Skip to content
2000
image of 
The Role of the Toll-Like Receptor Signaling Pathway in Autoimmune Diseases and Treatment with Traditional Chinese Medicine: A Literature Review

Abstract

Toll-Like Receptors (TLRs) is a pattern recognition receptor that connects innate and adaptive immunity and participates in inflammatory responses play a key role in common autoimmune diseases such as Rheumatoid Arthritis (RA), systemic lupus erythematosus (SLE), psoriasis, and Sjögren’s syndrome (SS) by participating in antigen recognition, immune cell activation, and inflammatory factor release. Due to the multi-component and multi-target characteristics of traditional Chinese medicine (TCM), the role of TCM active ingredients acting on TLRs has been widely studied. This article describes the relationship between TLR and four autoimmune diseases, as well as a review of the efficacy of TLR intervention by active ingredients of traditional Chinese medicine. To provide some basis for the future clarification of the mechanism of action of drugs for autoimmune diseases and to assist in the development of new medicines.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303340093241227094242
2025-01-21
2025-09-14
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/10.2174/0118715303340093241227094242/BMS-EMIDDT-2024-270.html?itemId=/content/journals/emiddt/10.2174/0118715303340093241227094242&mimeType=html&fmt=ahah

References

  1. Conrad N. Misra S. Verbakel J.Y. Verbeke G. Molenberghs G. Taylor P.N. Mason J. Sattar N. McMurray J.J.V. McInnes I.B. Khunti K. Cambridge G. Incidence, prevalence, and co-occurrence of autoimmune disorders over time and by age, sex, and socioeconomic status: A population-based cohort study of 22 million individuals in the uk. Lancet 2023 401 10391 1878 1890 10.1016/S0140‑6736(23)00457‑9 37156255
    [Google Scholar]
  2. Chi X. Huang M. Tu H. Zhang B. Lin X. Xu H. Dong C. Hu X. Innate and adaptive immune abnormalities underlying autoimmune diseases: The genetic connections. Sci. China Life Sci. 2023 66 7 1482 1517 10.1007/s11427‑021‑2187‑3 36738430
    [Google Scholar]
  3. Li S. Wu Y. Chen J. Shen S. Duan J. Xu H.E. Autoimmune diseases: Targets, biology, and drug discovery. Acta Pharmacol. Sin. 2024 45 4 674 685 10.1038/s41401‑023‑01207‑2 38097717
    [Google Scholar]
  4. Kalliolias G.D. Basdra E.K. Papavassiliou A.G. Targeting TLR signaling cascades in systemic lupus erythematosus and rheumatoid arthritis: An update. Biomedicines 2024 12 1 138 10.3390/biomedicines12010138 38255243
    [Google Scholar]
  5. Ren F. Zhang M. Zhang C. Sang H. Psoriasis-like inflammation induced renal dysfunction through the TLR/nf- κ b signal pathway. BioMed Res. Int. 2020 2020 1 11 10.1155/2020/3535264 32090080
    [Google Scholar]
  6. Kiripolsky J. Romano R.A. Kasperek E.M. Yu G. Kramer J.M. Activation of myd88-dependent TLRS mediates local and systemic inflammation in a mouse model of primary sjögren’s syndrome. Front. Immunol. 2020 10 2963 10.3389/fimmu.2019.02963 31993047
    [Google Scholar]
  7. Lemaitre B. Nicolas E. Michaut L. Reichhart J.M. Hoffmann J.A. The dorsoventral regulatory gene cassette spätzle/toll/cactus controls the potent antifungal response in drosophila adults. Cell 1996 86 6 973 983 10.1016/S0092‑8674(00)80172‑5 8808632
    [Google Scholar]
  8. Kumar H. Kawai T. Akira S. Pathogen recognition by the innate immune system. Int. Rev. Immunol. 2011 30 1 16 34 10.3109/08830185.2010.529976 21235323
    [Google Scholar]
  9. Behzadi P. García-Perdomo H.A. Karpiński T.M. Niedźwiedzka-Rystwej P. Toll-like receptors: General molecular and structural biology. J. Immunol. Res. 2021 2021 1 21 10.1155/2021/9914854 34195298
    [Google Scholar]
  10. Takeda K. Akira S. Toll-like receptors. Curr. Protoc. Immunol. 2015 109 1 10 10.1002/0471142735.im1412s109 25845562
    [Google Scholar]
  11. Blasius A.L. Beutler B. Intracellular toll-like receptors. Immunity 2010 32 3 305 315 10.1016/j.immuni.2010.03.012 20346772
    [Google Scholar]
  12. Piccinini A.M. Midwood K.S. DAMPening inflammation by modulating TLR signalling. Mediators Inflamm. 2010 2010 1 21 10.1155/2010/672395 20706656
    [Google Scholar]
  13. Chang Z.L. Important aspects of toll-like receptors, ligands and their signaling pathways. Inflamm. Res. 2010 59 10 791 808 10.1007/s00011‑010‑0208‑2 20593217
    [Google Scholar]
  14. Bae M. Cassilly C.D. Liu X. Park S.M. Tusi B.K. Chen X. Kwon J. Filipčík P. Bolze A.S. Liu Z. Vlamakis H. Graham D.B. Buhrlage S.J. Xavier R.J. Clardy J. Akkermansia muciniphila phospholipid induces homeostatic immune responses. Nature 2022 608 7921 168 173 10.1038/s41586‑022‑04985‑7 35896748
    [Google Scholar]
  15. Takeuchi O. Sato S. Horiuchi T. Hoshino K. Takeda K. Dong Z. Modlin R.L. Akira S. Cutting edge: Role of toll-like receptor 1 in mediating immune response to microbial lipoproteins. J. Immunol. 2002 169 1 10 14 10.4049/jimmunol.169.1.10 12077222
    [Google Scholar]
  16. Farhat K. Riekenberg S. Heine H. Debarry J. Lang R. Mages J. Buwitt-Beckmann U. Röschmann K. Jung G. Wiesmüller K.H. Ulmer A.J. Heterodimerization of TLR2 with TLR1 or TLR6 expands the ligand spectrum but does not lead to differential signaling. J. Leukoc. Biol. 2008 83 3 692 701 10.1189/jlb.0807586 18056480
    [Google Scholar]
  17. Nicholas S.A. Coughlan K. Yasinska I. Lall G.S. Gibbs B.F. Calzolai L. Sumbayev V.V. Dysfunctional mitochondria contain endogenous high-affinity human toll-like receptor 4 (TLR4) ligands and induce TLR4-mediated inflammatory reactions. Int. J. Biochem. Cell Biol. 2011 43 4 674 681 10.1016/j.biocel.2011.01.012 21262374
    [Google Scholar]
  18. Ren W. Zhao L. Sun Y. Wang X. Shi X. HMGB1 and toll-like receptors: Potential therapeutic targets in autoimmune diseases. Mol. Med. 2023 29 1 117 10.1186/s10020‑023‑00717‑3 37667233
    [Google Scholar]
  19. Tolle L. Yu F. Kovach M.A. Ballinger M.N. Newstead M.W. Zeng X. Nunez G. Standiford T.J. Redundant and cooperative interactions between TLR5 and nlrc4 in protective lung mucosal immunity against <b><i>pseudomonas aeruginosa</i></b>. J. Innate Immun. 2015 7 2 177 186 10.1159/000367790 25402425
    [Google Scholar]
  20. Côté-Cyr M. Gauthier L. Zottig X. Bourgault S. Archambault D. Recombinant bacillus subtilis flagellin hag is a potent immunostimulant with reduced proinflammatory properties compared to salmonella enterica serovar typhimurium fljb. Vaccine 2022 40 1 11 17 10.1016/j.vaccine.2021.11.049 34844822
    [Google Scholar]
  21. Zheng J.H. Nguyen V.H. Jiang S.N. Park S.H. Tan W.Z. Hong S.H. Shin M.G. Chung I.J. Hong Y.J. Bom H.S. Choy H.E. Lee S.E. Rhee J.H. Min J.J. Two-step enhanced cancer immunotherapy with engineered secreting heterologous flagellin. Sci. Transl. Med. 2017 9 376 eakk9537 10.1126/scitranslmed.aak9537 28179508
    [Google Scholar]
  22. Sen G. Sarkar S. Transcriptional signaling by double-stranded RNA: Role of TLR3. Cytokine Growth Factor Rev. 2005 16 1 1 14 10.1016/j.cytogfr.2005.01.006 15733829
    [Google Scholar]
  23. Smits E.L.J.M. Ponsaerts P. Berneman Z.N. Van Tendeloo V.F.I. The use of TLR7 and TLR8 ligands for the enhancement of cancer immunotherapy. Oncologist 2008 13 8 859 875 10.1634/theoncologist.2008‑0097 18701762
    [Google Scholar]
  24. Heil F. Hemmi H. Hochrein H. Ampenberger F. Kirschning C. Akira S. Lipford G. Wagner H. Bauer S. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004 303 5663 1526 1529 10.1126/science.1093620 14976262
    [Google Scholar]
  25. Ohto U. Shibata T. Tanji H. Ishida H. Krayukhina E. Uchiyama S. Miyake K. Shimizu T. Structural basis of CPG and inhibitory DNA recognition by toll-like receptor 9. Nature 2015 520 7549 702 705 10.1038/nature14138 25686612
    [Google Scholar]
  26. Govindaraj R.G. Manavalan B. Lee G. Choi S. Molecular modeling-based evaluation of HTLR10 and identification of potential ligands in toll-like receptor signaling. PLoS One 2010 5 9 e12713 10.1371/journal.pone.0012713 20877634
    [Google Scholar]
  27. Nagashima H. Iwatani S. Cruz M. Jiménez Abreu J.A. Uchida T. Mahachai V. Vilaichone R. Graham D.Y. Yamaoka Y. Toll-like receptor 10 inhelicobacter pyloriinfection. J. Infect. Dis. 2015 212 10 1666 1676 10.1093/infdis/jiv270 25977263
    [Google Scholar]
  28. Henrick B.M. Yao X.D. Zahoor M.A. Abimiku A. Osawe S. Rosenthal K.L. TLR10 senses hiv-1 proteins and significantly enhances hiv-1 infection. Front. Immunol. 2019 10 482 10.3389/fimmu.2019.00482 30930906
    [Google Scholar]
  29. Bowie A. O’Neill L.A.J. The interleukin-1 receptor/toll-like receptor superfamily: Signal generators for pro-inflammatory interleukins and microbial products. J. Leukoc. Biol. 2000 67 4 508 514 10.1002/jlb.67.4.508 10770283
    [Google Scholar]
  30. Carty M. Goodbody R. Schröder M. Stack J. Moynagh P.N. Bowie A.G. The human adaptor sarm negatively regulates adaptor protein trif–dependent toll-like receptor signaling. Nat. Immunol. 2006 7 10 1074 1081 10.1038/ni1382 16964262
    [Google Scholar]
  31. Peng J. Yuan Q. Lin B. Panneerselvam P. Wang X. Luan X.L. Lim S.K. Leung B.P. Ho B. Ding J.L. SARM inhibits both trif‐ and myd88‐mediated ap‐1 activation. Eur. J. Immunol. 2010 40 6 1738 1747 10.1002/eji.200940034 20306472
    [Google Scholar]
  32. Jenkins K.A. Mansell A. TIR-containing adaptors in toll-like receptor signalling. Cytokine 2010 49 3 237 244 10.1016/j.cyto.2009.01.009 19264502
    [Google Scholar]
  33. Akira S. Uematsu S. Takeuchi O. Pathogen recognition and innate immunity. Cell 2006 124 4 783 801 10.1016/j.cell.2006.02.015 16497588
    [Google Scholar]
  34. Fitzgerald K.A. Palsson-McDermott E.M. Bowie A.G. Jefferies C.A. Mansell A.S. Brady G. Brint E. Dunne A. Gray P. Harte M.T. McMurray D. Smith D.E. Sims J.E. Bird T.A. O’Neill L.A.J. Mal (myd88-adapter-like) is required for toll-like receptor-4 signal transduction. Nature 2001 413 6851 78 83 10.1038/35092578 11544529
    [Google Scholar]
  35. Verstak B. Nagpal K. Bottomley S.P. Golenbock D.T. Hertzog P.J. Mansell A. MyD88 adapter-like (mal)/tirap interaction with traf6 is critical for TLR2- and TLR4-mediated nf-kappab proinflammatory responses. J. Biol. Chem. 2009 284 36 24192 24203 10.1074/jbc.M109.023044 19592497
    [Google Scholar]
  36. Ajibade A.A. Wang H.Y. Wang R.F. Cell type-specific function of tak1 in innate immune signaling. Trends Immunol. 2013 34 7 307 316 10.1016/j.it.2013.03.007 23664135
    [Google Scholar]
  37. Satoh T. Akira S. Toll-like receptor signaling and its inducible proteins. Microbiol. Spectr. 2016 4 6 4.6.41 10.1128/microbiolspec.MCHD‑0040‑2016 28084212
    [Google Scholar]
  38. Chang L. Karin M. Mammalian map kinase signalling cascades. Nature 2001 410 6824 37 40 10.1038/35065000 11242034
    [Google Scholar]
  39. Jiang J. Zhao M. Chang C. Wu H. Lu Q. Type I. Type i interferons in the pathogenesis and treatment of autoimmune diseases. Clin. Rev. Allergy Immunol. 2020 59 2 248 272 10.1007/s12016‑020‑08798‑2 32557263
    [Google Scholar]
  40. Yamamoto M. Sato S. Hemmi H. Hoshino K. Kaisho T. Sanjo H. Takeuchi O. Sugiyama M. Okabe M. Takeda K. Akira S. Role of adaptor trif in the myd88-independent toll-like receptor signaling pathway. Science 2003 301 5633 640 643 10.1126/science.1087262 12855817
    [Google Scholar]
  41. Funami K. Matsumoto M. Oshiumi H. Inagaki F. Seya T. Functional interfaces between ticam-2/tram and ticam-1/trif in TLR4 signaling. Biochem. Soc. Trans. 2017 45 4 929 935 10.1042/BST20160259 28630139
    [Google Scholar]
  42. Tanimura N. Saitoh S. Matsumoto F. Akashi-Takamura S. Miyake K. Roles for lps-dependent interaction and relocation of TLR4 and tram in trif-signaling. Biochem. Biophys. Res. Commun. 2008 368 1 94 99 10.1016/j.bbrc.2008.01.061 18222170
    [Google Scholar]
  43. Ullah M.O. Sweet M.J. Mansell A. Kellie S. Kobe B. TRIF-dependent TLR signaling, its functions in host defense and inflammation, and its potential as a therapeutic target. J. Leukoc. Biol. 2016 100 1 27 45 10.1189/jlb.2RI1115‑531R 27162325
    [Google Scholar]
  44. Cusson-Hermance N. Khurana S. Lee T.H. Fitzgerald K.A. Kelliher M.A. Rip1 mediates the trif-dependent toll-like receptor 3- and 4-induced nf-κb activation but does not contribute to interferon regulatory factor 3 activation. J. Biol. Chem. 2005 280 44 36560 36566 10.1074/jbc.M506831200 16115877
    [Google Scholar]
  45. Brown P. Pratt A.G. Hyrich K.L. Therapeutic advances in rheumatoid arthritis. BMJ 2024 384 e070856 10.1136/bmj‑2022‑070856 38233032
    [Google Scholar]
  46. Almutairi K. Nossent J. Preen D. Keen H. Inderjeeth C. The global prevalence of rheumatoid arthritis: A meta-analysis based on a systematic review. Rheumatol. Int. 2021 41 5 863 877 10.1007/s00296‑020‑04731‑0 33175207
    [Google Scholar]
  47. Frisell T. Holmqvist M. Källberg H. Klareskog L. Alfredsson L. Askling J. Familial risks and heritability of rheumatoid arthritis: Role of rheumatoid factor/anti-citrullinated protein antibody status, number and type of affected relatives, sex, and age. Arthritis Rheum. 2013 65 11 2773 2782 10.1002/art.38097 23897126
    [Google Scholar]
  48. Venetsanopoulou A.I. Alamanos Y. Voulgari P.V. Drosos A.A. Epidemiology of rheumatoid arthritis: Genetic and environmental influences. Expert Rev. Clin. Immunol. 2022 18 9 923 931 10.1080/1744666X.2022.2106970 35904251
    [Google Scholar]
  49. Aletaha D. Smolen J.S. Diagnosis and management of rheumatoid arthritis. JAMA 2018 320 13 1360 1372 10.1001/jama.2018.13103 30285183
    [Google Scholar]
  50. Wu D. Luo Y. Li T. Zhao X. Lv T. Fang G. Ou P. Li H. Luo X. Huang A. Pang Y. Systemic complications of rheumatoid arthritis: Focus on pathogenesis and treatment. Front. Immunol. 2022 13 1051082 10.3389/fimmu.2022.1051082 36618407
    [Google Scholar]
  51. Park E. Bathon J. Cardiovascular complications of rheumatoid arthritis. Curr. Opin. Rheumatol. 2024 36 3 209 216 10.1097/BOR.0000000000001004 38334476
    [Google Scholar]
  52. Wang H.F. Wang Y.Y. Li Z.Y. He P.J. Liu S. Li Q.S. The prevalence and risk factors of rheumatoid arthritis-associated interstitial lung disease: A systematic review and meta-analysis. Ann. Med. 2024 56 1 2332406 10.1080/07853890.2024.2332406 38547537
    [Google Scholar]
  53. Alivernini S. Firestein G.S. McInnes I.B. The pathogenesis of rheumatoid arthritis. Immunity 2022 55 12 2255 2270 10.1016/j.immuni.2022.11.009 36516818
    [Google Scholar]
  54. Ashour D. Arampatzi P. Pavlovic V. Förstner K.U. Kaisho T. Beilhack A. Erhard F. Lutz M.B. IL-12 from endogenous CDC1, and not vaccine dc, is required for th1 induction. JCI Insight 2020 5 10 e135143 10.1172/jci.insight.135143 32434994
    [Google Scholar]
  55. Moret F.M. Hack C.E. van der Wurff-Jacobs K.M.G. de Jager W. Radstake T.R.D.J. Lafeber F.P.J.G. van Roon J.A.G. Intra-articular CD1C-expressing myeloid dendritic cells from rheumatoid arthritis patients express a unique set of t cell-attracting chemokines and spontaneously induce th1, th17 and th2 cell activity. Arthritis Res. Ther. 2013 15 5 R155 10.1186/ar4338 24286358
    [Google Scholar]
  56. Zou X. Sun G. Huo F. Chang L. Yang W. The role of dendritic cells in the differentiation of t follicular helper cells. J. Immunol. Res. 2018 2018 1 7 10.1155/2018/7281453 30057920
    [Google Scholar]
  57. van Hamburg J.P. Tas S.W. Molecular mechanisms underpinning t helper 17 cell heterogeneity and functions in rheumatoid arthritis. J. Autoimmun. 2018 87 69 81 10.1016/j.jaut.2017.12.006 29254845
    [Google Scholar]
  58. Wei X. Niu X. T follicular helper cells in autoimmune diseases. J. Autoimmun. 2023 134 102976 10.1016/j.jaut.2022.102976 36525939
    [Google Scholar]
  59. Roses R.E. Xu S. Xu M. Koldovsky U. Koski G. Czerniecki B.J. Differential production of il-23 and il-12 by myeloid-derived dendritic cells in response to TLR agonists. J. Immunol. 2008 181 7 5120 5127 10.4049/jimmunol.181.7.5120 18802116
    [Google Scholar]
  60. Patel D.D. Kuchroo V.K. Th17 cell pathway in human immunity: Lessons from genetics and therapeutic interventions. Immunity 2015 43 6 1040 1051 10.1016/j.immuni.2015.12.003 26682981
    [Google Scholar]
  61. Lee S.Y. Yoon B.Y. Kim J.I. Heo Y.M. Woo Y.J. Park S.H. Kim H.Y. Kim S.I. Cho M.L. Interleukin‐17 increases the expression of T oll‐like receptor 3 via the STAT 3 pathway in rheumatoid arthritis fibroblast‐like synoviocytes. Immunology 2014 141 3 353 361 10.1111/imm.12196 24708416
    [Google Scholar]
  62. Ganesan R. Rasool M. Ferulic acid inhibits interleukin 17‐dependent expression of nodal pathogenic mediators in fibroblast‐like synoviocytes of rheumatoid arthritis. J. Cell. Biochem. 2019 120 2 1878 1893 10.1002/jcb.27502 30160792
    [Google Scholar]
  63. Ganesan R. Rasool M. Fibroblast-like synoviocytes-dependent effector molecules as a critical mediator for rheumatoid arthritis: Current status and future directions. Int. Rev. Immunol. 2017 36 1 20 30 10.1080/08830185.2016.1269175 28102734
    [Google Scholar]
  64. Philippe L. Alsaleh G. Suffert G. Meyer A. Georgel P. Sibilia J. Wachsmann D. Pfeffer S. TLR2 expression is regulated by microrna MIR-19 in rheumatoid fibroblast-like synoviocytes. J. Immunol. 2012 188 1 454 461 10.4049/jimmunol.1102348 22105995
    [Google Scholar]
  65. Moon S.J. Park M.K. Oh H.J. Lee S.Y. Kwok S.K. Cho M.L. Ju J.H. Park K.S. Kim H.Y. Park S.H. Engagement of toll-like receptor 3 induces vascular endothelial growth factor and interleukin-8 in human rheumatoid synovial fibroblasts. Korean J. Intern. Med. 2010 25 4 429 435 10.3904/kjim.2010.25.4.429 21179282
    [Google Scholar]
  66. Saruga T. Imaizumi T. Kawaguchi S. Seya K. Matsumiya T. Sasaki E. Sasaki N. Uesato R. Ishibashi Y. Role of mda5 in regulating cxcl10 expression induced by TLR3 signaling in human rheumatoid fibroblast-like synoviocytes. Mol. Biol. Rep. 2021 48 1 425 433 10.1007/s11033‑020‑06069‑z 33387195
    [Google Scholar]
  67. Ichise Y. Saegusa J. Tanaka-Natsui S. Naka I. Hayashi S. Kuroda R. Morinobu A. Soluble CD14 induces pro-inflammatory cytokines in rheumatoid arthritis fibroblast-like synovial cells via toll-like receptor 4. Cells 2020 9 7 1689 10.3390/cells9071689 32674360
    [Google Scholar]
  68. Xu L. Niu X. Liu Y. Liu L. ST3GAL3 promotes the inflammatory response of fibroblast-like synoviocytes in rheumatoid arthritis by activating the TLR9/myd88 pathway. Mediators Inflamm. 2022 2022 1 13 10.1155/2022/4258742 36405992
    [Google Scholar]
  69. Kim K.W. Cho M.L. Lee S.H. Oh H.J. Kang C.M. Ju J.H. Min S.Y. Cho Y.G. Park S.H. Kim H.Y. Human rheumatoid synovial fibroblasts promote osteoclastogenic activity by activating rankl via TLR-2 and TLR-4 activation. Immunol. Lett. 2007 110 1 54 64 10.1016/j.imlet.2007.03.004 17467812
    [Google Scholar]
  70. Kim K.W. Cho M.L. Oh H.J. Kim H.R. Kang C.M. Heo Y.M. Lee S.H. Kim H.Y. TLR-3 enhances osteoclastogenesis through upregulation of rankl expression from fibroblast-like synoviocytes in patients with rheumatoid arthritis. Immunol. Lett. 2009 124 1 9 17 10.1016/j.imlet.2009.02.006 19446344
    [Google Scholar]
  71. Vale E.C.S. Garcia L.C. Cutaneous lupus erythematosus: A review of etiopathogenic, clinical, diagnostic and therapeutic aspects. An. Bras. Dermatol. 2023 98 3 355 372 10.1016/j.abd.2022.09.005 36868923
    [Google Scholar]
  72. Maria N.I. Davidson A. Protecting the kidney in systemic lupus erythematosus: From diagnosis to therapy. Nat. Rev. Rheumatol. 2020 16 5 255 267 10.1038/s41584‑020‑0401‑9 32203285
    [Google Scholar]
  73. Wang J. Xu J. Yang P. Neuropsychiatric lupus erythematosus: Focusing on autoantibodies. J. Autoimmun. 2022 132 102892 10.1016/j.jaut.2022.102892 36030137
    [Google Scholar]
  74. Ming Wang T.K. Chan N. Khayata M. Flanagan P. Grimm R.A. Griffin B.P. Husni M.E. Littlejohn E. Xu B. Cardiovascular manifestations, imaging, and outcomes in systemic lupus erythematosus: An eight-year single center experience in the united states. Angiology 2022 73 9 877 886 10.1177/00033197221078056 35238664
    [Google Scholar]
  75. Li Z. Xu D. Wang Z. Wang Y. Zhang S. Li M. Zeng X. Gastrointestinal system involvement in systemic lupus erythematosus. Lupus 2017 26 11 1127 1138 10.1177/0961203317707825 28523968
    [Google Scholar]
  76. Almaani S. Meara A. Rovin B.H. Update on lupus nephritis. Clin. J. Am. Soc. Nephrol. 2017 12 5 825 835 10.2215/CJN.05780616 27821390
    [Google Scholar]
  77. Yu C. Li P. Dang X. Zhang X. Mao Y. Chen X. Lupus nephritis: New progress in diagnosis and treatment. J. Autoimmun. 2022 132 102871 10.1016/j.jaut.2022.102871 35999111
    [Google Scholar]
  78. Cardelli C. Zucchi D. Elefante E. Signorini V. Menchini M. Stagnaro C. Mosca M. Tani C. Environment and systemic lupus erythematosus. Clin. Exp. Rheumatol. 2024 42 5 1104 1114 10.55563/clinexprheumatol/17vmqc 38743446
    [Google Scholar]
  79. Kiriakidou M. Ching C.L. Systemic lupus erythematosus. Ann. Intern. Med. 2020 172 11 ITC81 ITC96 10.7326/AITC202006020 32479157
    [Google Scholar]
  80. Mishra H. Schlack-Leigers C. Lim E.L. Thieck O. Magg T. Raedler J. Wolf C. Klein C. Ewers H. Lee-Kirsch M.A. Meierhofer D. Hauck F. Majer O. Disrupted degradative sorting of TLR7 is associated with human lupus. Sci. Immunol. 2024 9 92 eadi9575 10.1126/sciimmunol.adi9575 38207015
    [Google Scholar]
  81. Ghodke-Puranik Y. Imgruet M. Dorschner J.M. Shrestha P. McCoy K. Kelly J.A. Marion M. Guthridge J.M. Langefeld C.D. Harley J.B. James J.A. Sivils K.L. Niewold T.B. Novel genetic associations with interferon in systemic lupus erythematosus identified by replication and fine-mapping of trait-stratified genome-wide screen. Cytokine 2020 132 154631 10.1016/j.cyto.2018.12.014 30685201
    [Google Scholar]
  82. Oke V. Gunnarsson I. Dorschner J. Eketjäll S. Zickert A. Niewold T.B. Svenungsson E. High levels of circulating interferons type i, type ii and type iii associate with distinct clinical features of active systemic lupus erythematosus. Arthritis Res. Ther. 2019 21 1 107 10.1186/s13075‑019‑1878‑y 31036046
    [Google Scholar]
  83. Paradowska-Gorycka A. Wajda A. Stypinska B. Walczuk E. Rzeszotarska E. Walczyk M. Haladyj E. Romanowska-Prochnicka K. Felis-Giemza A. Lewandowska A. Olesińska M. Variety of endosomal TLRS and interferons (IFN-α, IFN-β, IFN-γ) expression profiles in patients with SLE, SSC and MCTD. Clin. Exp. Immunol. 2021 204 1 49 63 10.1111/cei.13566 33336388
    [Google Scholar]
  84. Kim J.M. Park S.H. Kim H.Y. Kwok S.K. A plasmacytoid dendritic cells-type i interferon axis is critically implicated in the pathogenesis of systemic lupus erythematosus. Int. J. Mol. Sci. 2015 16 6 14158 14170 10.3390/ijms160614158 26110387
    [Google Scholar]
  85. Zhang Y. Wang J. Fang Y. Liang W. Lei L. Wang J. Gao X. Ma C. Li M. Guo H. Wei L. IFN-α affects th17/treg cell balance through C-MAF and associated with the progression of EBV- SLE. Mol. Immunol. 2024 171 22 35 10.1016/j.molimm.2024.05.003 38749236
    [Google Scholar]
  86. Izadi S. Najfizadeh S.R. Nejati A. TeimooriRad M. Shahmahmoodi S. Shirazi F.G. Shokri F. Marashi S.M. Potential role of EBV and toll-like receptor 9 ligand in patients with systemic lupus erythematosus. Immunol. Res. 2023 71 5 698 708 10.1007/s12026‑023‑09380‑6 37097524
    [Google Scholar]
  87. Baek W.Y. Lee S.M. Lee S.W. Son I.O. Choi S. Suh C.H. Intravenous administration of toll-like receptor inhibitory peptide 1 is effective for the treatment of systemic lupus erythematosus in a mus musculus model. J. Rheum. Dis. 2021 28 3 133 142 10.4078/jrd.2021.28.3.133 37475994
    [Google Scholar]
  88. Karrar S. Cunninghame Graham D.S. Abnormal B. Review: Abnormal B cell development in systemic lupus erythematosus: What the genetics tell us. Arthritis Rheumatol. 2018 70 4 496 507 10.1002/art.40396 29207444
    [Google Scholar]
  89. Lou H. Ling G.S. Cao X. Autoantibodies in systemic lupus erythematosus: From immunopathology to therapeutic target. J. Autoimmun. 2022 132 102861 10.1016/j.jaut.2022.102861 35872103
    [Google Scholar]
  90. Pisetsky D.S. Anti-DNA antibodies — quintessential biomarkers of SLE. Nat. Rev. Rheumatol. 2016 12 2 102 110 10.1038/nrrheum.2015.151 26581343
    [Google Scholar]
  91. Jenks S.A. Cashman K.S. Zumaquero E. Marigorta U.M. Patel A.V. Wang X. Tomar D. Woodruff M.C. Simon Z. Bugrovsky R. Blalock E.L. Scharer C.D. Tipton C.M. Wei C. Lim S.S. Petri M. Niewold T.B. Anolik J.H. Gibson G. Lee F.E.H. Boss J.M. Lund F.E. Sanz I. Distinct effector B cells induced by unregulated toll-like receptor 7 contribute to pathogenic responses in systemic lupus erythematosus. Immunity 2018 49 4 725 739.e6 10.1016/j.immuni.2018.08.015 30314758
    [Google Scholar]
  92. Wangriatisak K. Kochayoo P. Thawornpan P. Leepiyasakulchai C. Suangtamai T. Ngamjanyaporn P. Khowawisetsut L. Khaenam P. Pisitkun P. Chootong P. CD4 + T-cell cooperation promoted pathogenic function of activated naïve B cells of patients with SLE. Lupus Sci. Med. 2022 9 1 e000739 10.1136/lupus‑2022‑000739 36180106
    [Google Scholar]
  93. Young C. Brink R. Germinal centers and autoantibodies. Immunol. Cell Biol. 2020 98 6 480 489 10.1111/imcb.12321 32080878
    [Google Scholar]
  94. van den Broek T. Oleinika K. Rahmayanti S. Castrillon C. van der Poel C.E. Carroll M.C. Invasion of spontaneous germinal centers by naive B cells is rapid and persistent. Sci. Immunol. 2024 9 93 eadi8150 10.1126/sciimmunol.adi8150 38517953
    [Google Scholar]
  95. Griffiths C.E.M. Armstrong A.W. Gudjonsson J.E. Barker J.N.W.N. Psoriasis. Lancet 2021 397 10281 1301 1315 10.1016/S0140‑6736(20)32549‑6 33812489
    [Google Scholar]
  96. Li Q. Jiang Y. Study on the correlation between morphology and distribution of common psoriasis lesions. Comput. Math. Methods Med. 2022 2022 1 7 10.1155/2022/6963630 35371274
    [Google Scholar]
  97. Ruan Z. Lu T. Chen Y. Yuan M. Yu H. Liu R. Xie X. Association between psoriasis and nonalcoholic fatty liver disease among outpatient us adults. JAMA Dermatol. 2022 158 7 745 753 10.1001/jamadermatol.2022.1609 35612851
    [Google Scholar]
  98. FitzGerald O. Ogdie A. Chandran V. Coates L.C. Kavanaugh A. Tillett W. Leung Y.Y. deWit M. Scher J.U. Mease P.J. Psoriatic arthritis. Nat. Rev. Dis. Primers 2021 7 1 59 10.1038/s41572‑021‑00293‑y 34385474
    [Google Scholar]
  99. Köse B. Uzlu D. Erdöl H. Psoriasis and uveitis. Int. Ophthalmol. 2022 42 7 2303 2310 10.1007/s10792‑022‑02225‑5 35048244
    [Google Scholar]
  100. Mamizadeh M. Tardeh Z. Azami M. The association between psoriasis and diabetes mellitus: A systematic review and meta-analysis. Diabetes Metab. Syndr. 2019 13 2 1405 1412 10.1016/j.dsx.2019.01.009 31336500
    [Google Scholar]
  101. Gao N. Kong M. Li X. Zhu X. Wei D. Ni M. Wang Y. Hong Z. Dong A. The association between psoriasis and risk of cardiovascular disease: A mendelian randomization analysis. Front. Immunol. 2022 13 918224 10.3389/fimmu.2022.918224 35844511
    [Google Scholar]
  102. Koo J. Ho R.S. Thibodeaux Q. Depression and suicidality in psoriasis and clinical studies of brodalumab: A narrative review. Cutis 2019 104 6 361 365 31939925
    [Google Scholar]
  103. Czarnecka A. Purzycka-Bohdan D. Zabłotna M. Bohdan M. Nowicki R.J. Szczerkowska-Dobosz A. Considerations of the genetic background of obesity among patients with psoriasis. Genes 2023 14 3 594 10.3390/genes14030594 36980866
    [Google Scholar]
  104. Wei J. Zhu J. Xu H. Zhou D. Elder J.T. Tsoi L.C. Patrick M.T. Li Y. Alcohol consumption and smoking in relation to psoriasis: A mendelian randomization study. Br. J. Dermatol. 2022 187 5 684 691 10.1111/bjd.21718 35764530
    [Google Scholar]
  105. Zhou S. Yao Z. Roles of infection in psoriasis. Int. J. Mol. Sci. 2022 23 13 6955 10.3390/ijms23136955 35805960
    [Google Scholar]
  106. Isler M.F. Coates S.J. Boos M.D. Climate change, the cutaneous microbiome and skin disease: Implications for a warming world. Int. J. Dermatol. 2023 62 3 337 345 10.1111/ijd.16297 35599301
    [Google Scholar]
  107. Solmaz D. Bakirci S. Kimyon G. Gunal E.K. Dogru A. Bayindir O. Dalkilic E. Ozisler C. Can M. Akar S. Cetin G.Y. Yavuz S. Kilic L. Tarhan E.F. Kucuksahin O. Omma A. Gonullu E. Yildiz F. Ersozlu E.D. Cinar M. Al-Onazi A. Erden A. Tufan M.A. Yilmaz S. Pehlevan S. Kalyoncu U. Aydin S.Z. Impact of having family history of psoriasis or psoriatic arthritis on psoriatic disease. Arthritis Care Res. 2020 72 1 63 68 10.1002/acr.23836 30680951
    [Google Scholar]
  108. Chiricozzi A. Romanelli P. Volpe E. Borsellino G. Romanelli M. Scanning the immunopathogenesis of psoriasis. Int. J. Mol. Sci. 2018 19 1 179 10.3390/ijms19010179 29316717
    [Google Scholar]
  109. Rendon A. Schäkel K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci. 2019 20 6 1475 10.3390/ijms20061475 30909615
    [Google Scholar]
  110. Kurihara K. Fujiyama T. Phadungsaksawasdi P. Ito T. Tokura Y. Significance of il-17a-producing CD8+CD103+ skin resident memory t cells in psoriasis lesion and their possible relationship to clinical course. J. Dermatol. Sci. 2019 95 1 21 27 10.1016/j.jdermsci.2019.06.002 31300254
    [Google Scholar]
  111. Sato Y. Ogawa E. Okuyama R. Role of innate immune cells in psoriasis. Int. J. Mol. Sci. 2020 21 18 6604 10.3390/ijms21186604 32917058
    [Google Scholar]
  112. Morizane S. Gallo R.L. Antimicrobial peptides in the pathogenesis of psoriasis. J. Dermatol. 2012 39 3 225 230 10.1111/j.1346‑8138.2011.01483.x 22352846
    [Google Scholar]
  113. Ganguly D. Chamilos G. Lande R. Gregorio J. Meller S. Facchinetti V. Homey B. Barrat F.J. Zal T. Gilliet M. Self-rna–antimicrobial peptide complexes activate human dendritic cells through TLR7 and TLR8. J. Exp. Med. 2009 206 9 1983 1994 10.1084/jem.20090480 19703986
    [Google Scholar]
  114. Farkas Á. Kemény L. Monocyte-derived interferon-alpha primed dendritic cells in the pathogenesis of psoriasis: New pieces in the puzzle. Int. Immunopharmacol. 2012 13 2 215 218 10.1016/j.intimp.2012.04.003 22522054
    [Google Scholar]
  115. AbuHilal M. Walsh S. Shear N. The role of il-17 in the pathogenesis of psoriasis and update on il-17 inhibitors for the treatment of plaque psoriasis. J. Cutan. Med. Surg. 2016 20 6 509 516 10.1177/1203475416651605 27207350
    [Google Scholar]
  116. Miura S. Garcet S. Li X. Cueto I. Salud-Gnilo C. Kunjravia N. Yamamura K. Gonzalez J. Murai-Yamamura M. Rambhia D. Krueger J.G. Cathelicidin antimicrobial peptide ll37 induces toll-like receptor 8 and amplifies il-36γ and il-17c in human keratinocytes. J. Invest. Dermatol. 2023 143 5 832 841.e4 10.1016/j.jid.2022.10.017 36496195
    [Google Scholar]
  117. Lebre M.C. van der Aar A.M.G. van Baarsen L. van Capel T.M.M. Schuitemaker J.H.N. Kapsenberg M.L. de Jong E.C. Human keratinocytes express functional toll-like receptor 3, 4, 5, and 9. J. Invest. Dermatol. 2007 127 2 331 341 10.1038/sj.jid.5700530 17068485
    [Google Scholar]
  118. Niebuhr M. Baumert K. Werfel T. TLR‐2‐MEDIATED cytokine and chemokine secretion in human keratinocytes. Exp. Dermatol. 2010 19 10 873 877 10.1111/j.1600‑0625.2010.01140.x 20849532
    [Google Scholar]
  119. Choudhary V. Kaddour-Djebbar I. Custer V.E. Uaratanawong R. Chen X. Cohen E. Yang R. Ajebo E. Hossack S. Bollag W.B. Glycerol improves skin lesion development in the imiquimod mouse model of psoriasis: Experimental confirmation of anecdotal reports from patients with psoriasis. Int. J. Mol. Sci. 2021 22 16 8749 10.3390/ijms22168749 34445455
    [Google Scholar]
  120. Choudhary V. Griffith S. Chen X. Bollag W.B. Pathogen-associated molecular pattern-induced TLR2 and TLR4 activation increases keratinocyte production of inflammatory mediators and is inhibited by phosphatidylglycerol. Mol. Pharmacol. 2020 97 5 324 335 10.1124/mol.119.118166 32173651
    [Google Scholar]
  121. Choudhary V. Uaratanawong R. Patel R.R. Patel H. Bao W. Hartney B. Cohen E. Chen X. Zhong Q. Isales C.M. Bollag W.B. Phosphatidylglycerol inhibits toll-like receptor–mediated inflammation by danger-associated molecular patterns. J. Invest. Dermatol. 2019 139 4 868 877 10.1016/j.jid.2018.10.021 30391260
    [Google Scholar]
  122. Jiang X. Shi R. Ma R. Tang X. Gong Y. Yu Z. Shi Y. The role of microrna in psoriasis: A review. Exp. Dermatol. 2023 32 10 1598 1612 10.1111/exd.14871 37382420
    [Google Scholar]
  123. Meisgen F. Xu Landén N. Wang A. Réthi B. Bouez C. Zuccolo M. Gueniche A. Ståhle M. Sonkoly E. Breton L. Pivarcsi A. MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes. J. Invest. Dermatol. 2014 134 7 1931 1940 10.1038/jid.2014.89 24670381
    [Google Scholar]
  124. Feng C. Bai M. Yu N.Z. Wang X.J. Liu Z. retracted: microrna‐181b negatively regulates the proliferation of human epidermal keratinocytes in psoriasis through targeting TLR4. J. Cell. Mol. Med. 2017 21 2 278 285 10.1111/jcmm.12963 27641447
    [Google Scholar]
  125. Ye Y. Wang P. Zhou F. miR‑489‑3p inhibits TLR4/nf‑κb signaling to prevent inflammation in psoriasis. Exp. Ther. Med. 2021 22 1 744 10.3892/etm.2021.10176 34055060
    [Google Scholar]
  126. Pugliesi A. Egypto D.C.S. Duffles G. Cantali D.U. Pasoto S.G. Oliveira F.R. Valim V. Lopes M.L.L. Miyamoto S.T. Fernandes M.L.M.S. Fialho S.C.M.S. Pinheiro A.C. Santos L.C. Appenzeller S. Ribeiro S.L.E. Libório-Kimura T.N. Santos M.C.L.F.S. Gennari J.D´.A. Pernanbuco R. Capobiano K.G. Civile V.T. Pinto A.C.P.N. Rocha-Filho C.R. Rocha A.P. Trevisani V.F.M. Recommendations on cutaneous and hematological manifestations of sjögren’s disease by the brazilian society of rheumatology. Adv. Rheumatol. 2024 64 1 51 10.1186/s42358‑024‑00391‑x 38982553
    [Google Scholar]
  127. Brito-Zerón P. Baldini C. Bootsma H. Bowman S.J. Jonsson R. Mariette X. Sivils K. Theander E. Tzioufas A. Ramos-Casals M. Sjögren syndrome. Nat. Rev. Dis. Primers 2016 2 1 16047 10.1038/nrdp.2016.47 27383445
    [Google Scholar]
  128. Berardicurti O. Ruscitti P. Di Benedetto P. D’Andrea S. Navarini L. Marino A. Cipriani P. Giacomelli R. Association between minor salivary gland biopsy during sjӧgren’s syndrome and serologic biomarkers: A systematic review and meta-analysis. Front. Immunol. 2021 12 686457 10.3389/fimmu.2021.686457 34177936
    [Google Scholar]
  129. Mingueneau M. Boudaoud S. Haskett S. Reynolds T.L. Nocturne G. Norton E. Zhang X. Constant M. Park D. Wang W. Lazure T. Le Pajolec C. Ergun A. Mariette X. Cytometry by time-of-flight immunophenotyping identifies a blood sjögren’s signature correlating with disease activity and glandular inflammation. J. Allergy Clin. Immunol. 2016 137 6 1809 1821.e12 10.1016/j.jaci.2016.01.024 27045581
    [Google Scholar]
  130. Verstappen G.M. Pringle S. Bootsma H. Kroese F.G.M. Epithelial–immune cell interplay in primary sjögren syndrome salivary gland pathogenesis. Nat. Rev. Rheumatol. 2021 17 6 333 348 10.1038/s41584‑021‑00605‑2 33911236
    [Google Scholar]
  131. Zheng L. Zhang Z. Yu C. Yang C. Expression of toll-like receptors 7, 8, and 9 in primary sjögren’s syndrome. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2010 109 6 844 850 10.1016/j.tripleo.2010.01.006 20399690
    [Google Scholar]
  132. Kwok S.K. Cho M.L. Her Y.M. Oh H.J. Park M.K. Lee S.Y. Woo Y.J. Ju J.H. Park K.S. Kim H.Y. Park S.H. TLR2 ligation induces the production of il-23/il-17 via il-6, stat3 and nf-kb pathway in patients with primary sjogren’s syndrome. Arthritis Res. Ther. 2012 14 2 R64 10.1186/ar3780 22417709
    [Google Scholar]
  133. Spachidou M.P. Bourazopoulou E. Maratheftis C.I. Kapsogeorgou E.K. Moutsopoulos H.M. Tzioufas A.G. Manoussakis M.N. Expression of functional toll-like receptors by salivary gland epithelial cells: Increased mrna expression in cells derived from patients with primary sjögren’s syndrome. Clin. Exp. Immunol. 2007 147 3 497 503 10.1111/j.1365‑2249.2006.03311.x 17302899
    [Google Scholar]
  134. Nishihata S.Y. Shimizu T. Umeda M. Furukawa K. Ohyama K. Kawakami A. Nakamura H. The toll-like receptor 7-mediated ro52 antigen-presenting pathway in the salivary gland epithelial cells of sjögren’s syndrome. J. Clin. Med. 2023 12 13 4423 10.3390/jcm12134423 37445456
    [Google Scholar]
  135. Wang Y. Roussel-Queval A. Chasson L. Hanna Kazazian N. Marcadet L. Nezos A. Sieweke M.H. Mavragani C. Alexopoulou L. TLR7 signaling drives the development of sjögren’s syndrome. Front. Immunol. 2021 12 676010 10.3389/fimmu.2021.676010 34108972
    [Google Scholar]
  136. Nakamura H. Tanaka T. Zheng C. Afione S.A. Atsumi T. Noguchi M. Oliveira F.R. Motta A.C.F. Chahud F. Rocha E.M. Warner B.M. Chiorini J.A. Amplified type i interferon response in sjögren’s disease via ectopic toll‐like receptor 7 expression in salivary gland epithelial cells induced by lysosome‐associated membrane protein 3. Arthritis Rheumatol. 2024 76 7 1109 1119 10.1002/art.42844 38472139
    [Google Scholar]
  137. Sisto M. Lorusso L. Lisi S. TLR2 signals via nf-κb to drive il-15 production in salivary gland epithelial cells derived from patients with primary sjögren’s syndrome. Clin. Exp. Med. 2017 17 3 341 350 10.1007/s10238‑016‑0429‑y 27260411
    [Google Scholar]
  138. Barrera M.J. Aguilera S. Veerman E. Quest A.F.G. Díaz-Jiménez D. Urzúa U. Cortés J. González S. Castro I. Molina C. Bahamondes V. Leyton C. Hermoso M.A. González M.J. Salivary mucins induce a toll-like receptor 4-mediated pro-inflammatory response in human submandibular salivary cells: Are mucins involved in sjögren’s syndrome? Rheumatology 2015 54 8 1518 1527 10.1093/rheumatology/kev026 25802401
    [Google Scholar]
  139. Ittah M. Miceli-Richard C. Gottenberg J.E. Sellam J. Eid P. Lebon P. Pallier C. Lepajolec C. Mariette X. Viruses induce high expression of baff by salivary gland epithelial cells through TLR‐ and type‐i ifn‐dependent and ‐independent pathways. Eur. J. Immunol. 2008 38 4 1058 1064 10.1002/eji.200738013 18350548
    [Google Scholar]
  140. Ding J. Zhang W. Haskett S. Pellerin A. Xu S. Petersen B. Jandreski L. Hamann S. Reynolds T.L. Zheng T.S. Mingueneau M. BAFF overexpression increases lymphocytic infiltration in sjögren’s target tissue, but only inefficiently promotes ectopic b-cell differentiation. Clin. Immunol. 2016 169 69 79 10.1016/j.clim.2016.06.007 27352977
    [Google Scholar]
  141. Pontarini E. Murray-Brown W.J. Croia C. Lucchesi D. Conway J. Rivellese F. Fossati-Jimack L. Astorri E. Prediletto E. Corsiero E. Romana Delvecchio F. Coleby R. Gelbhardt E. Bono A. Baldini C. Puxeddu I. Ruscitti P. Giacomelli R. Barone F. Fisher B. Bowman S.J. Colafrancesco S. Priori R. Sutcliffe N. Challacombe S. Carlesso G. Tappuni A. Pitzalis C. Bombardieri M. Unique expansion of il-21+ tfh and tph cells under control of icos identifies sjögren’s syndrome with ectopic germinal centres and malt lymphoma. Ann. Rheum. Dis. 2020 79 12 1588 1599 10.1136/annrheumdis‑2020‑217646 32963045
    [Google Scholar]
  142. Bessa J. Kopf M. Bachmann M.F. Cutting edge: Il-21 and TLR signaling regulate germinal center responses in a B cell-intrinsic manner. J. Immunol. 2010 184 9 4615 4619 10.4049/jimmunol.0903949 20368279
    [Google Scholar]
  143. Song J. He G.N. Dai L. A comprehensive review on celastrol, triptolide and triptonide: Insights on their pharmacological activity, toxicity, combination therapy, new dosage form and novel drug delivery routes. Biomed. Pharmacother. 2023 162 114705 10.1016/j.biopha.2023.114705 37062220
    [Google Scholar]
  144. Venkatesha S.H. Dudics S. Astry B. Moudgil K.D. Control of autoimmune inflammation by celastrol, a natural triterpenoid. Pathog. Dis. 2016 74 6 ftw059 10.1093/femspd/ftw059 27405485
    [Google Scholar]
  145. Li G. Liu D. Zhang Y. Qian Y. Zhang H. Guo S. Sunagawa M. Hisamitsu T. Liu Y. Celastrol inhibits lipopolysaccharide-stimulated rheumatoid fibroblast-like synoviocyte invasion through suppression of TLR4/nf-κb-mediated matrix metalloproteinase-9 expression. PLoS One 2013 8 7 e68905 10.1371/journal.pone.0068905 23861949
    [Google Scholar]
  146. Lu X. Gong S. Wang X. Hu N. Pu D. Zhang J. Wang Y. Luo J. An Q. Ju B. He L. Celastrol exerts cardioprotective effect in rheumatoid arthritis by inhibiting TLR2/hmgb1 signaling pathway-mediated autophagy. Int. Arch. Allergy Immunol. 2021 182 12 1245 1254 10.1159/000517185 34428765
    [Google Scholar]
  147. Ding C. Li Y. Sun Y. Wu Y. Wang F. Liu C. Zhang H. Jiang Y. Zhang D. Song X. sinomenium acutum : A comprehensive review of its botany, phytochemistry, pharmacology and clinical application. Am. J. Chin. Med. 2022 50 5 1219 1253 10.1142/S0192415X22500501 35681262
    [Google Scholar]
  148. Huang R. Pan H. Wu J. Zhou H. Li Z. Qiu P. Zhou Y. Chen X. Xie Z. Xiao Y. Huang Q. Liu L. Comparison of combination therapy with methotrexate and sinomenine or leflunomide for active rheumatoid arthritis: A randomized controlled clinical trial. Phytomedicine 2019 57 403 410 10.1016/j.phymed.2018.12.030 30851515
    [Google Scholar]
  149. Zhang H.C. Liu M.X. Wang E.P. Lin Z. Lv G.F. Chen X. Effect of sinomenine on the expression of rheumatoid arthritis fibroblast-like synoviocytes myd88 and traf6. Genet. Mol. Res. 2015 14 4 18928 18935 10.4238/2015.December.28.41 26782542
    [Google Scholar]
  150. Yao R.B. Zhao Z.M. Zhao L.J. Cai H. Sinomenine inhibits the inflammatory responses of human fibroblast-like synoviocytes via the TLR4/myd88/nf-κb signaling pathway in rheumatoid arthritis. Pharmazie 2017 72 6 355 360 10.1691/ph.2017.6946 29442025
    [Google Scholar]
  151. Zeng M. Tong Q. Anti-inflammation effects of sinomenine on macrophages through suppressing activated TLR4/nf-κb signaling pathway. Curr. Med. Sci. 2020 40 1 130 137 10.1007/s11596‑020‑2156‑6 32166675
    [Google Scholar]
  152. Efferth T. Oesch F. The immunosuppressive activity of artemisinin‐type drugs towards inflammatory and autoimmune diseases. Med. Res. Rev. 2021 41 6 3023 3061 10.1002/med.21842 34288018
    [Google Scholar]
  153. Huang X. Xie Z. Liu F. Han C. Zhang D. Wang D. Bao X. Sun J. Wen C. Fan Y. Dihydroartemisinin inhibits activation of the toll-like receptor 4 signaling pathway and production of type i interferon in spleen cells from lupus-prone MRL/LPR mice. Int. Immunopharmacol. 2014 22 1 266 272 10.1016/j.intimp.2014.07.001 25027631
    [Google Scholar]
  154. Diao L. Tao J. Wang Y. Hu Y. He W. Co-delivery of dihydroartemisinin and hmgb1 sirna by tat-modified cationic liposomes through the TLR4 signaling pathway for treatment of lupus nephritis. Int. J. Nanomedicine 2019 14 8627 8645 10.2147/IJN.S220754 31806961
    [Google Scholar]
  155. Diao L. Li M. Tao J. Xu X. Wang Y. Hu Y. Therapeutic effects of cationic liposomes on lupus-prone MRL/LPR mice are mediated via inhibition of TLR4-triggered b-cell activation. Nanomedicine 2022 40 102491 10.1016/j.nano.2021.102491 34781040
    [Google Scholar]
  156. Tomeh M.A. Hadianamrei R. Zhao X. A review of curcumin and its derivatives as anticancer agents. Int. J. Mol. Sci. 2019 20 5 1033 10.3390/ijms20051033 30818786
    [Google Scholar]
  157. Marton L.T. Pescinini-e-Salzedas L.M. Camargo M.E.C. Barbalho S.M. Haber J.F.S. Sinatora R.V. Detregiachi C.R.P. Girio R.J.S. Buchaim D.V. Cincotto dos Santos Bueno P. The effects of curcumin on diabetes mellitus: A systematic review. Front. Endocrinol. 2021 12 669448 10.3389/fendo.2021.669448 34012421
    [Google Scholar]
  158. Vollono L. Falconi M. Gaziano R. Iacovelli F. Dika E. Terracciano C. Bianchi L. Campione E. Potential of curcumin in skin disorders. Nutrients 2019 11 9 2169 10.3390/nu11092169 31509968
    [Google Scholar]
  159. Kang Z.P. Wang M.X. Wu T.T. Liu D.Y. Wang H.Y. Long J. Zhao H.M. Zhong Y.B. Curcumin alleviated dextran sulfate sodium-induced colitis by regulating M1/M2 macrophage polarization and TLRS signaling pathway. Evid. Based Complement. Alternat. Med. 2021 2021 1 10 10.1155/2021/3334994 34567209
    [Google Scholar]
  160. Zeng L. Yang T. Yang K. Yu G. Li J. Xiang W. Chen H. Curcumin and curcuma longa extract in the treatment of 10 types of autoimmune diseases: A systematic review and meta-analysis of 31 randomized controlled trials. Front. Immunol. 2022 13 896476 10.3389/fimmu.2022.896476 35979355
    [Google Scholar]
  161. Huang J. Wu T. Zhong Y. Huang J. Kang Z. Zhou B. Zhao H. Liu D. Effect of curcumin on regulatory B cells in chronic colitis mice involving TLR / MYD88 signaling pathway. Phytother. Res. 2023 37 2 731 742 10.1002/ptr.7656 36196887
    [Google Scholar]
  162. Qiu B. Xu X. Yi P. Hao Y. Curcumin reinforces msc‐derived exosomes in attenuating osteoarthritis via modulating the MIR‐124/NF‐KB and MIR‐143/ROCK1/TLR9 signalling pathways. J. Cell. Mol. Med. 2020 24 18 10855 10865 10.1111/jcmm.15714 32776418
    [Google Scholar]
  163. Li Q. Tan S. Xu K. Fu X. Yu J. Yang H. Wang H. Curcumin attenuates lupus nephritis in MRL/LPR mice by suppressing macrophage-secreted B cell activating factor (baff). Int. J. Clin. Exp. Pathol. 2019 12 6 2075 2083 31934029
    [Google Scholar]
  164. Li J.Q. Zhang S.H. Tong R.S. He D. Zhong Z.D. She S.Y. Curcuma’s extraction attenuates propranolol-induced psoriasis like in mice by inhibition of keratin, proliferating cell nuclear antigen and toll-like receptor expression. Pak. J. Pharm. Sci. 2020 33 3 1033 1048 33191227
    [Google Scholar]
  165. Zhao T. Tang H. Xie L. Zheng Y. Ma Z. Sun Q. Li X. scutellaria baicalensis georgi. (lamiaceae): A review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. J. Pharm. Pharmacol. 2019 71 9 1353 1369 10.1111/jphp.13129 31236960
    [Google Scholar]
  166. Ganguly R. Gupta A. Pandey A.K. Role of baicalin as a potential therapeutic agent in hepatobiliary and gastrointestinal disorders: A review. World J. Gastroenterol. 2022 28 26 3047 3062 10.3748/wjg.v28.i26.3047 36051349
    [Google Scholar]
  167. Rahmani F. Rezaei N. Therapeutic targeting of toll-like receptors: A review of toll-like receptors and their signaling pathways in psoriasis. Expert Rev. Clin. Immunol. 2016 12 12 1289 1298 10.1080/1744666X.2016.1204232 27359083
    [Google Scholar]
  168. Luo J. Jin D.E. Yang G.Y. Zhang Y.Z. Wang J.M. Kong W.P. Tao Q.W. Total glucosides of paeony for rheumatoid arthritis: A systematic review of randomized controlled trials. Complement. Ther. Med. 2017 34 46 56 10.1016/j.ctim.2017.07.010 28917375
    [Google Scholar]
  169. Chen Y. Wang L. Cao Y. Li N. Total glucosides of paeonia lactiflora for safely reducing disease activity in systemic lupus erythematosus: A systematic review and meta-analysis. Front. Pharmacol. 2022 13 834947 10.3389/fphar.2022.834947 35173622
    [Google Scholar]
  170. Zheng Q. Jiang W. Sun X. Ma T. Xu W. Shen F. Li H. Xie S. Li B. Li X. Total glucosides of paeony for the treatment of psoriasis: A systematic review and meta-analysis of randomized controlled trials. Phytomedicine 2019 62 152940 10.1016/j.phymed.2019.152940 31100680
    [Google Scholar]
  171. Zhou Y. Jin L. Kong F. Zhang H. Fang X. Chen Z. Wang G. Li X. Li X. Clinical and immunological consequences of total glucosides of paeony treatment in sjögren’s syndrome: A randomized controlled pilot trial. Int. Immunopharmacol. 2016 39 314 319 10.1016/j.intimp.2016.08.006 27517517
    [Google Scholar]
  172. Zhang L. Yu J. Wang C. Wei W. The effects of total glucosides of paeony (TGP) and paeoniflorin (PAE) on inflammatory-immune responses in rheumatoid arthritis (RA). Funct. Plant Biol. 2019 46 2 107 117 10.1071/FP18080 32172753
    [Google Scholar]
  173. Chen H. Wen Y. Pan T. Xu S. Total glucosides of paeony improve complete freund’s adjuvant-induced rheumatoid arthritis in rats by inhibiting toll-like receptor 2-mediated tumor necrosis factor receptor-associated factor 6/ nuclear factor-kappa b pathway activation. J. Tradit. Chin. Med. 2019 39 4 566 574 32186105
    [Google Scholar]
  174. Lavazais S. Jargosch M. Dupont S. Labéguère F. Menet C. Jagerschmidt C. Ohm F. Kupcsik L. Parent I. Cottereaux C. Marsais F. Oste L. Van de Water A. Christophe T. De Vos S. Fallon P. Lauffer F. Clément-Lacroix P. Eyerich K. Brys R. IRAK4 inhibition dampens pathogenic processes driving inflammatory skin diseases. Sci. Transl. Med. 2023 15 683 eabj3289 10.1126/scitranslmed.abj3289 36791209
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303340093241227094242
Loading
/content/journals/emiddt/10.2174/0118715303340093241227094242
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test