Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

While the annual incidence of diabetic kidney disease (DKD) has been soaring, the exact mechanisms underlying its onset and progression remain partially understood.

Objective

The present study delved into the underlying mechanisms of Jisheng Shenqi Pill (JSP) in the treatment of DKD.

Methods

The active constituents and prospective targets of JSP were identified from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP), while DKD-associated disease targets were obtained from the GeneCards database. Subsequently, Gene Ontology (GO) functional annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed to assess the overlapping segment of drugs and disease targets. Meanwhile, a component-target-pathway network was constructed to identify pivotal components, targets, and pathways. Molecular docking and molecular dynamics simulation were also carried out to validate the binding efficacy of the pivotal components with the targets. Finally, animal experiments were conducted to corroborate the efficacy of the aforementioned targets and pathways.

Results

According to bioinformatics analysis, the primary targets included JUN, TNF, and BAX, while the pivotal pathways involved were AGE/RAGE and PI3K/AKT signaling cascades. experiments demonstrated that JSP effectively mitigated renal impairment in DKD by reducing renal inflammation and apoptosis. This effect was presumably achieved by modulating the AGE-RAGE axis and the PI3K/AKT signaling pathway.

Conclusion

Our findings imply that JSP could ameliorate renal inflammation and apoptosis in DKD mice by modulating the AGE/RAGE axis and the PI3K/AKT signaling pathway. These findings provide valuable insights into traditional Chinese medicine-based treatments for DKD.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303339433240805045749
2024-08-09
2025-12-09
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/13/EMIDDT-25-13-06.html?itemId=/content/journals/emiddt/10.2174/0118715303339433240805045749&mimeType=html&fmt=ahah

References

  1. SunH. SaeediP. KarurangaS. PinkepankM. OgurtsovaK. DuncanB.B. SteinC. BasitA. ChanJ.C.N. MbanyaJ.C. PavkovM.E. RamachandaranA. WildS.H. JamesS. HermanW.H. ZhangP. BommerC. KuoS. BoykoE.J. MaglianoD.J. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045.Diabetes Res. Clin. Pract.202218310911910.1016/j.diabres.2021.10911934879977
    [Google Scholar]
  2. JohansenK.L. ChertowG.M. FoleyR.N. GilbertsonD.T. HerzogC.A. IshaniA. IsraniA.K. KuE. Kurella TamuraM. LiS. LiS. LiuJ. ObradorG.T. O’HareA.M. PengY. PoweN.R. RoetkerN.S. St PeterW.L. AbbottK.C. ChanK.E. SchulmanI.H. SnyderJ. SolidC. WeinhandlE.D. WinkelmayerW.C. WetmoreJ.B. US Renal Data System US renal data system 2020 annual data report: Epidemiology of kidney disease in the United States.Am. J. Kidney Dis.2021774Suppl. 1A7A810.1053/j.ajkd.2021.01.00233752804
    [Google Scholar]
  3. BastosR.M.C. Simplício-FilhoA. Sávio-SilvaC. OliveiraL.F.V. CruzG.N.F. SousaE.H. NoronhaI.L. MangueiraC.L.P. Quaglierini-RibeiroH. Josefi-RochaG.R. RangelÉ.B. Fecal microbiota transplant in a pre-clinical model of type 2 diabetes mellitus, obesity and diabetic kidney disease.Int. J. Mol. Sci.2022237384210.3390/ijms2307384235409202
    [Google Scholar]
  4. GuptaS. DominguezM. GolestanehL. Diabetic kidney disease.Med. Clin. North Am.2023107468970510.1016/j.mcna.2023.03.00437258007
    [Google Scholar]
  5. FountoglouA. DeltasC. SiomouE. DounousiE. Genome-wide association studies reconstructing chronic kidney disease.Nephrol. Dial. Transplant.202439339540210.1093/ndt/gfad20938124660
    [Google Scholar]
  6. TianY. GaoZ. LiuW. LiJ. JiangX. XinY. Unveiling the vital role of long non-coding RNAs in cardiac oxidative stress, cell death, and fibrosis in diabetic cardiomyopathy.Antioxidants20221112239110.3390/antiox1112239136552599
    [Google Scholar]
  7. RustiasariU.J. RoelofsJ.J. The role of platelets in diabetic kidney disease.Int. J. Mol. Sci.20222315827010.3390/ijms2315827035955405
    [Google Scholar]
  8. WeiJ. ZhaoY. LiangH. DuW. WangL. Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy.Acta Pharm. Sin. B202212111710.1016/j.apsb.2021.08.02635127369
    [Google Scholar]
  9. Rayego-MateosS. Morgado-PascualJ.L. Opazo-RíosL. Guerrero-HueM. García-CaballeroC. Vázquez-CarballoC. MasS. SanzA.B. HerenciaC. MezzanoS. Gómez-GuerreroC. MorenoJ.A. EgidoJ. Pathogenic pathways and therapeutic approaches targeting inflammation in diabetic nephropathy.Int. J. Mol. Sci.20202111379810.3390/ijms2111379832471207
    [Google Scholar]
  10. OshimaM. ShimizuM. YamanouchiM. ToyamaT. HaraA. FuruichiK. WadaT. Trajectories of kidney function in diabetes: A clinicopathological update.Nat. Rev. Nephrol.2021171174075010.1038/s41581‑021‑00462‑y34363037
    [Google Scholar]
  11. MaL. LiJ. ZhangX. ZhangW. JiangC. YangB. YangH. Chinese botanical drugs targeting mitophagy to alleviate diabetic kidney disease, a comprehensive review.Front. Pharmacol.202415136017910.3389/fphar.2024.136017938803440
    [Google Scholar]
  12. KourtidouC. TziomalosK. The role of histone modifications in the pathogenesis of diabetic kidney disease.Int. J. Mol. Sci.2023246600710.3390/ijms2406600736983082
    [Google Scholar]
  13. ForstT. MathieuC. GiorginoF. WheelerD.C. PapanasN. SchmiederR.E. HalabiA. SchnellO. StreckbeinM. TuttleK.R. New strategies to improve clinical outcomes for diabetic kidney disease.BMC Med.202220133710.1186/s12916‑022‑02539‑236210442
    [Google Scholar]
  14. JarrayaF. NiangA. BaghaH. TannorE.K. SumailiE.K. WanD.I.M. ChothiaM.Y. MengistuY.T. KazeF.F. UlasiI.I. NaickerS. HafezM.H. YaoK.H. The role of sodium-glucose cotransporter-2 inhibitors in the treatment paradigm of CKD in Africa: An African association of nephrology panel position paper.Kidney Int. Rep.20249352654810.1016/j.ekir.2023.12.01938481515
    [Google Scholar]
  15. American Diabetes Association 11. Microvascular complications and foot care: Standards of medical care in diabetes−2020.Diabetes Care202043Suppl. 1S135S15110.2337/dc20‑S01131862754
    [Google Scholar]
  16. MiriogluS. UludagO. HurdoganO. KumruG. BerkeI. DoumasS.A. FrangouE. GulA. AmyloidosisA.A. AA amyloidosis: A contemporary view.Curr. Rheumatol. Rep.202426724825910.1007/s11926‑024‑01147‑838568326
    [Google Scholar]
  17. WuT.H. ChangL.H. ChuC.H. HwuC.M. ChenH.S. LinL.Y. Soluble tumor necrosis factor receptor 2 is associated with progressive diabetic kidney disease in patients with type 2 diabetes mellitus.PLoS One2022174e026685410.1371/journal.pone.026685435413081
    [Google Scholar]
  18. ScurtF.G. MenneJ. BrandtS. BernhardtA. MertensP.R. HallerH. ChatzikyrkouC. Endostatin, soluble tumour necrosis factor receptor 1 and soluble tumour necrosis factor receptor 2 cannot predict new onset of microalbuminuria in patients with type 2 diabetes.Diabetes Metab. Res. Rev.2024403e375310.1002/dmrr.375338050450
    [Google Scholar]
  19. WuT.J. HsiehY.J. LuC.W. LeeC.J. HsuB.G. Linagliptin protects against endotoxin-induced acute kidney injury in rats by decreasing inflammatory cytokines and reactive oxygen species.Int. J. Mol. Sci.202122201119010.3390/ijms22201119034681847
    [Google Scholar]
  20. WuQ. HuangF. Targeting ferroptosis as a prospective therapeutic approach for diabetic nephropathy.Ann. Med.2024561234654310.1080/07853890.2024.234654338657163
    [Google Scholar]
  21. CaiH. ZengY. LuoD. ShaoY. LiuM. WuJ. GaoX. ZhengJ. ZhouL. LiuF. Apoptosis and NETotic cell death affect diabetic nephropathy independently: An study integrative study encompassing bioinformatics, machine learning, and experimental validation.Genomics2024116411087910.1016/j.ygeno.2024.11087938851464
    [Google Scholar]
  22. MyakalaK. WangX.X. ShultsN.V. KrawczykE. JonesB.A. YangX. RosenbergA.Z. GinleyB. SarderP. BrodskyL. JangY. NaC.H. QiY. ZhangX. GuhaU. WuC. BansalS. MaJ. CheemaA. AlbaneseC. HirscheyM.D. YoshidaT. KoppJ.B. PanovJ. LeviM. NAD metabolism modulates inflammation and mitochondria function in diabetic kidney disease.J. Biol. Chem.2023299810497510.1016/j.jbc.2023.10497537429506
    [Google Scholar]
  23. WangT. ChenY. LiuZ. ZhouJ. LiN. ShanY. HeY. Long noncoding RNA Glis2 regulates podocyte mitochondrial dysfunction and apoptosis in diabetic nephropathy via sponging miR-328-5p.J. Cell. Mol. Med.2024287e1820410.1111/jcmm.1820438506068
    [Google Scholar]
  24. ChenY. ChenJ. JiangM. FuY. ZhuY. JiaoN. LiuL. DuQ. WuH. XuH. SunJ. Loganin and catalpol exert cooperative ameliorating effects on podocyte apoptosis upon diabetic nephropathy by targeting AGEs-RAGE signaling.Life Sci.202025211765310.1016/j.lfs.2020.11765332277978
    [Google Scholar]
  25. ChenD.Q. WuX.Q. ChenL. HuH.H. WangY.N. ZhaoY.Y. Poricoic acid A as a modulator of TPH-1 expression inhibits renal fibrosis via modulating protein stability of β-catenin and β-catenin-mediated transcription.Ther. Adv. Chronic Dis.20201110.1177/204062232096264833062239
    [Google Scholar]
  26. ChenD.Q. WangY.N. VaziriN.D. ChenL. HuH.H. ZhaoY.Y. Poricoic acid A activates AMPK to attenuate fibroblast activation and abnormal extracellular matrix remodelling in renal fibrosis.Phytomedicine20207215323210.1016/j.phymed.2020.15323232460034
    [Google Scholar]
  27. WangS. ZengM. LiB. KanY. ZhangB. ZhengX. FengW. Raw and salt-processed Achyranthes bidentata attenuate LPS-induced acute kidney injury by inhibiting ROS and apoptosis via an estrogen-like pathway.Biomed. Pharmacother.202012911040310.1016/j.biopha.2020.11040332574970
    [Google Scholar]
  28. WangX. WangZ.Y. ZhengJ.H. LiS. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches.Chin. J. Nat. Med.202119111110.1016/S1875‑5364(21)60001‑833516447
    [Google Scholar]
  29. LiX. MiaoF. XinR. TaiZ. PanH. HuangH. YuJ. ChenZ. ZhuQ. Combining network pharmacology, molecular docking, molecular dynamics simulation, and experimental verification to examine the efficacy and immunoregulation mechanism of FHB granules on vitiligo.Front. Immunol.202314119482310.3389/fimmu.2023.119482337575231
    [Google Scholar]
  30. WuN. YuanT. YinZ. YuanX. SunJ. WuZ. ZhangQ. RedshawC. YangS. DaiX. Network Pharmacology and Molecular Docking Study of the Chinese Miao Medicine Sidaxue in the Treatment of Rheumatoid Arthritis Network pharmacology and molecular docking study of the chinese miao medicine sidaxue in the treatment of rheumatoid arthritis.Drug Des. Devel. Ther.20221643546610.2147/DDDT.S33094735221674
    [Google Scholar]
  31. PinziL. RastelliG. Molecular docking: Shifting paradigms in drug discovery.Int. J. Mol. Sci.20192018433110.3390/ijms2018433131487867
    [Google Scholar]
  32. PatilV.S. HarishD.R. VetrivelU. RoyS. DeshpandeS.H. HegdeH.V. HepatitisC. Hepatitis C virus NS3/4A inhibition and host immunomodulation by tannins from Terminalia chebula: A structural perspective.Molecules2022273107610.3390/molecules2703107635164341
    [Google Scholar]
  33. CaoY. YaoW. YangT. YangM. LiuZ. LuoH. CaoZ. ChangR. CuiZ. ZuoH. LiuB. Elucidating the mechanisms of Buyang Huanwu Decoction in treating chronic cerebral ischemia: A combined approach using network pharmacology, molecular docking, and in vivo validation.Phytomedicine202413215582010.1016/j.phymed.2024.15582039004032
    [Google Scholar]
  34. WishartD.S. FeunangY.D. GuoA.C. LoE.J. MarcuA. GrantJ.R. SajedT. JohnsonD. LiC. SayeedaZ. AssempourN. IynkkaranI. LiuY. MaciejewskiA. GaleN. WilsonA. ChinL. CummingsR. LeD. PonA. KnoxC. WilsonM. DrugBank 5.0: A major update to the DrugBank database for 2018.Nucleic Acids Res.201846D1D1074D108210.1093/nar/gkx103729126136
    [Google Scholar]
  35. ZhouY. ZhangY. ZhaoD. YuX. ShenX. ZhouY. WangS. QiuY. ChenY. ZhuF. TTD: Therapeutic target database describing target druggability information.Nucleic Acids Res.202452D1D1465D147710.1093/nar/gkad75137713619
    [Google Scholar]
  36. AmbergerJ.S. BocchiniC.A. SchiettecatteF. ScottA.F. HamoshA. OMIM.org: Online mendelian inheritance in man (OMIM®), an online catalog of human genes and genetic disorders.Nucleic Acids Res.201543D1D789D79810.1093/nar/gku120525428349
    [Google Scholar]
  37. BardouP. MarietteJ. EscudiéF. DjemielC. KloppC. jvenn: An interactive Venn diagram viewer.BMC Bioinformatics201415129310.1186/1471‑2105‑15‑29325176396
    [Google Scholar]
  38. SzklarczykD. KirschR. KoutrouliM. NastouK. MehryaryF. HachilifR. GableA.L. FangT. DonchevaN.T. PyysaloS. BorkP. JensenL.J. von MeringC. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced genome of interest.Nucleic Acids Res.202351D1D638D64610.1093/nar/gkac100036370105
    [Google Scholar]
  39. OtasekD. MorrisJ.H. BouçasJ. PicoA.R. DemchakB. Cytoscape Automation: Empowering workflow-based network analysis.Genome Biol.201920118510.1186/s13059‑019‑1758‑431477170
    [Google Scholar]
  40. LuL. PengJ. WanP. PengH. LuJ. XiongG. Mechanism of Tripterygium wilfordii Hook.F.- Trichosanthes kirilowii Maxim decoction in treatment of diabetic kidney disease based on network pharmacology and molecular docking.Front. Pharmacol.20221394077310.3389/fphar.2022.94077336386135
    [Google Scholar]
  41. ZhouY. ZhouB. PacheL. ChangM. KhodabakhshiA.H. TanaseichukO. BennerC. ChandaS.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets.Nat. Commun.2019101152310.1038/s41467‑019‑09234‑630944313
    [Google Scholar]
  42. EberhardtJ. Santos-MartinsD. TillackA.F. ForliS. AutoDock vina 1.2.0: New docking methods, expanded force field, and python bindings.J. Chem. Inf. Model.20216183891389810.1021/acs.jcim.1c0020334278794
    [Google Scholar]
  43. PállS. AbrahamM.J. KutznerC. HessB. LindahlE. In tackling exascale software challenges in molecular dynamics simulations with GROMACS, solving software challenges for exascale.International Conference on Exascale Applications and Software, EASC 2014, Stockholm, Sweden, April 2-3, 2014, pp 3-27.
    [Google Scholar]
  44. QuX. ZhaiB. LiuY. ChenY. XieZ. WangQ. WuY. LiuZ. ChenJ. MeiS. WuJ. YouZ. YuY. WangY. Pyrroloquinoline quinone ameliorates renal fibrosis in diabetic nephropathy by inhibiting the pyroptosis pathway in C57BL/6 mice and human kidney 2 cells.Biomed. Pharmacother.202215011299810.1016/j.biopha.2022.11299835489281
    [Google Scholar]
  45. LinT.J. HuangC.C. LeeM.C. LeeY.P. HuangW.C. ChuangH.L. WangI.J. Effects of Lactobacillus salivarius ssp. salicinius SA-03 supplementation on reversing phthalate-induced asthma in mice.Nutrients2024168116010.3390/nu1608116038674852
    [Google Scholar]
  46. YeJ. LiL. HuZ. Exploring the Molecular Mechanism of Action of Yinchen Wuling Powder for the Treatment of Hyperlipidemia, Using Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Exploring the molecular mechanism of action of yinchen wuling powder for the treatment of hyperlipidemia, using network pharmacology, molecular docking, and molecular dynamics simulation.BioMed Res. Int.2021202111410.1155/2021/996590634746316
    [Google Scholar]
  47. HanC. ShenZ. CuiT. AiS. GaoR. LiuY. SuiG. HuH. LiW. Yi-Shen-Hua-Shi granule ameliorates diabetic kidney disease by the “gut-kidney axis”.J. Ethnopharmacol.202330711625710.1016/j.jep.2023.11625736787845
    [Google Scholar]
  48. LiuY. WangS. JinG. GaoK. WangS. ZhangX. ZhouK. CaiY. ZhouX. ZhaoZ. Network pharmacology-based study on the mechanism of ShenKang injection in diabetic kidney disease through Keap1/Nrf2/Ho-1 signaling pathway.Phytomedicine202311815491510.1016/j.phymed.2023.15491537392674
    [Google Scholar]
  49. JiJ. TaoP. WangQ. CuiM. CaoM. XuY. Emodin attenuates diabetic kidney disease by inhibiting ferroptosis via upregulating Nrf2 expression.Aging (Albany NY)202315157673768837552124
    [Google Scholar]
  50. YangD. WangT. LongM. LiP. Quercetin: Its main pharmacological activity and potential application in clinical medicine.Oxid. Med. Cell. Longev.2020202011310.1155/2020/882538733488935
    [Google Scholar]
  51. YangY. ChenZ. ZhaoX. XieH. DuL. GaoH. XieC. Mechanisms of Kaempferol in the treatment of diabetes: A comprehensive and latest review.Front. Endocrinol.20221399029910.3389/fendo.2022.99029936157449
    [Google Scholar]
  52. ShengH. ZhangD. ZhangJ. ZhangY. LuZ. MaoW. LiuX. ZhangL. Kaempferol attenuated diabetic nephropathy by reducing apoptosis and promoting autophagy through AMPK/mTOR pathways.Front. Med.2022998682510.3389/fmed.2022.98682536530875
    [Google Scholar]
  53. WardM.G. LiG. Barbosa-LorenziV.C. HaoM. Stigmasterol prevents glucolipotoxicity induced defects in glucose-stimulated insulin secretion.Sci. Rep.201771953610.1038/s41598‑017‑10209‑028842702
    [Google Scholar]
  54. LeiL. ZhaoJ. LiuX.Q. ChenJ. QiX.M. XiaL.L. WuY.G. Wogonin alleviates kidney tubular epithelial injury in diabetic nephropathy by inhibiting PI3K/Akt/NF-κB signaling pathways.Drug Des. Devel. Ther.2021153131315010.2147/DDDT.S31088234295152
    [Google Scholar]
  55. BabuS. KrishnanM. RajagopalP. PeriyasamyV. VeeraraghavanV. GovindanR. JayaramanS. Beta-sitosterol attenuates insulin resistance in adipose tissue via IRS-1/Akt mediated insulin signaling in high fat diet and sucrose induced type-2 diabetic rats.Eur. J. Pharmacol.202087317300410.1016/j.ejphar.2020.17300432045603
    [Google Scholar]
  56. TangX. YanT. WangS. LiuQ. YangQ. ZhangY. LiY. WuY. LiuS. MaY. YangL. Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis.Neural Regen. Res.202419364264910.4103/1673‑5374.38090437721296
    [Google Scholar]
  57. YangM. KanL. WuL. ZhuY. WangQ. Effect of baicalin on renal function in patients with diabetic nephropathy and its therapeutic mechanism.Exp. Ther. Med.20191732071207610.3892/etm.2019.718130867693
    [Google Scholar]
  58. KuoY.H. LinC.H. ShihC.C. Dehydroeburicoic acid from antrodia camphorata prevents the diabetic and dyslipidemic state via modulation of glucose transporter 4, peroxisome proliferator-activated receptor α expression and AMP-activated protein kinase phosphorylation in high-fat-fed mice.Int. J. Mol. Sci.201617687210.3390/ijms1706087227271603
    [Google Scholar]
  59. KashaniK. RosnerM.H. OstermannM. Creatinine: From physiology to clinical application.Eur. J. Intern. Med.20207291410.1016/j.ejim.2019.10.02531708357
    [Google Scholar]
  60. HuangT. WuT. WuY. LiX. TanJ. ShenC. XiongS. FengZ. GaoS. LiH. CaiW. Long-term statins administration exacerbates diabetic nephropathy via ectopic fat deposition in diabetic mice.Nat. Commun.202314139010.1038/s41467‑023‑35944‑z36693830
    [Google Scholar]
  61. CalleP. HotterG. Macrophage phenotype and fibrosis in diabetic nephropathy.Int. J. Mol. Sci.2020218280610.3390/ijms2108280632316547
    [Google Scholar]
  62. Rayego-MateosS. Rodrigues-DiezR.R. Fernandez-FernandezB. Mora-FernándezC. MarchantV. Donate-CorreaJ. Navarro-GonzálezJ.F. OrtizA. Ruiz-OrtegaM. Targeting inflammation to treat diabetic kidney disease: The road to 2030.Kidney Int.2023103228229610.1016/j.kint.2022.10.03036470394
    [Google Scholar]
  63. BerthelootD. LatzE. FranklinB.S. Necroptosis, pyroptosis and apoptosis: An intricate game of cell death.Cell. Mol. Immunol.20211851106112110.1038/s41423‑020‑00630‑333785842
    [Google Scholar]
  64. QuaratoG. MariL. BarrowsN.J. YangM. RuehlS. ChenM.J. GuyC.S. LowJ. ChenT. GreenD.R. Mitophagy restricts BAX/BAK-independent, Parkin-mediated apoptosis.Sci. Adv.2023921eadg815610.1126/sciadv.adg815637224250
    [Google Scholar]
  65. LiuM. WangW. GaoJ. LiF. ShiJ. GongQ. Icariside II attenuates cerebral ischemia/reperfusion-induced blood–brain barrier dysfunction in rats via regulating the balance of MMP9/TIMP1.Acta Pharmacol. Sin.202041121547155610.1038/s41401‑020‑0409‑332488170
    [Google Scholar]
  66. YuQ. LanT. MaZ. WangZ. ZhangC. JiangY. ZhaoZ. Lobaplatin induces apoptosis in T24 and 5637 bladder cancer cells by regulating Bcl-2 and Bax expression and inhibiting the PI3K/Akt signaling pathway.Transl. Androl. Urol.20231281296130710.21037/tau‑23‑37637680227
    [Google Scholar]
  67. HolotaR. DečmanováV. Alexovič MatiašováA. KošuthJ. SlovinskáL. PačutL. TomoriZ. DaxnerováZ. ŠevcJ. Cleaved caspase-3 is present in the majority of glial cells in the intact rat spinal cord during postnatal life.Histochem. Cell Biol.2024161326928610.1007/s00418‑023‑02249‑737938347
    [Google Scholar]
  68. PalR. BhadadaS.K. AGEs accumulation with vascular complications, glycemic control and metabolic syndrome: A narrative review.Bone202317611688410.1016/j.bone.2023.11688437598920
    [Google Scholar]
  69. MengF. ZhangZ. ChenC. LiuY. YuanD. HeiZ. LuoG. PI3K/AKT activation attenuates acute kidney injury following liver transplantation by inducing FoxO3a nuclear export and deacetylation.Life Sci.202127211911910.1016/j.lfs.2021.11911933508296
    [Google Scholar]
  70. ChenY. ZhangZ. JinW. LiZ. BaoC. HeC. GuoY. LiC. Integrative analyses of antler cartilage transcriptome and proteome of gansu red deer (Cervus elaphus kansuensis) at different growth stages.Animals202212793410.3390/ani1207093435405922
    [Google Scholar]
  71. XuZ. JiaK. WangH. GaoF. ZhaoS. LiF. HaoJ. METTL14-regulated PI3K/Akt signaling pathway via PTEN affects HDAC5-mediated epithelial–mesenchymal transition of renal tubular cells in diabetic kidney disease.Cell Death Dis.20211213210.1038/s41419‑020‑03312‑033414476
    [Google Scholar]
  72. ChangC. HuangK. XuX. DuanR. YuT. ChuX. ChenC. LiB. YangT. MiR-23a-5p alleviates chronic obstructive pulmonary disease through targeted regulation of RAGE-ROS pathway.Respir. Res.20242519310.1186/s12931‑024‑02736‑y38378600
    [Google Scholar]
  73. BaoJ.M. HeM.Y. LiuY.W. LuY.J. HongY.Q. LuoH.H. RenZ.L. ZhaoS.C. JiangY. AGE/RAGE/Akt pathway contributes to prostate cancer cell proliferation by promoting Rb phosphorylation and degradation.Am. J. Cancer Res.2015551741175026175942
    [Google Scholar]
  74. SharmaI. TupeR.S. WallnerA.K. KanwarY.S. Contribution of myo-inositol oxygenase in AGE:RAGE-mediated renal tubulointerstitial injury in the context of diabetic nephropathy.Am. J. Physiol. Renal Physiol.20183141F107F12110.1152/ajprenal.00434.201728931523
    [Google Scholar]
  75. AhmadA. BiersackB. LiY. KongD. BaoB. SchobertR. PadhyeS. SarkarF. Targeted regulation of PI3K/Akt/mTOR/NF-κB signaling by indole compounds and their derivatives: Mechanistic details and biological implications for cancer therapy.Anticancer. Agents Med. Chem.20131371002101310.2174/1871520611313999007823272910
    [Google Scholar]
  76. KangJ. WangY. GuoX. HeX. LiuW. ChenH. WangZ. LinA. KangX. N-acetylserotonin protects PC12 cells from hydrogen peroxide induced damage through ROS mediated PI3K / AKT pathway.Cell Cycle202221212268228210.1080/15384101.2022.209281735758219
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303339433240805045749
Loading
/content/journals/emiddt/10.2174/0118715303339433240805045749
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test