Skip to content
2000
Volume 25, Issue 14
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Curcumin is a polyphenolic compound derived from the food spice turmeric that has received interest from the medical and scientific world for its role in the management of several conditions. Clinical studies, in humans, have shown that ingested Curcumin is safe even at high doses (12 g/day), but it has poor bioavailability primarily due to poor absorption and rapid metabolism and elimination. Several strategies have been implemented to improve the bioavailability of Curcumin, for example, the combination of piperine in a complex with Curcumin, or the usage of formulations with phospholipid or liposomal complexes.

Objective

The present work aims to explore and compare the systemic anti-inflammatory effects of two different types of Curcumin: a traditional fat-soluble formulation (95% Curcumin) and an innovative standardized reconstituted water-soluble one (Curcuin), made in micelles in aqueous solution.

Methods

Research was conducted on 30 patients, 15 patients were treated with turmeric (., rhizome) dried extract titled 95% Curcumin (Curcumin 425mg/day) conjugated with piperine, and 15 patients were treated with Curcumin (turmeric 286 mg dried extract titled 35%; Curcuminoids 100 mg/day, standardized water-soluble) made in micelles in highly absorbed aqueous solution. We considered the quantitative variations of laboratory parameters: Erythrocyte Sedimentation Rate (ESR), C-reactive protein (CRP), Ferritin (24 to 336 ng/mL for adult males), and cholesterol LDL.

Results and Discussion

Patients treated with dried extract titled 95% Curcumin, for 90 days, show a lower value of ESR, CRP, Ferritin, and LDL cholesterol compared with the same laboratory parameters before the introduction of Curcumin into the diet. Also, patients treated with Curcuin report a lower value of ESR, CRP, Ferritin, and LDL cholesterol after the introduction of turmeric dried extract in the diet, but with a major significance compared with those obtained with 95% Curcumin conjugated with piperine.

Conclusion

As we had hypothesized, both turmeric-derived extracts have successfully reduced ESR, CRP, Ferritin, and cholesterol LDL values, exerting an anti-inflammatory action and anti-cholesterolemic action. These results suggest a possible use of Curcumin and in particular Curcuin as a coadjuvant for the treatment of inflammatory disease and to decrease cholesterol levels. However, additional investigation is needed to resolve doubts regarding Curcumin dosage form, dose, and medication frequency.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303329562241116045410
2025-01-08
2025-12-18
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/14/EMIDDT-25-14-05.html?itemId=/content/journals/emiddt/10.2174/0118715303329562241116045410&mimeType=html&fmt=ahah

References

  1. SmirnovaE. MoniruzzamanM. ChinS. SureshbabuA. KarthikeyanA. DoK. MinT. A review of the role of Curcumin in metal induced toxicity.Antioxidants202312224310.3390/antiox1202024336829803
    [Google Scholar]
  2. NelsonK.M. DahlinJ.L. BissonJ. GrahamJ. PauliG.F. WaltersM.A. The essential medicinal chemistry of Curcumin.J. Med. Chem.20176051620163710.1021/acs.jmedchem.6b0097528074653
    [Google Scholar]
  3. TamegartL. AbbaouiA. LaabbarW. OukhribM. BouyatasM.M. GamraniH. Study of the neurochemical alterations produced by acute and subchronic pb-exposure in meriones shawi: Immunohistochemical study of reissner’s fiber secretion by the subcommissural organ after Curcumin-III treatment.J. Trace Elem. Med. Biol.20227112693310.1016/j.jtemb.2022.12693335066456
    [Google Scholar]
  4. HartoghD.D.J. GabrielA. TsianiE. Antidiabetic properties of Curcumin II: Evidence from in vivo studies.Nutrients20191215810.3390/nu1201005831881654
    [Google Scholar]
  5. AbrahamsS. HaylettW.L. JohnsonG. CarrJ.A. BardienS. Antioxidant effects of Curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review.Neuroscience201940612110.1016/j.neuroscience.2019.02.02030825584
    [Google Scholar]
  6. ZhangW. ChenY. YangF. ZhangH. SuT. WangJ. ZhangY. SongX. Antiviral effect of palmatine against infectious bronchitis virus through regulation of NF-κB/IRF7/JAK-STAT signalling pathway and apoptosis.Br. Poult. Sci.202465211912810.1080/00071668.2023.229692938166582
    [Google Scholar]
  7. WangW. LiM. WangL. ChenL. GohB.C. Curcumin in cancer therapy: Exploring molecular mechanisms and overcoming clinical challenges.Cancer Lett.202357021633210.1016/j.canlet.2023.21633237541540
    [Google Scholar]
  8. CaiY. HuangC. ZhouM. XuS. XieY. GaoS. YangY. DengZ. ZhangL. ShuJ. YanT. WanC.C. Role of Curcumin in the treatment of acute kidney injury: Research challenges and opportunities.Phytomedicine202210415430610.1016/j.phymed.2022.15430635809376
    [Google Scholar]
  9. GanjaliS. BlessoC.N. BanachM. PirroM. MajeedM. SahebkarA. Effects of Curcumin on HDL functionality.Pharmacol. Res.201711920821810.1016/j.phrs.2017.02.00828192240
    [Google Scholar]
  10. ReisP.C.S.G. AlvesA.G.P. GuilloL.A. SousaM.A. TrindadeN.R. SilvaM.S. Curcumin supplementation reduces blood glucose and serum lipids of Brazilian women with high waist circumference: A randomized clinical trial.Arch. Endocrinol. Metab.202266680080710.20945/2359‑399700000051336155119
    [Google Scholar]
  11. RadwanA.M. FatohS.A. MassoudA. ToussonE. Effectiveness of Curcumin nanoparticles in rat liver fibrosis caused by thioacetamide.Environ. Toxicol.202439138839710.1002/tox.2398437782692
    [Google Scholar]
  12. JagetiaG.C. AggarwalB.B. “Spicing up” of the immune system by Curcumin.J. Clin. Immunol.2007271193510.1007/s10875‑006‑9066‑717211725
    [Google Scholar]
  13. ZengL. YangT. YangK. YuG. LiJ. XiangW. ChenH. Efficacy and safety of Curcumin and Curcuma longa extract in the treatment of arthritis: A systematic review and meta-analysis of randomized controlled trial.Front. Immunol.20221389182210.3389/fimmu.2022.89182235935936
    [Google Scholar]
  14. KouH. HuangL. JinM. HeQ. ZhangR. MaJ. Effect of Curcumin on Rheumatoid arthritis: A systematic review and meta-analysis.Front. Immunol.202314112165510.3389/fimmu.2023.112165537325651
    [Google Scholar]
  15. RadS.J. RayessY.E. RizkA.A. SadakaC. ZgheibR. ZamW. SestitoS. RapposelliS. SkocińskaN.K. ZielińskaD. SalehiB. SetzerW.N. DosokyN.S. TaheriY. BeyrouthyE.M. MartorellM. OstranderE.A. SuleriaH.A.R. ChoW.C. MaroyiA. MartinsN. Turmeric and its major compound Curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications.Front. Pharmacol.2020110102110.3389/fphar.2020.0102133041781
    [Google Scholar]
  16. PankninT.M. HoweC.L. HauerM. BucchireddigariB. RossiA.M. FunkJ.L. Curcumin supplementation and human disease: A scoping review of clinical trials.Int. J. Mol. Sci.2023245447610.3390/ijms2405447636901908
    [Google Scholar]
  17. BhatA. MahalakshmiA.M. RayB. TuladharS. HediyalT.A. ManthiannemE. PadamatiJ. ChandraR. ChidambaramS.B. SakharkarM.K. Benefits of Curcumin in brain disorders.Biofactors201945566668910.1002/biof.153331185140
    [Google Scholar]
  18. SadeghiM. DehnaviS. AsadiradA. XuS. MajeedM. JamialahmadiT. JohnstonT.P. SahebkarA. Curcumin and chemokines: Mechanism of action and therapeutic potential in inflammatory diseases.Inflammopharmacol.20233131069109310.1007/s10787‑023‑01136‑w36997729
    [Google Scholar]
  19. HasanzadehS. ReadM.I. BlandA.R. MajeedM. JamialahmadiT. SahebkarA. Curcumin: An inflammasome silencer.Pharmacol. Res.202015910492110.1016/j.phrs.2020.10492132464325
    [Google Scholar]
  20. LinX. BaiD. WeiZ. ZhangY. HuangY. DengH. HuangX. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway.PLoS One2019145e021671110.1371/journal.pone.021671131112588
    [Google Scholar]
  21. ValléeA. LecarpentierY. ValléeJ.N. Curcumin: A therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway.J. Exp. Clin. Cancer Res.201938132310.1186/s13046‑019‑1320‑y31331376
    [Google Scholar]
  22. SathyabhamaM. DharshiniP.L.C. KarthikeyanA. KalaiselviS. MinT. The credible role of Curcumin in oxidative stress-mediated mitochondrial dysfunction in mammals.Biomolecules20221210140510.3390/biom1210140536291614
    [Google Scholar]
  23. KhaliliF.A. OstadrahimiA. MirghafourvandM. AlmanghadimA.K. DoustiS. IranshahiA.M. Clinical efficacy of Curcumin and vitamin E on inflammatory-oxidative stress biomarkers and primary symptoms of menopause in healthy postmenopausal women: A triple-blind randomized controlled trial.J. Nutr. Metab.2022202211210.1155/2022/633971535719707
    [Google Scholar]
  24. EsmaealzadehN. MiriM.S. MavaddatH. PeyrovinasabA. ZargarG.S. KabiriS.S. RazaviS.M. AbdolghaffariA.H. The regulating effect of Curcumin on NF-κB pathway in neurodegenerative diseases: A review of the underlying mechanisms.Inflammopharmacol.20243242125215110.1007/s10787‑024‑01492‑138769198
    [Google Scholar]
  25. ReuterS. GuptaS.C. ParkB. GoelA. AggarwalB.B. Epigenetic changes induced by Curcumin and other natural compounds.Genes Nutr.2011629310810.1007/s12263‑011‑0222‑121516481
    [Google Scholar]
  26. BoyanapalliS.S.S. KongA.N.T. “Curcumin, the king of spices”: Epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases.Curr. Pharmacol. Rep.20151212913910.1007/s40495‑015‑0018‑x26457241
    [Google Scholar]
  27. AbdelazizN. TherachiyilL. SadidaH.Q. AliA.M. KhanO.S. SinghM. KhanA.Q. AkilA.S.A.S. BhatA.A. UddinS. Epigenetic inhibitors and their role in cancer therapy.Int. Rev. Cell Mol. Biol.202338021125110.1016/bs.ircmb.2023.04.00537657859
    [Google Scholar]
  28. HassanF. RehmanM.S. KhanM.S. AliM.A. JavedA. NawazA. YangC. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects.Front. Genet.20191051410.3389/fgene.2019.0051431214247
    [Google Scholar]
  29. AnandP. KunnumakkaraA.B. NewmanR.A. AggarwalB.B. Bioavailability of Curcumin: Problems and promises.Mol. Pharm.20074680781810.1021/mp700113r17999464
    [Google Scholar]
  30. CasD.M. GhidoniR. Dietary Curcumin: Correlation between bioavailability and health potential.Nutrients2019119214710.3390/nu1109214731500361
    [Google Scholar]
  31. HeidariH. BagherniyaM. MajeedM. SathyapalanT. JamialahmadiT. SahebkarA. Curcumin-piperine co-supplementation and human health: A comprehensive review of preclinical and clinical studies.Phytother. Res.20233741462148710.1002/ptr.773736720711
    [Google Scholar]
  32. HewlingsS. KalmanD. Curcumin: A review of its effects on human health.Foods20176109210.3390/foods610009229065496
    [Google Scholar]
  33. UedaN. TakasawaK. Impact of inflammation on ferritin, hepcidin and the management of iron deficiency anemia in chronic kidney disease.Nutrients2018109117310.3390/nu1009117330150549
    [Google Scholar]
  34. BrayC. BellL.N. LiangH. HaykalR. KaiksowF. MazzaJ.J. YaleS.H. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine.WMJ2016115631732129094869
    [Google Scholar]
  35. LitaoM.K.S. KamatD. Erythrocyte sedimentation rate and C-reactive protein: How best to use them in clinical practice.Pediatr. Ann.2014431041742010.3928/00904481‑20140924‑1025290132
    [Google Scholar]
  36. BohulaE.A. GiuglianoR.P. LeiterL.A. VermaS. ParkJ.G. SeverP.S. PinedaL.A. HonarpourN. WangH. MurphyS.A. KeechA. PedersenT.R. SabatineM.S. Inflammatory and cholesterol risk in the fourier trial.Circulation2018138213114010.1161/CIRCULATIONAHA.118.03403229530884
    [Google Scholar]
  37. KroonM.A.G.M. LaarhovenV.H.W.M. SwartE.L. KemperE.M. TellingenV.O. A validated HPLC-MS/MS method for simultaneously analyzing Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetra-hydrocurcumin and piperine in human plasma, urine or feces.Heliyon202395e1554010.1016/j.heliyon.2023.e1554037131436
    [Google Scholar]
  38. GuptaS.C. PatchvaS. AggarwalB.B. Therapeutic roles of Curcumin: Lessons learned from clinical trials.AAPS J.201315119521810.1208/s12248‑012‑9432‑823143785
    [Google Scholar]
  39. LiuW. ZhaiY. HengX. CheF.Y. ChenW. SunD. ZhaiG. Oral bioavailability of Curcumin: Problems and advancements.J. Drug Target.201624869470210.3109/1061186X.2016.115788326942997
    [Google Scholar]
  40. RaczL.Z. RaczC.P. PopL.C. TomoaiaG. MocanuA. BarbuI. SárköziM. RomanI. AvramA. CotiselT.M. TomaV.A. Strategies for improving bioavailability, bioactivity, and physical-chemical behavior of Curcumin.Molecules20222720685410.3390/molecules2720685436296447
    [Google Scholar]
  41. IparV.S. DsouzaA. DevarajanP.V. Enhancing Curcumin oral bioavailability through nanoformulations.Eur. J. Drug Metab. Pharmacokinet.201944445948010.1007/s13318‑019‑00545‑z30771095
    [Google Scholar]
  42. ShobaG. JoyD. JosephT. MajeedM. RajendranR. SrinivasP. Influence of piperine on the pharmacokinetics of Curcumin in animals and human volunteers.Planta Med.199864435335610.1055/s‑2006‑9574509619120
    [Google Scholar]
  43. MetzlerM. PfeifferE. SchulzS.I. DempeJ.S. Curcumin uptake and metabolism.Biofactors2013391142010.1002/biof.104222996406
    [Google Scholar]
  44. WangY. LiY. HeL. MaoB. ChenS. MartinezV. GuoX. ShenX. LiuB. LiC. Commensal flora triggered target anti-inflammation of alginate-curcumin micelle for ulcerative colitis treatment.Colloids Surf. B Biointerfaces202120311175610.1016/j.colsurfb.2021.11175633865087
    [Google Scholar]
  45. HanJ. OhJ. IhmS.H. LeeM. Peptide micelle-mediated Curcumin delivery for protection of islet β-cells under hypoxia.J. Drug Target.201624761862310.3109/1061186X.2015.113222026768151
    [Google Scholar]
  46. ZhangZ. ZhangX. Curcumin loading on alginate nano-micelle for anti-infection and colonic wound healing.J. Biomed. Nanotechnol.20211761160116910.1166/jbn.2021.308934167629
    [Google Scholar]
  47. HuangL. HuangX.H. YangX. HuJ.Q. ZhuY.Z. YanP.Y. XieY. Novel nano-drug delivery system for natural products and their application.Pharmacol. Res.202420110710010.1016/j.phrs.2024.10710038341055
    [Google Scholar]
  48. FurmanD. CampisiJ. VerdinE. BastosC.P. TargS. FranceschiC. FerrucciL. GilroyD.W. FasanoA. MillerG.W. MillerA.H. MantovaniA. WeyandC.M. BarzilaiN. GoronzyJ.J. RandoT.A. EffrosR.B. LuciaA. KleinstreuerN. SlavichG.M. Chronic inflammation in the etiology of disease across the life span.Nat. Med.201925121822183210.1038/s41591‑019‑0675‑031806905
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303329562241116045410
Loading
/content/journals/emiddt/10.2174/0118715303329562241116045410
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keyword(s): Anti-inflammatory; cholesterol LDL; CRP; ESR; Ferritin; PCR; turmeric
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test