabolism reshapes T cell differentiation to enhance anti-tumor immunity.Cancer Cell2025431103121.e810.1016/j.ccell.2024.11.00339642888
    [Google Scholar]
  55. LiuQ. LiX. ZhangH. LiH. Mannose attenuates colitis-associated colorectal tumorigenesis by targeting tumor-associated macrophages.J. Cancer Prev.2022271314110.15430/JCP.2022.27.1.3135419307
    [Google Scholar]
  56. XiaoP. HuZ. LangJ. PanT. MertensR.T. ZhangH. GuoK. ShenM. ChengH. ZhangX. CaoQ. KeY. Mannose metabolism normalizes gut homeostasis by blocking the TNF-α-mediated proinflammatory circuit.Cell. Mol. Immunol.202220211913010.1038/s41423‑022‑00955‑136471112
    [Google Scholar]
  57. LuoJ LiY ZhaiY LiuY ZengJ WangD LiL ZhuZ ChangB DengF ZhangJ ZhouJ SunL. D-Mannose ameliorates DNCB-induced atopic dermatitis in mice and TNF-α-induced inflammation in human keratinocytes via mTOR/NF-κB pathway.Int. Immunopharmacol.2022Dec113Pt A10937810.1016/j.intimp.2022.109378
    [Google Scholar]
  58. FortinE. CampiB. FerranniniE. MariA. MellbinL.G. NorhammarA. NäsmanP. RydénL. SabaA. FerranniniG. High mannose correlates with surrogate indexes of insulin resistance and is associated with an increased risk of cardiovascular events independently of glycemic status and traditional risk factors.Diabetes Care202447224625110.2337/dc23‑087038055929
    [Google Scholar]
  59. KimH.S. JooS.S. YooY.M. The correlation between amylin and insulin by treatment with 2-deoxy-D-glucose and/or mannose in rat insulinoma ins-1E cells.J. Physiol. Pharmacol.20217243498712534987125
    [Google Scholar]
  60. HuM. ChenY. DengF. ChangB. LuoJ. DongL. LuX. ZhangY. ChenZ. ZhouJ. D-mannose regulates hepatocyte lipid metabolism via PI3K/Akt/mTOR signaling pathway and ameliorates hepatic steatosis in alcoholic liver disease.Front. Immunol.20221387765010.3389/fimmu.2022.87765035464439
    [Google Scholar]
  61. HongJ.G. CarbajalY. TrotmanJ. GlassM. SclarV. AlterI.L. ZhangP. WangL. ChenL. PetitjeanM. FriedmanS.L. DeRossiC. ChuJ. Mannose supplementation curbs liver steatosis and fibrosis in murine mash by inhibiting fructose metabolism.bioRxiv20242024.01.17.576067
    [Google Scholar]
  62. LinH. LiX. ZhaoJ. WangL. LiuY. GaoC. D-mannose reduces adipogenesis by inhibiting the PI3K/AKT signaling pathway.Histol. Histopathol.202338111283129437246829
    [Google Scholar]
  63. SaadA.F. PachecoL.D. ChappellL. SaadeG.R. Intrahepatic cholestasis of pregnancy: Toward improving perinatal outcome.Reprod. Sci.202229113100310510.1007/s43032‑021‑00740‑x34524639
    [Google Scholar]
  64. ChenY. ZhangH. NingW. ChenY. WenC. The impact of intrahepatic cholestasis on pregnancy outcomes: A retrospective cohort study.BMC Gastroenterol.20232311610.1186/s12876‑023‑02652‑336653757
    [Google Scholar]
  65. HeM. ZhouX. WangX. Glycosylation: Mechanisms, biological functions and clinical implications.Signal Transduct. Target. Ther.20249119410.1038/s41392‑024‑01886‑139098853
    [Google Scholar]
  66. RufflesT. BasuK. InglisS.K. BremnerS. RabeH. MemonA. SeddonP. TavendaleR. PalmerC.N.A. MukhopadhyayS. FidlerK. Mannose-binding lectin genotype is associated with respiratory disease in young children: A multicenter cohort study.Pediatr. Pulmonol.202257112824283310.1002/ppul.2610935949104
    [Google Scholar]
  67. LaubachJ.P. LudwigM. HornT. EickmeierO. SmacznyC. SchubertR. ZielenS. MajoorC. AydinM. Schmitt-GrohéS. Mannose-binding lectin (MBL) and gap junction protein alpha 4 (GJA4) gene heterogeneity in relation to severity of clinical disease in cystic fibrosis.Front. Biosci.202227616810.31083/j.fbl270616835748244
    [Google Scholar]
  68. GedebjergA. BjerreM. KjaergaardA.D. SteffensenR. NielsenJ.S. RungbyJ. FriborgS.G. BrandslundI. ThielS. Beck-NielsenH. SørensenH.T. HansenT.K. ThomsenR.W. Mannose-binding lectin and risk of cardiovascular events and mortality in type 2 diabetes: A danish cohort study.Diabetes Care20204392190219810.2337/dc20‑034532616614
    [Google Scholar]
  69. RoedigerR. FleckensteinJ. Intrahepatic cholestasis of pregnancy: Natural history and current management.Semin. Liver Dis.202141110310810.1055/s‑0040‑172226433764488
    [Google Scholar]
  70. DhanalakshmiM. SruthiD. JinurajK.R. DasK. DaveS. AndalN.M. DasJ. Mannose: A potential saccharide candidate in disease management.Med. Chem. Res.202332339140810.1007/s00044‑023‑03015‑z36694836
    [Google Scholar]
  71. AltonG. HasilikM. NiehuesR. PanneerselvamK. EtchisonJ.R. FanaF. FreezeH.H. Direct utilization of mannose for mammalian glycoprotein biosynthesis.Glycobiology19988328529510.1093/glycob/8.3.2859451038
    [Google Scholar]
  72. LieuE.L. KelekarN. BhallaP. KimJ. Fructose and mannose in inborn errors of metabolism and cancer.Metabolites202111847910.3390/metabo1108047934436420
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303400445250718112316
Loading
/content/journals/emiddt/10.2174/0118715303400445250718112316
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test