Skip to content
2000
Volume 26, Issue 1
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Aim

The purpose of this study was to identify molecular subtypes and hub genes in fibromyalgia (FM) based on immune-related genes (IRGs).

Background

FM is a chronic disease featuring widespread pain, and the immune system may be involved in the FM progression.

Objective

The objectives of this study are as follows: 1) To identify the molecular subtypes of FM based on IRGs. 2) To screen and validate the hub genes in FM. 3) To predict the transcription factor (TF) targeting hub genes and 4) To evaluate the correlation between immune cell infiltration, hallmark pathways, and hub genes.

Methods

Two FM datasets were acquired from the Gene Expression Omnibus (GEO) database. IRGs were collected from the ImmPort database. Molecular subtypes of FM were identified using the “ConsensusClusterPlus” package. IRGs score and differentially expressed genes (DEGs) between different FM subtypes and control samples were obtained using “GSVA” and “limma” packages. Key module genes related to FM subtypes were identified using the “WGCNA” package. Hub genes were screened and verified using “glmnet” and “pROC” packages. TF-hub gene regulatory network was constructed by Cytoscape software. The correlation between immune cells, hallmark pathways, and hub genes was analyzed by the Spearman method. Finally, the DSigDB database was used to obtain associations between characterized genes and drugs, and the expression of key genes was verified using qRT-PCR.

Results

FM samples were classified into two subtypes, and the IRGs score of the C2 subtype was lower than that of the C1 subtype. Then, 184 module genes were obtained and mainly enriched in immune-related pathways. Next, 11 hub genes (, , , , , , , , , , ) were screened with good diagnostic performance. Besides, 45 TFs targeting hub genes were predicted. Most hub genes were negatively associated with CD4/CD8 T cells while positively correlated with macrophages, mast cell, monocyte, and neutrophil, as well as inflammatory response, angiogenesis pathways, . Molecular docking suggests that chloroquine and L-citrulline may be potent agents binding to and . and were significantly differentially expressed in FM-modeled mice.

Conclusion

This study identified two subtypes and 11 hub genes of FM based on IRGs, providing a reference for the clinical diagnosis of FM.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303365068250303042017
2025-03-10
2026-01-10
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/26/1/EMIDDT-26-E18715303365068.html?itemId=/content/journals/emiddt/10.2174/0118715303365068250303042017&mimeType=html&fmt=ahah

References

  1. BruunK.D. JensenH.I. Blichfeldt-EckhardtM.R. VaegterH.B. ToftP. AmrisK. KvorningN. Performance of the 2016 diagnostic criteria for fibromyalgia in a tertiary care pain rehabilitation setting: a diagnostic accuracy study.Scand. J. Pain2022221677610.1515/sjpain‑2021‑008134670033
    [Google Scholar]
  2. MunipalliB. AllmanM.E. ChauhanM. NiaziS.K. RiveraF. AbrilA. WangB. WieczorekM.A. HodgeD.O. KnightD. PerlmanA. Abu DabrhA.M. DudenkovD. BruceB.K. Depression: A modifiable risk factor for poor outcomes in fibromyalgia.J. Prim. Care Community Health2022132150131922112073810.1177/2150131922112073836036260
    [Google Scholar]
  3. Treister-GoltzmanY. PelegR. Fibromyalgia and mortality: a systematic review and meta-analysis.RMD Open202393e00300510.1136/rmdopen‑2023‑00300537429737
    [Google Scholar]
  4. CreedF. The risk factors for self-reported fibromyalgia with and without multiple somatic symptoms: The Lifelines cohort study.J. Psychosom. Res.202215511074510.1016/j.jpsychores.2022.11074535123251
    [Google Scholar]
  5. ErsoyS. KesiktasF.N. SirinB. BugdayciD. PakerN. The effect of vitamin D treatment on quality of life in patients with fibromyalgia.Ir. J. Med. Sci.202419321111111610.1007/s11845‑023‑03521‑437707690
    [Google Scholar]
  6. YaoS. BaoH. NuguriS.M. YuL. MikulikZ. Osuna-DiazM.M. SebastianK.R. HackshawK.V. Rodriguez-SaonaL. Rapid biomarker-based diagnosis of fibromyalgia syndrome and related rheumatologic disorders by portable FT-IR spectroscopic techniques.Biomedicines202311371210.3390/biomedicines1103071236979691
    [Google Scholar]
  7. FavrettiM. IannuccelliC. Di FrancoM. Pain biomarkers in fibromyalgia syndrome: Current understanding and future directions.Int. J. Mol. Sci.202324131044310.3390/ijms24131044337445618
    [Google Scholar]
  8. HackshawK.V. AykasD.P. SigurdsonG.T. PlansM. MadiaiF. YuL. BuffingtonC.A.T. GiustiM.M. Rodriguez-SaonaL. Metabolic fingerprinting for diagnosis of fibromyalgia and other rheumatologic disorders.J. Biol. Chem.201929472555256810.1074/jbc.RA118.00581630523152
    [Google Scholar]
  9. SlukaK.A. ClauwD.J. Neurobiology of fibromyalgia and chronic widespread pain.Neuroscience201633811412910.1016/j.neuroscience.2016.06.00627291641
    [Google Scholar]
  10. Andrés-RodríguezL. BorràsX. Feliu-SolerA. Pérez-ArandaA. Rozadilla-SacanellA. ArranzB. Montero-MarinJ. García-CampayoJ. Angarita-OsorioN. MaesM. LucianoJ.V. Machine learning to understand the immune-inflammatory pathways in fibromyalgia.Int. J. Mol. Sci.20192017423110.3390/ijms2017423131470635
    [Google Scholar]
  11. GerdleB. WåhlénK. GordhT. BäckrydE. CarlssonA. GhafouriB. Plasma proteins from several components of the immune system differentiate chronic widespread pain patients from healthy controls – an exploratory case-control study combining targeted and non-targeted protein identification.Medicine (Baltimore)202210146e3101310.1097/MD.000000000003101336401429
    [Google Scholar]
  12. Andrés-RodríguezL. BorràsX. Feliu-SolerA. Pérez-ArandaA. Angarita-OsorioN. Moreno-PeralP. Montero-MarinJ. García-CampayoJ. CarvalhoA.F. MaesM. LucianoJ.V. Peripheral immune aberrations in fibromyalgia: A systematic review, meta-analysis and meta-regression.Brain Behav. Immun.20208788188910.1016/j.bbi.2019.12.02031887417
    [Google Scholar]
  13. MastrangeloF. FrydasI. RonconiG. KritasS.K. TettamantiL. CaraffaAl. D OvidioC. YounesA. GallengaC.E. ContiP. Low-grade chronic inflammation mediated by mast cells in fibromyalgia: role of IL-37.J. Biol. Regul. Homeost. Agents201832219519829684996
    [Google Scholar]
  14. LinX. ZhangK. MengT. AKAP12 and RNF11 as diagnostic markers of fibromyalgia and their correlation with immune infiltration.Oxid. Med. Cell. Longev.2022202211210.1155/2022/903334236238643
    [Google Scholar]
  15. ParoliM. GioiaC. AccapezzatoD. CaccavaleR. Inflammation, autoimmunity, and infection in fibromyalgia: A narrative review.Int. J. Mol. Sci.20242511592210.3390/ijms2511592238892110
    [Google Scholar]
  16. LiptanG. The widespread myofascial pain of fibromyalgia is sympathetically maintained and immune mediated.J. Bodyw. Mov. Ther.20233539439910.1016/j.jbmt.2023.04.08137330799
    [Google Scholar]
  17. SongZ. YuJ. WangM. ShenW. WangC. LuT. Transcriptome expression profile database and interactive analysis platform for congenital heart disease.Congenital. Heart Dis.2023186693701
    [Google Scholar]
  18. ChenY. TuY. YanG. JiX. ChenS. NiuC. LiaoP. Integrated bioinformatics analysis for revealing CBL is a potential diagnosing biomarker and related imune infiltration in Parkinson’s disease.Int. J. Gen. Med.2024172371238610.2147/IJGM.S45694238799203
    [Google Scholar]
  19. WilkersonM.D. HayesD.N. ConsensusClusterPlus: a class discovery tool with confidence assessments and item tracking.Bioinformatics201026121572157310.1093/bioinformatics/btq17020427518
    [Google Scholar]
  20. SuF. SuW. WangH. WangY. YeL. ZhuP. GuJ. NMR-based metabolomic techniques identify the anticancer effects of three polyphyllins in HepG2 cells.Curr. Pharm. Anal.202218441542610.2174/1573412917666210823090145
    [Google Scholar]
  21. CaoL. WangX. LiX. MaL. LiY. Identification of co-diagnostic genes for heart failure and hepatocellular carcinoma through WGCNA and machine learning algorithms.Mol. Biotechnol.20246651229124510.1007/s12033‑023‑01025‑138236461
    [Google Scholar]
  22. GaoY ZhangH TianX. Integrated analysis of TCGA data identifies endoplasmic reticulum stress-related lncRNA signature in stomach adenocarcinoma.Oncologie,202426222123710.1515/oncologie‑2023‑0394
    [Google Scholar]
  23. JiaS ZhaiL WuF LvW MinX ZhangS. Integrative machine learning algorithms for developing a consensus RNA modification-based signature for guiding clinical decision-making in bladder cancer.Oncologie202426226928510.1515/oncologie‑2023‑0348
    [Google Scholar]
  24. LinX TianC PanF WangR. A novel immune-associated prognostic signature based on the immune cell infiltration analysis for hepatocellular carcinoma.Oncologie20242619110310.1515/oncologie‑2023‑0360
    [Google Scholar]
  25. TangZ. WangL. WuG. QinL. TanY. FGD5 as a novel prognostic biomarker and its association with immune infiltrates in lung adenocarcinoma.Biocell202347112503251610.32604/biocell.2023.031565
    [Google Scholar]
  26. RaoufiS. Jafarinejad-FarsangiS. DeheshT. HadizadehM. Investigating unique genes of five molecular subtypes of breast cancer using penalized logistic regression.J. Cancer Res. Ther.202319Suppl. 1S126S13710.4103/jcrt.jcrt_811_2137147992
    [Google Scholar]
  27. LiuZ. HuangX.I. A model based on eight iron metabolism-related genes accurately predicts acute myeloid leukemia prognosis.Biocell202347359360510.32604/biocell.2023.024148
    [Google Scholar]
  28. MoB ZhaoX WangY JiangX LiuD CaiH. Pan-cancer analysis, providing a reliable basis for IDO2 as a prognostic biomarker and target for immunotherapy.Oncologie2023251173510.1515/oncologie‑2022‑1026
    [Google Scholar]
  29. WangW. WangH. LiuY. YangL. Identification of miRNA-mRNA-TF regulatory networks in peripheral blood mononuclear cells of type 1 diabetes.BMC Endocr. Disord.202222111910.1186/s12902‑022‑01038‑y35534828
    [Google Scholar]
  30. DongR. JiangG. TianY. ShiX. Identification of immune-related biomarkers and construction of regulatory network in patients with atherosclerosis.BMC Med. Genomics202215124510.1186/s12920‑022‑01397‑436437453
    [Google Scholar]
  31. CharoentongP. FinotelloF. AngelovaM. MayerC. EfremovaM. RiederD. HacklH. TrajanoskiZ. Pan-cancer immunogenomic analyses reveal genotype-immunophenotype relationships and predictors of response to checkpoint blockade.Cell Rep.201718124826210.1016/j.celrep.2016.12.01928052254
    [Google Scholar]
  32. ChenX. LiH. Bruceine D and Narclasine inhibit the proliferation of breast cancer cells and the prediction of potential drug targets.PLoS One2024191e029720310.1371/journal.pone.029720338215156
    [Google Scholar]
  33. QiuY. ZhangT.J. MengL.B. ChengX.T. HuaZ. Bioinformatics analysis of gene and microRNA targets for fibromyalgia.Clin. Exp. Rheumatol.2021391213110.55563/clinexprheumatol/iitbcp32083545
    [Google Scholar]
  34. ErbacherC. VaknineS. MoshitzkyG. LobentanzerS. EisenbergL. EvdokimovD. SommerC. GreenbergD.S. SoreqH. ÜçeylerN. Distinct cholinomir blood cell signature as a potential modulator of the cholinergic system in women with fibromyalgia syndrome.Cells2022118127610.3390/cells1108127635455956
    [Google Scholar]
  35. GerraM.C. CarnevaliD. OssolaP. González-VillarA. PedersenI.S. TriñanesY. DonniniC. ManfrediniM. Arendt-NielsenL. Carrillo-de-la-PeñaM.T. DNA methylation changes in fibromyalgia suggest the role of the immune-inflammatory response and central sensitization.J. Clin. Med.20211021499210.3390/jcm1021499234768513
    [Google Scholar]
  36. Andrés-RodríguezL. BorràsX. Feliu-SolerA. Pérez-ArandaA. Rozadilla-SacanellA. Montero-MarinJ. MaesM. LucianoJ.V. Immune-inflammatory pathways and clinical changes in fibromyalgia patients treated with Mindfulness-Based Stress Reduction (MBSR): A randomized, controlled clinical trial.Brain Behav. Immun.20198010911910.1016/j.bbi.2019.02.03030818032
    [Google Scholar]
  37. YaoM. WangS. HanY. ZhaoH. YinY. ZhangY. ZengX. Micro-inflammation related gene signatures are associated with clinical features and immune status of fibromyalgia.J. Transl. Med.202321159410.1186/s12967‑023‑04477‑w37670381
    [Google Scholar]
  38. HuangR. SunH. LinR. ZhangJ. YinH. XianS. LiM. WangS. LiZ. QiaoY. JiangM. YanP. MengT. HuangZ. The role of tetraspanins pan-cancer.iScience202225810477710.1016/j.isci.2022.10477735992081
    [Google Scholar]
  39. OmolaoyeT.S. OmolaoyeV.A. KandasamyR.K. HachimM.Y. Du PlessisS.S. Omics and male infertility: Highlighting the application of transcriptomic data.Life202212228010.3390/life1202028035207567
    [Google Scholar]
  40. WangK. LiH. ZhaoJ. YaoJ. LuY. DongJ. BaiJ. LiaoL. Potential diagnostic of lymph node metastasis and prognostic values of TM4SFs in papillary thyroid carcinoma patients.Front. Cell Dev. Biol.202210100195410.3389/fcell.2022.100195436568979
    [Google Scholar]
  41. HossainM.S. RoyA.S. IslamM.S. In silico analysis predicting effects of deleterious SNPs of human RASSF5 gene on its structure and functions.Sci. Rep.20201011454210.1038/s41598‑020‑71457‑132884013
    [Google Scholar]
  42. SinghA. ErijmanA. NoronhaA. KumarH. PelegY. YardenY. ShifmanJ.M. Engineered variants of the Ras effector protein RASSF5 (NORE1A) promote anticancer activities in lung adenocarcinoma.J. Biol. Chem.2021297610135310.1016/j.jbc.2021.10135334717958
    [Google Scholar]
  43. MessinaM. ManeaE. CullupT. TuschlK. BatziosS. Hyperphosphatasia with mental retardation syndrome 3: Cerebrospinal fluid abnormalities and correction with pyridoxine and Folinic acid.JIMD Rep.2023641425210.1002/jmd2.1234736636587
    [Google Scholar]
  44. SaracinoA. TotaroM. PolitanoD. DE GiorgisV. GanaS. PapaliaG. PichiecchioA. PlumariM. RognoneE. VaresioC. OrcesiS. PGAP2-related hyperphosphatasia-mental retardation syndrome: Report of a novel patient, toward a broadening of phenotypic spectrum and therapeutic perspectives.Neuropediatrics202455212913410.1055/s‑0044‑177961338365198
    [Google Scholar]
  45. YuH.C. TungC.H. HuangK.Y. HuangH.B. LuM.C. The essential role of peptidylarginine deiminases 2 for cytokines secretion, apoptosis, and cell adhesion in macrophage.Int. J. Mol. Sci.20202116572010.3390/ijms2116572032785008
    [Google Scholar]
  46. Nava-QuirozK.J. Rojas-SerranoJ. Pérez-RubioG. Buendia-RoldanI. MejíaM. Fernández-LópezJ.C. Rodríguez-HenríquezP. Ayala-AlcantarN. Ramos-MartínezE. López-FloresL.A. Del Ángel-PabloA.D. Falfán-ValenciaR. Molecular factors in PAD2 (PADI2) and PAD4 (PADI4) are associated with interstitial lung disease susceptibility in rheumatoid arthritis patients.Cells20231218223510.3390/cells1218223537759458
    [Google Scholar]
  47. XieQ. TongC. XiongX. An overview of the co-transcription factor NACC1: Beyond its pro-tumor effects.Life Sci.202433612231410.1016/j.lfs.2023.12231438030057
    [Google Scholar]
  48. YapK.L. Sysa-ShahP. BolonB. WuR.C. GaoM. HerlingerA.L. WangF. FaiolaF. HusoD. GabrielsonK. WangT.L. WangJ. ShihI.M. Loss of NAC1 expression is associated with defective bony patterning in the murine vertebral axis.PLoS One201387e6909910.1371/journal.pone.006909923922682
    [Google Scholar]
  49. FengY. DuanT. DuY. JinS. WangM. CuiJ. WangR.F. LRRC25 functions as an inhibitor of NF-κB signaling pathway by Promoting p65/RelA for autophagic degradation.Sci. Rep.2017711344810.1038/s41598‑017‑12573‑329044191
    [Google Scholar]
  50. ZhangX. ZhangM.C. WangC.T. Loss of LRRC25 accelerates pathological cardiac hypertrophy through promoting fibrosis and inflammation regulated by TGF-β1.Biochem. Biophys. Res. Commun.2018506113714410.1016/j.bbrc.2018.09.06530340835
    [Google Scholar]
  51. MengL. ZhaoX. ZhangH. HIPK1 interference attenuates inflammation and oxidative stress of acute lung injury via autophagy.Med. Sci. Monit.20192582783510.12659/MSM.91250730734722
    [Google Scholar]
  52. SuJ. ZhongG. QinW. ZhouL. YeJ. YeY. ChenC. LiangP. ZhaoW. XiaoX. WenW. LuoW. ZhouX. ZhangZ. CaiY. LiC. Integrating iron metabolism-related gene signature to evaluate prognosis and immune infiltration in nasopharyngeal carcinoma.Discov. Oncol.202415111210.1007/s12672‑024‑00969‑338602575
    [Google Scholar]
  53. WuY. YangJ. XuG. ChenX. QuX. Integrated analysis of single-cell and bulk RNA sequencing data reveals prognostic characteristics of lysosome-dependent cell death-related genes in osteosarcoma.BMC Genomics202425137910.1186/s12864‑024‑10283‑538632516
    [Google Scholar]
  54. KinashiY. TanakaK. KimuraS. HirotaM. KomiyamaS. ShindoT. HashiguchiA. TakahashiD. ShibataS. KarakiS.I. OhnoH. HaseK. Intestinal epithelium dysfunctions cause IgA deposition in the kidney glomeruli of intestine-specific Ap1m2-deficient mice.EBioMedicine202410610525610.1016/j.ebiom.2024.10525639059316
    [Google Scholar]
  55. YiY. ZhangQ. ShenY. GaoY. FanX. ChenS. YeX. XuJ. System analysis of adaptor-related protein complex 1 subunit Mu 2 (AP1M2) on malignant tumors: A pan-cancer analysis.J. Oncol.2022202211710.1155/2022/794507735154321
    [Google Scholar]
  56. NiuW. JiangL. A seven-gene prognostic model related to immune checkpoint PD-1 revealing overall survival in patients with lung adenocarcinoma.Math. Biosci. Eng.20211856136615410.3934/mbe.202130734517527
    [Google Scholar]
  57. ZhaoF. ChenT. ZhaoX. WangQ. LanY. LiangY. LiY. WangS. YangY. YangX. LINC02190 inhibits the embryo–endometrial attachment by decreasing ITGAD expression.Reproduction2022163210711810.1530/REP‑21‑030035038314
    [Google Scholar]
  58. ChenD. ZhangH. ZhaoL. LiuX. LouY. WuP. XueS. JiangH. RILPL2 as a potential biomarker for predicting enhanced T cell infiltration in non-small cell lung cancer.Immunol. Res.20247251174118410.1007/s12026‑024‑09520‑639078518
    [Google Scholar]
  59. LenertM.E. Szabo-PardiT.A. BurtonM.D. Regulatory T-cells and IL-5 mediate pain outcomes in a preclinical model of chronic muscle pain.Mol. Pain2023191744806922111069110.1177/1744806922111069135712872
    [Google Scholar]
  60. YeC. XiaoG. XuJ. QinS. LuoY. ChenG. LaiH.H. ZhouT. Differential expression of immune factor between patients with chronic prostatitis/chronic pelvic pain syndrome and the healthy volunteers.Int. Urol. Nephrol.201850339539910.1007/s11255‑017‑1763‑z29235061
    [Google Scholar]
  61. KaufmannI. EisnerC. RichterP. HugeV. BeyerA. ChoukerA. SchellingG. ThielM. Lymphocyte subsets and the role of TH1/TH2 balance in stressed chronic pain patients.Neuroimmunomodulation200714527228010.1159/00011504118239379
    [Google Scholar]
  62. BanfiG. DianiM. PigattoP.D. RealiE. T cell subpopulations in the physiopathology of fibromyalgia: Evidence and perspectives.Int. J. Mol. Sci.2020214118610.3390/ijms2104118632054062
    [Google Scholar]
  63. MerriwetherE.N. AgalaveN.M. DaileyD.L. RakelB.A. KolkerS.J. LenertM.E. SpagnolaW.H. LuY. GeaslandK.M. AllenL.A.H. BurtonM.D. SlukaK.A. IL-5 mediates monocyte phenotype and pain outcomes in fibromyalgia.Pain202116251468148210.1097/j.pain.000000000000208933003107
    [Google Scholar]
  64. AktürkS. BüyükavcıR. Evaluation of blood neutrophil-lymphocyte ratio and platelet distribution width as inflammatory markers in patients with fibromyalgia.Clin. Rheumatol.20173681885188910.1007/s10067‑017‑3647‑028466420
    [Google Scholar]
  65. EgeF. IsikR. A comparative assessment of the inflammatory markers in patients with fibromyalgia under duloxetine treatment.Front. Biosci.202328816110.31083/j.fbl280816137664936
    [Google Scholar]
  66. CaxariaS. BhardeS. FullerA.M. EvansR. ThomasB. CelikP. Dell’AccioF. YonaS. GilroyD. VoisinM.B. WoodJ.N. SikandarS. Neutrophils infiltrate sensory ganglia and mediate chronic widespread pain in fibromyalgia.Proc. Natl. Acad. Sci. USA202312017e221163112010.1073/pnas.221163112037071676
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303365068250303042017
Loading
/content/journals/emiddt/10.2174/0118715303365068250303042017
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test