Skip to content
2000
Volume 25, Issue 15
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Introduction

Cardiovascular disease (CVD) is a leading cause of mortality on a global scale, with a higher prevalence observed among men. This study investigated the protective effect of vitamin D supplementation on CVD.

Methods

A cohort of thirty mice was divided into three groups: control, T1 diabetic, and T1 diabetic groups that received vitamin D treatment. For each mouse in the three groups, measurements were taken of body weight, blood glucose levels, glycated hemoglobin (HbA1c), lipid profile, cardiac enzymes, troponin I, adropin, nitric oxide (NO), endothelin-1, and Vascular endothelial growth factor (VEGF). In addition, measurements were taken for the overall lymphocyte count, as well as the CD3+, CD4+, CD8+, CD4+, CD25+, and CD8+ CD25+ cell counts in all mice.

Results

The diabetic mice that received vitamin D treatment exhibited significant reductions in blood glucose levels, HbA1c levels, lipid profile, cardiac enzymes, troponin I, endothelin-1, and VEGF levels as compared to the untreated diabetic group ( < 0.01). Furthermore, there was an observed rise in adropin and NO levels in diabetic mice that received vitamin D treatment compared to the untreated diabetic group ( < 0.05). The diabetic mice treated with vitamin D exhibited a substantial decrease in total lymphocyte counts compared to the untreated diabetic and control animals ( < 0.0001). Regarding the CD3+ subset, it was shown that diabetic mice subjected to vitamin D treatment had notably elevated levels of these cells compared to both the untreated diabetic and control groups ( < 0.0001). In addition, the administration of vitamin D resulted in a substantial decrease in the numbers of CD4+ and CD8+ cells in the group of individuals with diabetes ( < 0.0001). The diabetes group that received vitamin D treatment had significantly reduced populations of CD4+ CD25+ and CD8+ CD25+ compared to the untreated diabetic group ( < 0.0001).

Conclusion

Vitamin D maintains the integrity of the cardiovascular system through the reduction of blood glucose levels and lipid profile. Moreover, its supplementation prevents atherosclerotic CVD by suppressing inflammatory reactions.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303341809241022110317
2025-01-13
2025-12-18
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/15/EMIDDT-25-15-04.html?itemId=/content/journals/emiddt/10.2174/0118715303341809241022110317&mimeType=html&fmt=ahah

References

  1. World Health OrganizationThe top 10 causes of death.2020Available From: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  2. Australian Institute of Health and WelfareHeart, stroke and vascular disease: Australian facts.2023Available From: https://www.aihw.gov.au/reports/heart-stroke-vascular-diseases/hsvd-facts/contents/all-heart-stroke-and-vascular-disease
  3. CharoenngamN. ShirvaniA. HolickM.F. Vitamin D for skeletal and non-skeletal health: What we should know.J. Clin. Orthop. Trauma20191061082109310.1016/j.jcot.2019.07.00431708633
    [Google Scholar]
  4. KunduJ. KunduS. Cardiovascular disease (CVD) and its associated risk factors among older adults in India: evidence from LASI Wave 1.Clin. Epidemiol. Glob Heal.20221310093732710.1016/j.cegh.2021.100937
    [Google Scholar]
  5. NormanP.E. PowellJ.T. Vitamin D and cardiovascular disease.Circ. Res.2014114237939310.1161/CIRCRESAHA.113.30124124436433
    [Google Scholar]
  6. PalaciosC. GonzalezL. Is vitamin D deficiency a major global public health problem?J. Steroid Biochem. Mol. Biol.2014144Pt A13814510.1016/j.jsbmb.2013.11.00324239505
    [Google Scholar]
  7. HuangS.J. WangX. LiuZ.D. CaoW.L. HanY. MaA.G. XuS.F. Vitamin D deficiency and the risk of tuberculosis: A meta-analysis.Drug Des. Devel. Ther.2016119110210.2147/DDDT.S7987028096657
    [Google Scholar]
  8. AmreinK. ScherklM. HoffmannM. Neuwersch-SommereggerS. KöstenbergerM. Tmava BerishaA. MartucciG. PilzS. MalleO. Vitamin D deficiency 2.0: An update on the current status worldwide.Eur. J. Clin. Nutr.202074111498151310.1038/s41430‑020‑0558‑y31959942
    [Google Scholar]
  9. O’SullivanF. RafteryT. van WeeleM. van GeffenJ. McNamaraD. O’MorainC. MahmudN. KellyD. HealyM. O’SullivanM. ZgagaL. Sunshine is an important determinant of vitamin D status even among high-dose supplement users: Secondary analysis of a randomized controlled trial in Crohn’s disease patients.Photochem. Photobiol.20199541060106710.1111/php.1308630649836
    [Google Scholar]
  10. ChenS. LawC.S. GrigsbyC.L. OlsenK. HongT.T. ZhangY. YeghiazariansY. GardnerD.G. Cardiomyocyte-specific deletion of the vitamin D receptor gene results in cardiac hypertrophy.Circulation2011124171838184710.1161/CIRCULATIONAHA.111.03268021947295
    [Google Scholar]
  11. AiS. HeZ. DingR. WuF. HuangZ. WangJ. HuangS. DaiX. ZhangJ. ChenJ. LiuL. WuZ. LiangC. Reduced vitamin d receptor on circulating endothelial progenitor cells: A new risk factor of coronary artery diseases.J. Atheroscler. Thromb.201825541042110.5551/jat.4080829176261
    [Google Scholar]
  12. PludowskiP. HolickM.F. GrantW.B. KonstantynowiczJ. MascarenhasM.R. HaqA. PovoroznyukV. BalatskaN. BarbosaA.P. KaronovaT. RudenkaE. MisiorowskiW. ZakharovaI. RudenkaA. ŁukaszkiewiczJ. Marcinowska-SuchowierskaE. ŁaszczN. AbramowiczP. BhattoaH.P. WimalawansaS.J. Vitamin D supplementation guidelines.J. Steroid Biochem. Mol. Biol.201817512513510.1016/j.jsbmb.2017.01.02128216084
    [Google Scholar]
  13. BouillonR. Vitamin D and cardiovascular disorders.Osteoporos. Int.201930112167218110.1007/s00198‑019‑05098‑031402402
    [Google Scholar]
  14. LeeJ.H. O’KeefeJ.H. BellD. HensrudD.D. HolickM.F. Vitamin D deficiency an important, common, and easily treatable cardiovascular risk factor?J. Am. Coll. Cardiol.200852241949195610.1016/j.jacc.2008.08.05019055985
    [Google Scholar]
  15. Bischoff-FerrariH.A. GiovannucciE. WillettW.C. DietrichT. Dawson-HughesB. Estimation of optimal serum concentrations of 25-hydroxyvitamin D for multiple health outcomes.Am. J. Clin. Nutr.2006841182810.1093/ajcn/84.1.1816825677
    [Google Scholar]
  16. MansonJ.E. CookN.R. LeeI.M. ChristenW. BassukS.S. MoraS. GibsonH. GordonD. CopelandT. D’AgostinoD. FriedenbergG. RidgeC. BubesV. GiovannucciE.L. WillettW.C. BuringJ.E. Vitamin D supplements and prevention of cancer and cardiovascular disease.N. Engl. J. Med.20193801334410.1056/NEJMoa180994430415629
    [Google Scholar]
  17. ScraggR. StewartA.W. WaayerD. LawesC.M.M. ToopL. SluyterJ. MurphyJ. KhawK.T. CamargoC.A.Jr Effect of monthly high-dose Vitamin D supplementation on cardiovascular disease in the vitamin d assessment study: A randomized clinical trial.JAMA Cardiol.20172660861610.1001/jamacardio.2017.017528384800
    [Google Scholar]
  18. BaekeF. TakiishiT. KorfH. GysemansC. MathieuC. Vitamin D: Modulator of the immune system.Curr. Opin. Pharmacol.201010448249610.1016/j.coph.2010.04.00120427238
    [Google Scholar]
  19. TrehanN. AfonsoL. LevineD.L. LevyP.D. Vitamin D deficiency, supplementation, and cardiovascular health.Crit. Pathw. Cardiol.201716310911810.1097/HPC.000000000000012228742648
    [Google Scholar]
  20. GakschM. JordeR. GrimnesG. JoakimsenR. SchirmerH. WilsgaardT. MathiesenE.B. NjølstadI. LøchenM.L. MärzW. KleberM.E. TomaschitzA. GrüblerM. EiriksdottirG. GudmundssonE.F. HarrisT.B. CotchM.F. AspelundT. GudnasonV. RuttersF. BeulensJ.W.J. van ’t RietE. NijpelsG. DekkerJ.M. Grove-LaugesenD. RejnmarkL. BuschM.A. MensinkG.B.M. Scheidt-NaveC. ThammM. SwartK.M.A. BrouwerI.A. LipsP. van SchoorN.M. SemposC.T. Durazo-ArvizuR.A. ŠkrabákováZ. DowlingK.G. CashmanK.D. KielyM. PilzS. Vitamin D and mortality: Individual participant data meta-analysis of standardized 25-hydroxyvitamin D in 26916 individuals from a European consortium.PLoS One2017122e017079110.1371/journal.pone.017079128207791
    [Google Scholar]
  21. Al MheidI. QuyyumiA.A. Vitamin D and cardiovascular disease: Controversy unresolved.J. Am. Coll. Cardiol.20177018910010.1016/j.jacc.2017.05.03128662812
    [Google Scholar]
  22. BouillonR. Van SchoorN.M. GielenE. BoonenS. MathieuC. VanderschuerenD. LipsP. Optimal vitamin D status: A critical analysis on the basis of evidence-based medicine.J. Clin. Endocrinol. Metab.2013988E1283E130410.1210/jc.2013‑119523922354
    [Google Scholar]
  23. WeishaarR.E. SimpsonR.U. Involvement of vitamin D3 with cardiovascular function. II. Direct and indirect effects.Am. J. Physiol. Endocrinol. Metab.19872536E675E68310.1152/ajpendo.1987.253.6.E6752827502
    [Google Scholar]
  24. ZittermannA. SchleithoffS.S. TenderichG. BertholdH.K. KörferR. StehleP. Low vitamin D status: A contributing factor in the pathogenesis of congestive heart failure?J. Am. Coll. Cardiol.200341110511210.1016/S0735‑1097(02)02624‑412570952
    [Google Scholar]
  25. HiiC. FerranteA. The non-genomic actions of vitamin D.Nutrients20168313510.3390/nu803013526950144
    [Google Scholar]
  26. JainS.K. MicinskiD. Vitamin D upregulates glutamate cysteine ligase and glutathione reductase, and GSH formation, and decreases ROS and MCP-1 and IL-8 secretion in high-glucose exposed U937 monocytes.Biochem. Biophys. Res. Commun.2013437171110.1016/j.bbrc.2013.06.00423770363
    [Google Scholar]
  27. LiY.C. KongJ. WeiM. ChenZ.F. LiuS.Q. CaoL.P. 1,25-Dihydroxyvitamin D3 is a negative endocrine regulator of the renin-angiotensin system.J. Clin. Invest.2002110222923810.1172/JCI021521912122115
    [Google Scholar]
  28. XiangW. KongJ. ChenS. CaoL.P. QiaoG. ZhengW. LiuW. LiX. GardnerD.G. LiY.C. Cardiac hypertrophy in vitamin D receptor knockout mice: Role of the systemic and cardiac renin-angiotensin systems.Am. J. Physiol. Endocrinol. Metab.20052881E125E13210.1152/ajpendo.00224.200415367398
    [Google Scholar]
  29. LaticN. ErbenR.G. Vitamin D and cardiovascular disease, with emphasis on hypertension, atherosclerosis, and heart failure.Int. J. Mol. Sci.20202118648310.3390/ijms2118648332899880
    [Google Scholar]
  30. AndersenL.B. PrzybylL. HaaseN. von Versen-HöynckF. QadriF. JørgensenJ.S. SorensenG.L. FruekildeP. PoglitschM. SzijartoI. GollaschM. PetersJ. MullerD.N. ChristesenH.T. DechendR. Vitamin D depletion aggravates hypertension and target-organ damage.J. Am. Heart Assoc.201542e00141710.1161/JAHA.114.00141725630909
    [Google Scholar]
  31. SchmidtN. BrandschC. KühneH. ThieleA. HircheF. StanglG.I. Vitamin D receptor deficiency and low vitamin D diet stimulate aortic calcification and osteogenic key factor expression in mice.PLoS One201274e3531610.1371/journal.pone.003531622536373
    [Google Scholar]
  32. SongY. FleetJ.C. KatoS. Vitamin D receptor (VDR) knockout mice reveal VDR-independent regulation of intestinal calcium absorption and ECaC2 and calbindin D9k mRNA.J. Nutr.2003133237438010.1093/jn/133.2.37412566470
    [Google Scholar]
  33. SchmidtN. BrandschC. SchutkowskiA. HircheF. StanglG.I. Dietary vitamin D inadequacy accelerates calcification and osteoblast-like cell formation in the vascular system of LDL receptor knockout and wild-type mice.J. Nutr.2014144563864610.3945/jn.113.18911824647396
    [Google Scholar]
  34. KumarS. NanduriR. BhagyarajE. KalraR. AhujaN. ChackoA.P. TiwariD. SethiK. SainiA. ChandraV. JainM. GuptaS. BhattD. GuptaP. Vitamin D3-VDR-PTPN6 axis mediated autophagy contributes to the inhibition of macrophage foam cell formation.Autophagy20211792273228910.1080/15548627.2020.182208832917126
    [Google Scholar]
  35. SangkaewB. NuinoonM. JeenduangN. Association of vitamin D receptor gene polymorphisms with serum 25(OH)D levels and metabolic syndrome in Thai population.Gene2018659596610.1016/j.gene.2018.03.04729555202
    [Google Scholar]
  36. MancusoP. RahmanA. HersheyS.D. DanduL. NibbelinkK.A. SimpsonR.U. 1,25-Dihydroxyvitamin-D3 treatment reduces cardiac hypertrophy and left ventricular diameter in spontaneously hypertensive heart failure-prone (cp/+) rats independent of changes in serum leptin.J. Cardiovasc. Pharmacol.200851655956410.1097/FJC.0b013e318176190618496147
    [Google Scholar]
  37. BoyallaV. Gallego-ColonE. SpartalisM. Immunity and inflammation in cardiovascular disorders.BMC Cardiovasc. Disord.202323114810.1186/s12872‑023‑03185‑z36959565
    [Google Scholar]
  38. TempletonA.J. McNamaraM.G. ŠerugaB. Vera-BadilloF.E. AnejaP. OcañaA. Leibowitz-AmitR. SonpavdeG. KnoxJ.J. TranB. TannockI.F. AmirE. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis.J. Natl. Cancer Inst.20141066dju12410.1093/jnci/dju12424875653
    [Google Scholar]
  39. LeyK. HoffmanH.M. KubesP. CassatellaM.A. ZychlinskyA. HedrickC.C. CatzS.D. Neutrophils: New insights and open questions.Sci. Immunol.2018330eaat457910.1126/sciimmunol.aat457930530726
    [Google Scholar]
  40. WolfD. LeyK. Immunity and inflammation in atherosclerosis.Circ. Res.2019124231532710.1161/CIRCRESAHA.118.31359130653442
    [Google Scholar]
  41. GetzG. ReardonC.A. T cells in atherosclerosis in ldlr-/- and apoe-/- mice.J. Immunol. Sci.201823697610.29245/2578‑3009/2018/3.114430854522
    [Google Scholar]
  42. AntonopoulosA.S. SannaF. SabharwalN. ThomasS. OikonomouE.K. HerdmanL. MargaritisM. ShirodariaC. KampoliA.M. AkoumianakisI. PetrouM. SayeedR. KrasopoulosG. PsarrosC. CicconeP. BrophyC.M. DigbyJ. KelionA. UberoiR. AnthonyS. AlexopoulosN. TousoulisD. AchenbachS. NeubauerS. ChannonK.M. AntoniadesC. Detecting human coronary inflammation by imaging perivascular fat.Sci. Transl. Med.20179398eaal265810.1126/scitranslmed.aal265828701474
    [Google Scholar]
  43. HeS. KahlesF. RattikS. NairzM. McAlpineC.S. AnzaiA. SelgradeD. FennA.M. ChanC.T. MindurJ.E. ValetC. PollerW.C. HalleL. RotllanN. IwamotoY. WojtkiewiczG.R. WeisslederR. LibbyP. Fernández-HernandoC. DruckerD.J. NahrendorfM. SwirskiF.K. Gut intraepithelial T cells calibrate metabolism and accelerate cardiovascular disease.Nature2019566774211511910.1038/s41586‑018‑0849‑930700910
    [Google Scholar]
  44. KorfH. WenesM. StijlemansB. TakiishiT. RobertS. MianiM. EizirikD.L. GysemansC. MathieuC. 1,25-Dihydroxyvitamin D3 curtails the inflammatory and T cell stimulatory capacity of macrophages through an IL-10-dependent mechanism.Immunobiology2012217121292130010.1016/j.imbio.2012.07.01822944250
    [Google Scholar]
  45. PalmerM.T. LeeY.K. MaynardC.L. OliverJ.R. BikleD.D. JettenA.M. WeaverC.T. Lineage-specific effects of 1,25-dihydroxyvitamin D(3) on the development of effector CD4 T cells.J. Biol. Chem.20112862997100410.1074/jbc.M110.16379021047796
    [Google Scholar]
  46. FrosaliS. PagliariD. GambassiG. LandolfiR. PandolfiF. CianciR. How the intricate interaction among toll-like receptors microbiota and intestinal immunity can influence gastrointestinal pathology.J. Immunol. Res.2015201511210.1155/2015/48982126090491
    [Google Scholar]
  47. WildbaumG. The role of vitamin D receptor in innate and adaptive immunity: A study in hereditary vitamin D-resistant rickets patients.J. Clin. Endocrinol. Metab.20139816851693
    [Google Scholar]
  48. QuerfeldU. Vitamin D and inflammation.Pediatr. Nephrol.201328460561010.1007/s00467‑012‑2377‑423239393
    [Google Scholar]
  49. Le SaoutC. MennechetS. TaylorN. HernandezJ. Memory-like CD8 + and CD4 + T cells cooperate to break peripheral tolerance under lymphopenic conditions.Proc. Natl. Acad. Sci. USA200810549194141941910.1073/pnas.080774310519033460
    [Google Scholar]
  50. ZittermannA. TrummerC. Theiler-SchwetzV. LerchbaumE. MärzW. PilzS. Vitamin D and cardiovascular disease: An updated narrative review.Int. J. Mol. Sci.2021226289610.3390/ijms2206289633809311
    [Google Scholar]
  51. BarbarawiM. KheiriB. ZayedY. BarbarawiO. DhillonH. SwaidB. YelangiA. SundusS. BachuwaG. AlkotobM.L. MansonJ.E. Vitamin D supplementation and cardiovascular disease risks in more than 83000 individuals in 21 randomized clinical trials: A meta-analysis.JAMA Cardiol.20194876577610.1001/jamacardio.2019.187031215980
    [Google Scholar]
  52. GiovannucciE. LiuY. HollisB.W. RimmE.B. 25-hydroxyvitamin D and risk of myocardial infarction in men: A prospective study.Arch. Intern. Med.2008168111174118010.1001/archinte.168.11.117418541825
    [Google Scholar]
  53. DziedzicE.A. GąsiorJ.S. PawłowskiM. Wodejko-KucharskaB. SaniewskiT. MarciszA. DąbrowskiM.J. Vitamin D level is associated with severity of coronary artery atherosclerosis and incidence of acute coronary syndromes in non-diabetic cardiac patients.Arch. Med. Sci.201915235936810.5114/aoms.2019.8329130899288
    [Google Scholar]
  54. BridieT. MaryW. DallasR. DonaldS. McLeodN. BruceK. Vitamin D supplementation and major cardiovascular events: D-Health randomised controlled trial.BMJ.2023381e07523010.1136/bmj‑2023‑07523037380191
    [Google Scholar]
  55. GholamzadA. KhakpourN. KabipourT. GholamzadM. Association between serum vitamin D levels and lipid profiles: A cross-sectional analysis.Sci. Rep.20231312105810.1038/s41598‑023‑47872‑538030665
    [Google Scholar]
  56. TardifJ.C. KouzS. WatersD.D. BertrandO.F. DiazR. MaggioniA.P. PintoF.J. IbrahimR. GamraH. KiwanG.S. BerryC. López-SendónJ. OstadalP. KoenigW. AngoulvantD. GrégoireJ.C. LavoieM.A. DubéM.P. RhaindsD. ProvencherM. BlondeauL. OrfanosA. L’AllierP.L. GuertinM.C. RoubilleF. Efficacy and safety of low-dose colchicine after myocardial infarction.N. Engl. J. Med.2019381262497250510.1056/NEJMoa191238831733140
    [Google Scholar]
  57. RidkerP.M. EverettB.M. ThurenT. MacFadyenJ.G. ChangW.H. BallantyneC. FonsecaF. NicolauJ. KoenigW. AnkerS.D. KasteleinJ.J.P. CornelJ.H. PaisP. PellaD. GenestJ. CifkovaR. LorenzattiA. ForsterT. KobalavaZ. Vida-SimitiL. FlatherM. ShimokawaH. OgawaH. DellborgM. RossiP.R.F. TroquayR.P.T. LibbyP. GlynnR.J. Antiinflammatory therapy with canakinumab for atherosclerotic disease.N. Engl. J. Med.2017377121119113110.1056/NEJMoa170791428845751
    [Google Scholar]
  58. SaigusaR. WinkelsH. LeyK. T cell subsets and functions in atherosclerosis.Nat. Rev. Cardiol.202017738740110.1038/s41569‑020‑0352‑532203286
    [Google Scholar]
  59. SchäferS. ZerneckeA. CD8+ T cells in atherosclerosis.Cells20201013710.3390/cells1001003733383733
    [Google Scholar]
  60. OhJ. WengS. FeltonS.K. BhandareS. RiekA. ButlerB. ProctorB.M. PettyM. ChenZ. SchechtmanK.B. Bernal-MizrachiL. Bernal-MizrachiC. 1,25(OH)2 vitamin d inhibits foam cell formation and suppresses macrophage cholesterol uptake in patients with type 2 diabetes mellitus.Circulation2009120868769810.1161/CIRCULATIONAHA.109.85607019667238
    [Google Scholar]
  61. AlbanyC.J. TrevelinS.C. GigantiG. LombardiG. ScottàC. Getting to the heart of the matter: The role of regulatory T-cells (Tregs) in cardiovascular disease (CVD) and atherosclerosis.Front. Immunol.201910279510.3389/fimmu.2019.02795
    [Google Scholar]
  62. KolbusD. LjungcrantzI. AnderssonL. HedbladB. FredriksonG.N. BjörkbackaH. NilssonJ. Association between CD 8 + T-cell subsets and cardiovascular disease.J. Intern. Med.20132741415110.1111/joim.1203823356723
    [Google Scholar]
  63. FieldC.S. BaixauliF. KyleR.L. PulestonD.J. CameronA.M. SaninD.E. HippenK.L. LoschiM. ThangaveluG. CorradoM. Edwards-HicksJ. GrzesK.M. PearceE.J. BlazarB.R. PearceE.L. Mitochondrial integrity regulated by lipid metabolism is a cell-intrinsic checkpoint for Treg suppressive function.Cell Metab.2020312422437.e510.1016/j.cmet.2019.11.02131883840
    [Google Scholar]
  64. TanakaA. SakaguchiS. Targeting Treg cells in cancer immunotherapy.Eur. J. Immunol.20194981140114610.1002/eji.20184765931257581
    [Google Scholar]
  65. ZhouQ. QinS. ZhangJ. ZhonL. PenZ. XingT. 1,25(OH)2 D3 induces regulatory T cell differentiation by influencing the VDR/PLC-γ1/TGF-β1/pathway.Mol. Immunol.20179115616410.1016/j.molimm.2017.09.00628926770
    [Google Scholar]
  66. GuillaumeC. FabienP. FadiJ. RobertaL. BertrandB. MichelleR. DavidK. Human and mouse CD8(+)CD25(+)FOXP3(+) regulatory T cells at steady state and during interleukin-2 therapy.Front Immunol.2015617110.3389/fimmu.2015.00171
    [Google Scholar]
  67. ButlerA.A. ZhangJ. PriceC.A. StevensJ.R. GrahamJ.L. StanhopeK.L. KingS. KraussR.M. BremerA.A. HavelP.J. Low plasma adropin concentrations increase risks of weight gain and metabolic dysregulation in response to a high-sugar diet in male nonhuman primates.J. Biol. Chem.2019294259706971910.1074/jbc.RA119.00752830988006
    [Google Scholar]
  68. YuH. ZhaoP. WuM. LiuJ. YinW. Serum adropin levels are decreased in patients with acute myocardial infarction.Regul. Pept.2014190-191464910.1016/j.regpep.2014.04.00124731968
    [Google Scholar]
  69. WuL. FangJ. ChenL. ZhaoZ. LuoY. LinC. FanL. Low serum adropin is associated with coronary atherosclerosis in type 2 diabetic and non-diabetic patients.Clin. Chem. Lab. Med.201452575175810.1515/cclm‑2013‑084424323892
    [Google Scholar]
  70. GalloG. VolpeM. SavoiaC. Endothelial dysfunction in hypertension: Current concepts and clinical implications.Front. Med. (Lausanne)2022879895810.3389/fmed.2021.79895835127755
    [Google Scholar]
  71. PirklbauerM. BerndM. FuchsL. StaudingerP. CorazzaU. LeiererJ. MayerG. SchramekH. Empagliflozin inhibits basal and IL-1β-mediated MCP-1/CCL2 and endothelin-1 expression in human proximal tubular cells.Int. J. Mol. Sci.20202121818910.3390/ijms2121818933139635
    [Google Scholar]
  72. AnkerS.D. ButlerJ. FilippatosG. FerreiraJ.P. BocchiE. BöhmM. Brunner-La RoccaH.P. ChoiD.J. ChopraV. Chuquiure-ValenzuelaE. GiannettiN. Gomez-MesaJ.E. JanssensS. JanuzziJ.L. Gonzalez-JuanateyJ.R. MerkelyB. NichollsS.J. PerroneS.V. PiñaI.L. PonikowskiP. SenniM. SimD. SpinarJ. SquireI. TaddeiS. TsutsuiH. VermaS. VinereanuD. ZhangJ. CarsonP. LamC.S.P. MarxN. ZellerC. SattarN. JamalW. SchnaidtS. SchneeJ.M. BrueckmannM. PocockS.J. ZannadF. PackerM. Empagliflozin in heart failure with a preserved ejection fraction.N. Engl. J. Med.2021385161451146110.1056/NEJMoa210703834449189
    [Google Scholar]
  73. PerezA.L. GrodinJ.L. WuY. HernandezA.F. ButlerJ. MetraM. FelkerG.M. VoorsA.A. McMurrayJ.J. ArmstrongP.W. StarlingR.C. O’ConnorC.M. TangW.H.W. Increased mortality with elevated plasma endothelin-1 in acute heart failure: An ASCEND-HF biomarker substudy.Eur. J. Heart Fail.201618329029710.1002/ejhf.45626663359
    [Google Scholar]
  74. PauliN. KuligowskaA. KrzystolikA. DziedziejkoV. SafranowK. RaćM. ChlubekD. RaćM.E. The circulating vascular endothelial growth factor is only marginally associated with an increased risk for atherosclerosis.Minerva Cardioangiol.202068433233810.23736/S0026‑4725.20.04995‑632326675
    [Google Scholar]
  75. SinnathambyT. JinT.Y. Clavet-LanthierM.É. CheongC. SiroisM.G. VEGF and angiopoietins promote inflammatory cell recruitment and mature blood vessel formation in murine sponge/Matrigel model.J. Cell. Biochem.20151161455710.1002/jcb.2494125145474
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303341809241022110317
Loading
/content/journals/emiddt/10.2174/0118715303341809241022110317
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): adropin; cardiovascular disease; CD4+; CD8+; VEGF; Vitamin D
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test