Skip to content
2000
image of The Potential Systemic Anti-Inflammatory Effect of Turmeric Dried Extract

Abstract

Background

Curcumin is a polyphenolic compound derived from the food spice turmeric that has received interest from the medical and scientific world for its role in the management of several conditions. Clinical studies, in humans, have shown that ingested is safe even at high doses (12 g/day), but it has poor bioavailability primarily due to poor absorption and rapid metabolism and elimination. Several strategies have been implemented to improve the bioavailability of Curcumin, for example, the combination of piperine in a complex with Curcumin, or the usage of formulations with phospholipid or liposomal complexes.

Objective

The present work aims to explore and compare the systemic anti-inflammatory effects of two different types of Curcumin: a traditional fat-soluble formulation (95% Curcumin) and an innovative standardized reconstituted water-soluble one (Curcuin), made in micelles in aqueous solution.

Methods

Research was conducted on 30 patients, 15 patients were treated with turmeric (., rhizome) dried extract titled 95% (Curcumin 425mg/day) conjugated with piperine, and 15 patients were treated with (turmeric 286 mg dried extract titled 35%; Curcuminoids 100 mg/day, standardized water-soluble) made in micelles in highly absorbed aqueous solution. We considered the quantitative variations of laboratory parameters: Erythrocyte Sedimentation Rate (ESR), C-reactive protein (CRP), Ferritin (24 to 336 ng/mL for adult males), and cholesterol LDL.

Results and Discussion

Patients treated with dried extract titled 95% Curcumin, for 90 days, show a lower value of ESR, CRP, Ferritin, and LDL cholesterol compared with the same laboratory parameters before the introduction of into the diet. Also, patients treated with Curcuin report a lower value of ESR, CRP, Ferritin, and LDL cholesterol after the introduction of turmeric dried extract in the diet, but with a major significance compared with those obtained with 95% conjugated with piperine.

Conclusion

As we had hypothesized, both turmeric-derived extracts have successfully reduced ESR, CRP, Ferritin, and cholesterol LDL values, exerting an anti-inflammatory action and anti-cholesterolemic action. These results suggest a possible use of and in particular Curcuin as a coadjuvant for the treatment of inflammatory disease and to decrease cholesterol levels. However, additional investigation is needed to resolve doubts regarding dosage form, dose, and medication frequency.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303329562241116045410
2025-01-08
2025-10-31
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/10.2174/0118715303329562241116045410/BMS-EMIDDT-2024-218.html?itemId=/content/journals/emiddt/10.2174/0118715303329562241116045410&mimeType=html&fmt=ahah

References

  1. Smirnova E. Moniruzzaman M. Chin S. Sureshbabu A. Karthikeyan A. Do K. Min T. A review of the role of Curcumin in metal induced toxicity. Antioxidants 2023 12 2 243 10.3390/antiox12020243 36829803
    [Google Scholar]
  2. Nelson K.M. Dahlin J.L. Bisson J. Graham J. Pauli G.F. Walters M.A. The essential medicinal chemistry of Curcumin. J. Med. Chem. 2017 60 5 1620 1637 10.1021/acs.jmedchem.6b00975 28074653
    [Google Scholar]
  3. Tamegart L. Abbaoui A. Laabbar W. Oukhrib M. Bouyatas M.M. Gamrani H. Study of the neurochemical alterations produced by acute and subchronic pb-exposure in meriones shawi: Immunohistochemical study of reissner’s fiber secretion by the subcommissural organ after Curcumin-III treatment. J. Trace Elem. Med. Biol. 2022 71 126933 10.1016/j.jtemb.2022.126933 35066456
    [Google Scholar]
  4. Hartogh D.D.J. Gabriel A. Tsiani E. Antidiabetic properties of Curcumin II: Evidence from in vivo studies. Nutrients 2019 12 1 58 10.3390/nu12010058 31881654
    [Google Scholar]
  5. Abrahams S. Haylett W.L. Johnson G. Carr J.A. Bardien S. Antioxidant effects of Curcumin in models of neurodegeneration, aging, oxidative and nitrosative stress: A review. Neuroscience 2019 406 1 21 10.1016/j.neuroscience.2019.02.020 30825584
    [Google Scholar]
  6. Zhang W. Chen Y. Yang F. Zhang H. Su T. Wang J. Zhang Y. Song X. Antiviral effect of palmatine against infectious bronchitis virus through regulation of NF-κB/IRF7/JAK-STAT signalling pathway and apoptosis. Br. Poult. Sci. 2024 65 2 119 128 10.1080/00071668.2023.2296929 38166582
    [Google Scholar]
  7. Wang W. Li M. Wang L. Chen L. Goh B.C. Curcumin in cancer therapy: Exploring molecular mechanisms and overcoming clinical challenges. Cancer Lett. 2023 570 216332 10.1016/j.canlet.2023.216332 37541540
    [Google Scholar]
  8. Cai Y. Huang C. Zhou M. Xu S. Xie Y. Gao S. Yang Y. Deng Z. Zhang L. Shu J. Yan T. Wan C.C. Role of Curcumin in the treatment of acute kidney injury: Research challenges and opportunities. Phytomedicine 2022 104 154306 10.1016/j.phymed.2022.154306 35809376
    [Google Scholar]
  9. Ganjali S. Blesso C.N. Banach M. Pirro M. Majeed M. Sahebkar A. Effects of Curcumin on HDL functionality. Pharmacol. Res. 2017 119 208 218 10.1016/j.phrs.2017.02.008 28192240
    [Google Scholar]
  10. Reis P.C.S.G. Alves A.G.P. Guillo L.A. Sousa M.A. Trindade N.R. Silva M.S. Curcumin supplementation reduces blood glucose and serum lipids of Brazilian women with high waist circumference: A randomized clinical trial. Arch. Endocrinol. Metab. 2022 66 6 800 807 10.20945/2359‑3997000000513 36155119
    [Google Scholar]
  11. Radwan A.M. Fatoh S.A. Massoud A. Tousson E. Effectiveness of Curcumin nanoparticles in rat liver fibrosis caused by thioacetamide. Environ. Toxicol. 2024 39 1 388 397 10.1002/tox.23984 37782692
    [Google Scholar]
  12. Jagetia G.C. Aggarwal B.B. “Spicing up” of the immune system by Curcumin. J. Clin. Immunol. 2007 27 1 19 35 10.1007/s10875‑006‑9066‑7 17211725
    [Google Scholar]
  13. Zeng L. Yang T. Yang K. Yu G. Li J. Xiang W. Chen H. Efficacy and safety of Curcumin and Curcuma longa extract in the treatment of arthritis: A systematic review and meta-analysis of randomized controlled trial. Front. Immunol. 2022 13 891822 10.3389/fimmu.2022.891822 35935936
    [Google Scholar]
  14. Kou H. Huang L. Jin M. He Q. Zhang R. Ma J. Effect of Curcumin on Rheumatoid arthritis: A systematic review and meta-analysis. Front. Immunol. 2023 14 1121655 10.3389/fimmu.2023.1121655 37325651
    [Google Scholar]
  15. Rad S.J. Rayess Y.E. Rizk A.A. Sadaka C. Zgheib R. Zam W. Sestito S. Rapposelli S. Skocińska N.K. Zielińska D. Salehi B. Setzer W.N. Dosoky N.S. Taheri Y. Beyrouthy E.M. Martorell M. Ostrander E.A. Suleria H.A.R. Cho W.C. Maroyi A. Martins N. Turmeric and its major compound Curcumin on health: Bioactive effects and safety profiles for food, pharmaceutical, biotechnological and medicinal applications. Front. Pharmacol. 2020 11 01021 10.3389/fphar.2020.01021 33041781
    [Google Scholar]
  16. Panknin T.M. Howe C.L. Hauer M. Bucchireddigari B. Rossi A.M. Funk J.L. Curcumin supplementation and human disease: A scoping review of clinical trials. Int. J. Mol. Sci. 2023 24 5 4476 10.3390/ijms24054476 36901908
    [Google Scholar]
  17. Bhat A. Mahalakshmi A.M. Ray B. Tuladhar S. Hediyal T.A. Manthiannem E. Padamati J. Chandra R. Chidambaram S.B. Sakharkar M.K. Benefits of Curcumin in brain disorders. Biofactors 2019 45 5 666 689 10.1002/biof.1533 31185140
    [Google Scholar]
  18. Sadeghi M. Dehnavi S. Asadirad A. Xu S. Majeed M. Jamialahmadi T. Johnston T.P. Sahebkar A. Curcumin and chemokines: Mechanism of action and therapeutic potential in inflammatory diseases. Inflammopharmacol. 2023 31 3 1069 1093 10.1007/s10787‑023‑01136‑w 36997729
    [Google Scholar]
  19. Hasanzadeh S. Read M.I. Bland A.R. Majeed M. Jamialahmadi T. Sahebkar A. Curcumin: An inflammasome silencer. Pharmacol. Res. 2020 159 104921 10.1016/j.phrs.2020.104921 32464325
    [Google Scholar]
  20. Lin X. Bai D. Wei Z. Zhang Y. Huang Y. Deng H. Huang X. Curcumin attenuates oxidative stress in RAW264.7 cells by increasing the activity of antioxidant enzymes and activating the Nrf2-Keap1 pathway. PLoS One 2019 14 5 e0216711 10.1371/journal.pone.0216711 31112588
    [Google Scholar]
  21. Vallée A. Lecarpentier Y. Vallée J.N. Curcumin: A therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J. Exp. Clin. Cancer Res. 2019 38 1 323 10.1186/s13046‑019‑1320‑y 31331376
    [Google Scholar]
  22. Sathyabhama M. Dharshini P.L.C. Karthikeyan A. Kalaiselvi S. Min T. The credible role of Curcumin in oxidative stress-mediated mitochondrial dysfunction in mammals. Biomolecules 2022 12 10 1405 10.3390/biom12101405 36291614
    [Google Scholar]
  23. Khalili F.A. Ostadrahimi A. Mirghafourvand M. Almanghadim A.K. Dousti S. Iranshahi A.M. Clinical efficacy of Curcumin and vitamin E on inflammatory-oxidative stress biomarkers and primary symptoms of menopause in healthy postmenopausal women: A triple-blind randomized controlled trial. J. Nutr. Metab. 2022 2022 1 12 10.1155/2022/6339715 35719707
    [Google Scholar]
  24. Esmaealzadeh N. Miri M.S. Mavaddat H. Peyrovinasab A. Zargar G.S. Kabiri S.S. Razavi S.M. Abdolghaffari A.H. The regulating effect of Curcumin on NF-κB pathway in neurodegenerative diseases: A review of the underlying mechanisms. Inflammopharmacol. 2024 32 4 2125 2151 10.1007/s10787‑024‑01492‑1 38769198
    [Google Scholar]
  25. Reuter S. Gupta S.C. Park B. Goel A. Aggarwal B.B. Epigenetic changes induced by Curcumin and other natural compounds. Genes Nutr. 2011 6 2 93 108 10.1007/s12263‑011‑0222‑1 21516481
    [Google Scholar]
  26. Boyanapalli S.S.S. Kong A.N.T. “Curcumin, the king of spices”: Epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Curr. Pharmacol. Rep. 2015 1 2 129 139 10.1007/s40495‑015‑0018‑x 26457241
    [Google Scholar]
  27. Abdelaziz N. Therachiyil L. Sadida H.Q. Ali A.M. Khan O.S. Singh M. Khan A.Q. Akil A.S.A.S. Bhat A.A. Uddin S. Epigenetic inhibitors and their role in cancer therapy. Int. Rev. Cell Mol. Biol. 2023 380 211 251 10.1016/bs.ircmb.2023.04.005 37657859
    [Google Scholar]
  28. Hassan F. Rehman M.S. Khan M.S. Ali M.A. Javed A. Nawaz A. Yang C. Curcumin as an alternative epigenetic modulator: Mechanism of action and potential effects. Front. Genet. 2019 10 514 10.3389/fgene.2019.00514 31214247
    [Google Scholar]
  29. Anand P. Kunnumakkara A.B. Newman R.A. Aggarwal B.B. Bioavailability of Curcumin: Problems and promises. Mol. Pharm. 2007 4 6 807 818 10.1021/mp700113r 17999464
    [Google Scholar]
  30. Cas D.M. Ghidoni R. Dietary Curcumin: Correlation between bioavailability and health potential. Nutrients 2019 11 9 2147 10.3390/nu11092147 31500361
    [Google Scholar]
  31. Heidari H. Bagherniya M. Majeed M. Sathyapalan T. Jamialahmadi T. Sahebkar A. Curcumin-piperine co-supplementation and human health: A comprehensive review of preclinical and clinical studies. Phytother. Res. 2023 37 4 1462 1487 10.1002/ptr.7737 36720711
    [Google Scholar]
  32. Hewlings S. Kalman D. Curcumin: A review of its effects on human health. Foods 2017 6 10 92 10.3390/foods6100092 29065496
    [Google Scholar]
  33. Ueda N. Takasawa K. Impact of inflammation on ferritin, hepcidin and the management of iron deficiency anemia in chronic kidney disease. Nutrients 2018 10 9 1173 10.3390/nu10091173 30150549
    [Google Scholar]
  34. Bray C. Bell L.N. Liang H. Haykal R. Kaiksow F. Mazza J.J. Yale S.H. Erythrocyte sedimentation rate and C-reactive protein measurements and their relevance in clinical medicine. WMJ 2016 115 6 317 321 29094869
    [Google Scholar]
  35. Litao M.K.S. Kamat D. Erythrocyte sedimentation rate and C-reactive protein: How best to use them in clinical practice. Pediatr. Ann. 2014 43 10 417 420 10.3928/00904481‑20140924‑10 25290132
    [Google Scholar]
  36. Bohula E.A. Giugliano R.P. Leiter L.A. Verma S. Park J.G. Sever P.S. Pineda L.A. Honarpour N. Wang H. Murphy S.A. Keech A. Pedersen T.R. Sabatine M.S. Inflammatory and cholesterol risk in the fourier trial. Circulation 2018 138 2 131 140 10.1161/CIRCULATIONAHA.118.034032 29530884
    [Google Scholar]
  37. Kroon M.A.G.M. Laarhoven V.H.W.M. Swart E.L. Kemper E.M. Tellingen V.O. A validated HPLC-MS/MS method for simultaneously analyzing Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetra-hydrocurcumin and piperine in human plasma, urine or feces. Heliyon 2023 9 5 e15540 10.1016/j.heliyon.2023.e15540 37131436
    [Google Scholar]
  38. Gupta S.C. Patchva S. Aggarwal B.B. Therapeutic roles of Curcumin: Lessons learned from clinical trials. AAPS J. 2013 15 1 195 218 10.1208/s12248‑012‑9432‑8 23143785
    [Google Scholar]
  39. Liu W. Zhai Y. Heng X. Che F.Y. Chen W. Sun D. Zhai G. Oral bioavailability of Curcumin: Problems and advancements. J. Drug Target. 2016 24 8 694 702 10.3109/1061186X.2016.1157883 26942997
    [Google Scholar]
  40. Racz L.Z. Racz C.P. Pop L.C. Tomoaia G. Mocanu A. Barbu I. Sárközi M. Roman I. Avram A. Cotisel T.M. Toma V.A. Strategies for improving bioavailability, bioactivity, and physical-chemical behavior of Curcumin. Molecules 2022 27 20 6854 10.3390/molecules27206854 36296447
    [Google Scholar]
  41. Ipar V.S. Dsouza A. Devarajan P.V. Enhancing Curcumin oral bioavailability through nanoformulations. Eur. J. Drug Metab. Pharmacokinet. 2019 44 4 459 480 10.1007/s13318‑019‑00545‑z 30771095
    [Google Scholar]
  42. Shoba G. Joy D. Joseph T. Majeed M. Rajendran R. Srinivas P. Influence of piperine on the pharmacokinetics of Curcumin in animals and human volunteers. Planta Med. 1998 64 4 353 356 10.1055/s‑2006‑957450 9619120
    [Google Scholar]
  43. Metzler M. Pfeiffer E. Schulz S.I. Dempe J.S. Curcumin uptake and metabolism. Biofactors 2013 39 1 14 20 10.1002/biof.1042 22996406
    [Google Scholar]
  44. Wang Y. Li Y. He L. Mao B. Chen S. Martinez V. Guo X. Shen X. Liu B. Li C. Commensal flora triggered target anti-inflammation of alginate-curcumin micelle for ulcerative colitis treatment. Colloids Surf. B Biointerfaces 2021 203 111756 10.1016/j.colsurfb.2021.111756 33865087
    [Google Scholar]
  45. Han J. Oh J. Ihm S.H. Lee M. Peptide micelle-mediated Curcumin delivery for protection of islet β-cells under hypoxia. J. Drug Target. 2016 24 7 618 623 10.3109/1061186X.2015.1132220 26768151
    [Google Scholar]
  46. Zhang Z. Zhang X. Curcumin loading on alginate nano-micelle for anti-infection and colonic wound healing. J. Biomed. Nanotechnol. 2021 17 6 1160 1169 10.1166/jbn.2021.3089 34167629
    [Google Scholar]
  47. Huang L. Huang X.H. Yang X. Hu J.Q. Zhu Y.Z. Yan P.Y. Xie Y. Novel nano-drug delivery system for natural products and their application. Pharmacol. Res. 2024 201 107100 10.1016/j.phrs.2024.107100 38341055
    [Google Scholar]
  48. Furman D. Campisi J. Verdin E. Bastos C.P. Targ S. Franceschi C. Ferrucci L. Gilroy D.W. Fasano A. Miller G.W. Miller A.H. Mantovani A. Weyand C.M. Barzilai N. Goronzy J.J. Rando T.A. Effros R.B. Lucia A. Kleinstreuer N. Slavich G.M. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 2019 25 12 1822 1832 10.1038/s41591‑019‑0675‑0 31806905
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303329562241116045410
Loading
/content/journals/emiddt/10.2174/0118715303329562241116045410
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: PCR ; cholesterol LDL ; Anti-inflammatory ; Ferritin ; ESR ; CRP ; turmeric
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test