Skip to content
2000
Volume 25, Issue 9
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Aims and objectives

The purpose of this study was to comprehensively evaluate the association of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitors (statins) with neurological adverse events using the US Food and Drug Administration Adverse Event Reporting System (FAERS) database, with the aim of guiding the rational use of statins.

Methods

The number and clinical characteristics of adverse events (AEs) to statins in the FAERS database between 2012 and March, 2023, were extracted. Neurological AEs were defined by the system organ classes (SOCs) of “Nervous System Disorders (10029205)” and the corresponding PT. Disproportionality was calculated using the reporting dominance ratio (ROR), proportional reporting ratio (PRR), and information component (IC).

Results

Between January, 2012 and March, 2023, a total of 90,357 AEs were reported for the three statins (atorvastatin, resuvastatin, and simvastatin). The majority of reports on AEs came from the United States (n = 7284). A total of 8409 reports described neurological AEs following the use of the three statins, with atorvastatin accounting for more than half of the reports (n = 4430). The mean age of patients who developed neurological AEs was 55 years and older. The prevalence was similar in female patients (2230/4480) and male patients (1999/4480). Disproportionate analyses showed that at the SOC level, only the correlation between atorvastatin and neurological AEs suggested a positive signal (ROR: 9.77 (9.56-9.99); IC: 3.28; PRR (χ2): 9.76 (16.07)) and in total, there were 32 PTs with a positive signal. The median time for neurological AEs was 71 days (IQR: 14-559 days), and the most common AEs were other serious effects (important medical event) (OT) (n = 2283) and hospitalization (HO) (n = 715).

Conclusion

This study suggests that atorvastatin may be associated with an increased risk of neurological AEs. This study provides realistic evidence of the potential risk of statin-related adverse events.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303324204240905111835
2024-10-28
2025-10-24
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/25/9/EMIDDT-25-9-07.html?itemId=/content/journals/emiddt/10.2174/0118715303324204240905111835&mimeType=html&fmt=ahah

References

  1. GranatM.M. Eifler-ZydelJ. KolmasJ. Statins—their role in bone tissue metabolism and local applications with different carriers.Int. J. Mol. Sci.2024254237810.3390/ijms2504237838397055
    [Google Scholar]
  2. RayK.K. NichollsS.J. LiN. LouieM.J. BrennanD. LincoffA.M. NissenS.E. Efficacy and safety of bempedoic acid among patients with and without diabetes: Prespecified analysis of the CLEAR Outcomes randomised trial.Lancet Diabetes Endocrinol.2024121192810.1016/S2213‑8587(23)00316‑938061370
    [Google Scholar]
  3. DTB TeamEzetimibe plus moderate-intensity statin versus high-intensity statin.Drug Ther. Bull.20236133810.1136/dtb.2023.00000836813278
    [Google Scholar]
  4. WalkerA.J. ZhuJ. ThomaF. MarroquinO. MakaniA. GulatiM. GianosE. ViraniS.S. RodriguezF. ReisS.E. BallantyneC. MulukutlaS. SaeedA. Statin utilization and cardiovascular outcomes in a real-world primary prevention cohort of older adults.Am. J. Prevent. Cardiol.20241810066410.1016/j.ajpc.2024.10066438665251
    [Google Scholar]
  5. QiuJ. WeiL. SuY. TangY. PengG. WuY. HeY. LiuH. GuoW. WuZ. XuP. MoM. Lipid metabolism disorder in cerebrospinal fluid related to Parkinson’s disease.Brain Sci.2023138116610.3390/brainsci1308116637626522
    [Google Scholar]
  6. LitvinovaO. YeungA.W.K. HammerleF.P. MickaelM.E. MatinM. Kletecka-PulkerM. AtanasovA.G. WillschkeH. Digital technology applications in the management of adverse drug reactions: Bibliometric analysis.Pharmaceuticals (Basel)202417339510.3390/ph1703039538543181
    [Google Scholar]
  7. RaschiE. SalvoF. BateA. De PontiF. PoluzziE. TuccoriM. van PuijenbroekE. JoshiN. KhouriC. Peer review in pharmacovigilance: Lens on disproportionality analysis.Drug Saf.202447760160510.1007/s40264‑024‑01419‑338498258
    [Google Scholar]
  8. SalvoF. MicallefJ. LahouegueA. ChouchanaL. LétinierL. FaillieJ.L. ParienteA. Will the future of pharmacovigilance be more automated?Expert Opin. Drug Saf.202322754154810.1080/14740338.2023.222709137435796
    [Google Scholar]
  9. JungJ. ShinS. ParkJ. LeeK. ChoiH.Y. Hypotensive and vasorelaxant effects of sanguisorbae radix ethanol extract in spontaneously hypertensive and sprague dawley rats.Nutrients20231521451010.3390/nu1521451037960162
    [Google Scholar]
  10. LiuM. GuL. ZhangY. ZhouH. WangY. XuZ.X. A real- world disproportionality analysis of mesalazine data mining of the public version of FDA adverse event reporting system.Front. Pharmacol.202415129097510.3389/fphar.2024.129097538357304
    [Google Scholar]
  11. NacchiaA. FrancoA. CicioneA. RioloS. SantoroG. RomagnoliM. SarcinelliL. FiasconaroD. GhezzoN. GalloG. TemaG. PastoreA.L. SalhiY.A. FuschiA. CarboneA. FrancoG. LombardoR. TubaroA. De NunzioC. Medications mostly associated with ejaculatory disorders: Assessment of the eudra-vigilance and food and drug administration pharmacovigilance databases entries.Urology2024185596410.1016/j.urology.2023.12.02138331221
    [Google Scholar]
  12. LuH. ZhangY. LiuP. Identifying new safety risk of human serum albumin: A retrospective study of real-world data.Front. Pharmacol.202415131990010.3389/fphar.2024.131990038292942
    [Google Scholar]
  13. BattiniV. CarnovaleC. ClementiE. SessaM. Ubrogepant and rimegepant: Signal detection using spontaneous reports of adverse events from the Food and Drug Administration Adverse Event Reporting System.Expert Opin. Drug Saf.202322111105111210.1080/14740338.2023.222395837293948
    [Google Scholar]
  14. ZouF. ZhuC. LouS. CuiZ. WangD. OuY. WangL. ChenJ. LanY. A real-world pharmacovigilance study of mepolizumab in the FDA adverse event reporting system (FAERS) database.Front. Pharmacol.202314132045810.3389/fphar.2023.132045838186645
    [Google Scholar]
  15. Sacchi de Camargo CorreiaG. PaiT. LiS. ConnorD. ZhaoY. LouY. ManochakianR. Immune-related adverse events in patients with lung cancer.Curr. Oncol. Rep.202325111259127510.1007/s11912‑023‑01462‑w37782426
    [Google Scholar]
  16. AtaeiS. MakkiB. AyubiE. EmamiS. Medication discrepancies identified by medication reconciliation among patients with acute coronary syndrome.Naunyn-Schmiedeberg's Archives of PharmacologyCham Springer202410.1007/s00210‑024‑03114‑738695910
    [Google Scholar]
  17. ErnstM. FolkertsA.K. GollanR. LiekerE. Caro-ValenzuelaJ. AdamsA. CrynsN. MonsefI. DresenA. RohegerM. EggersC. SkoetzN. KalbeE. Physical exercise for people with Parkinson’s disease: A systematic review and network meta- analysis.Cochrane Database Syst. Rev.202311CD01385636602886
    [Google Scholar]
  18. YangH. WanZ. ChenM. ZhangX. CuiW. ZhaoB. A real-world data analysis of topotecan in the FDA Adverse Event Reporting System (FAERS) database.Expert Opin. Drug Metab. Toxicol.202319421722310.1080/17425255.2023.221939037243615
    [Google Scholar]
  19. van den OuwelandF. CharpentierN. TüreciÖ. RizziR. MensaF.J. LindemannC. PatherS. Safety and reactogenicity of the BNT162b2 COVID-19 vaccine: Development, post-marketing surveillance, and real-world data.Hum. Vaccin. Immunother.2024201231565910.1080/21645515.2024.231565938407186
    [Google Scholar]
  20. MhaimeedO. BurneyZ.A. SchottS.L. KohliP. MarvelF.A. MartinS.S. The importance of LDL-C lowering in atherosclerotic cardiovascular disease prevention: Lower for longer is better.Am. J. Prevent. Cardiol.20241810064910.1016/j.ajpc.2024.10064938576462
    [Google Scholar]
  21. YanZ. XuY. LiK. LiuL. Association between genetically proxied lipid-lowering drug targets, lipid traits, and amyotrophic lateral sclerosis: A mendelian randomization study.Acta Neurol. Belg.2024124248549410.1007/s13760‑023‑02393‑w37889424
    [Google Scholar]
  22. LucaA.C. DavidS.G. DavidA.G. ȚarcăV. PădurețI.A. MîndruD.E. RoșuS.T. RoșuE.V. AdumitrăchioaieiH. BernicJ. CojocaruE. ȚarcăE. Atherosclerosis from newborn to adult—epidemiology, pathological aspects, and risk factors.life (basel)20231310205610.3390/life1310205637895437
    [Google Scholar]
  23. ParkS. HwangD. KangJ. HanJ.K. YangH.M. ParkK.W. KangH.J. KooB.K. ChoJ.M. ChoB.R. AhnS.G. KangS.M. SungJ.H. KimU. LeeN. KimH.S. Efficacy and safety of triple therapy of telmisartan/amlodipine/rosuvastatin in patients with dyslipidemia and hypertension: A multicenter randomized clinical trial.Curr. Ther. Res. Clin. Exp.202410010073510.1016/j.curtheres.2024.10073538380420
    [Google Scholar]
  24. LeeJ.Y. HarneyD.J. TeoJ.D. KwokJ.B. SutherlandG.T. LaranceM. DonA.S. The major TMEM106B dementia risk allele affects TMEM106B protein levels, fibril formation, and myelin lipid homeostasis in the ageing human hippocampus.Mol. Neurodegener.20231816310.1186/s13024‑023‑00650‑337726834
    [Google Scholar]
  25. GangodaD.M. SaiyedM.S. PathanS.R. SharmaK.B. PatelV.A. SachdevaP.D. PatelM.Y. PatelM.D. Enhanced neuroprotective synergy of atorvastatin and magnesium L-threonate in a rat model of alzheimer’s disease induced by aluminum chloride.Cureus20231511e4840010.7759/cureus.4840038074017
    [Google Scholar]
  26. CerfM.E. Maternal and child health, non-communicable diseases and metabolites.Metabolites202313675610.3390/metabo1306075637367913
    [Google Scholar]
  27. DjuricicI. CalderP.C. Omega-3 (n-3) fatty acid–statin interaction: Evidence for a novel therapeutic strategy for atherosclerotic cardiovascular disease.Nutrients202416796210.3390/nu1607096238612996
    [Google Scholar]
  28. WeekmanE.M. JohnsonS.N. RogersC.B. SudduthT.L. XieK. QiaoQ. FardoD.W. BottiglieriT. WilcockD.M. Atorvastatin rescues hyperhomocysteinemia-induced cognitive deficits and neuroinflammatory gene changes.J. Neuroinflammation202320119910.1186/s12974‑023‑02883‑x37658433
    [Google Scholar]
  29. XiongQ. SunH. WangY. XuQ. ZhangY. XuM. ZhaoZ. LiP. WuC. Lipid droplet accumulation in Wdr45-deficient cells caused by impairment of chaperone-mediated autophagic degradation of Fasn.Lipids Health Dis.20242319110.1186/s12944‑024‑02088‑y38539242
    [Google Scholar]
  30. LeeW. KangS.H. KimS.H. LeeS.Y. MyungW. JheonK.H. YoonC.H. SuhJ.W. YounT.J. ChaeI.H. Impact of dementia and drug compliance on patients with acute myocardial infarction.Clin. Cardiol.202346101253125910.1002/clc.2409137488767
    [Google Scholar]
  31. LiuW. YangC. LeiF. HuangX. CaiJ. ChenS. SheZ.G. LiH. Major lipids and lipoprotein levels and risk of blood pressure elevation: A Mendelian Randomisation study.EBioMedicine202410010496410.1016/j.ebiom.2023.10496438181703
    [Google Scholar]
  32. ParkC.H.K. KimD. KimB. RheeS.J. ChoS.J. AhnY.M. Serum lipids as predictive markers for death by suicide.Psychiatry Res.202433511583710.1016/j.psychres.2024.11583738492263
    [Google Scholar]
  33. HuangH.H. MaK.S.K. WuM.Y. HungY.M. TsaoC.H. WeiJ.C.C. WenW.S. WangY.H. HungS.Y. ChaoM.M. Patients with obstructive sleep apnea are at great risk of flavor disorders: A 15-year population-based cohort study.Clin. Oral Investig.202227118319210.1007/s00784‑022‑04707‑336129542
    [Google Scholar]
  34. Al-ShalchiR.F. MohammadF.K. Adverse neurobehavioral changes with reduced blood and brain cholinesterase activities in mice treated with statins.Vet. World2024171828810.14202/vetworld.2024.82‑8838406368
    [Google Scholar]
  35. GoldsteinL.B. TothP.P. Dearborn-TomazosJ.L. GiuglianoR.P. HirshB.J. PeñaJ.M. SelimM.H. WooD. Aggressive LDL-C lowering and the brain: Impact on risk for dementia and hemorrhagic stroke: A Scientific Statement From the American Heart Association.Arterioscler. Thromb. Vasc. Biol.20234310e404e44210.1161/ATV.000000000000016437706297
    [Google Scholar]
  36. GolombB.A. HanJ.H. LangsjoenP.H. DinkelooE. Zemljic-HarpfA.E. Statin use in relation to COVID-19 and other respiratory infections: Muscle and other considerations.J. Clin. Med.20231214465910.3390/jcm1214465937510774
    [Google Scholar]
  37. ShaoM. WangM. WangX. FengX. ZhangL. LvH. SQLE is a promising prognostic and immunological biomarker and correlated with immune Infiltration in Sarcoma.Medicine (Baltimore)20241036e3703010.1097/MD.000000000003703038335381
    [Google Scholar]
  38. LiD. XuT. XieD. WangM. SunS. WangM. ZhangS. YangX. ZhangZ. WangS. KuangM. TangJ. LiuH. HongX. FuG. ZhangW. Efficacy of mobile-based cognitive behavioral therapy on lowering low-density lipoprotein cholesterol levels in patients with atherosclerotic cardiovascular disease: Multicenter, prospective randomized controlled trial.J. Med. Internet Res.202325e4493910.2196/4493937043273
    [Google Scholar]
  39. HayıroğluM.İ. ŞaylıkF. ÇınarT. TokgözoğluL. Meta-analysis of the current research on the relationship between blood lipid levels and the occurrence of atrial fibrillation.Heart Lung Circ.202332101158116610.1016/j.hlc.2023.08.00637741751
    [Google Scholar]
  40. DuW. YanC. WangY. SongC. LiY. TianZ. LiuY. ShenW. Association between dietary magnesium intake and gallstones: The mediating role of atherogenic index of plasma.Lipids Health Dis.20242318210.1186/s12944‑024‑02074‑438509591
    [Google Scholar]
  41. ChbeirS. CarriónV. Resilience by design: How nature, nurture, environment, and microbiome mitigate stress and allostatic load.World J. Psychiatry202313514415910.5498/wjp.v13.i5.14437303926
    [Google Scholar]
  42. BălănescuA. BălănescuP.C. CodreanuI.F. StanI.V. ComaniciV.D. RobuA.M. CiomârtanT. Exploring the role of serum osteonectin and Hsp27 in pediatric MAFLD diagnosis and cardiometabolic health.Nutrients202416686610.3390/nu1606086638542777
    [Google Scholar]
  43. BlanchardJ.W. BulaM. Davila-VelderrainJ. AkayL.A. ZhuL. FrankA. VictorM.B. BonnerJ.M. MathysH. LinY.T. KoT. BennettD.A. CamH.P. KellisM. TsaiL.H. Reconstruction of the human blood–brain barrier in vitro reveals a pathogenic mechanism of APOE4 in pericytes.Nat. Med.202026695296310.1038/s41591‑020‑0886‑432514169
    [Google Scholar]
  44. SeiditaA CusimanoA GiulianoA Oxidative stress as a target for non-pharmacological intervention in MAFLD: Could there be a role for EVOO?Antioxidants (Basel)2024136731
    [Google Scholar]
  45. ArriecheD. OleaA.F. Jara-GutiérrezC. VillenaJ. Pardo-BaezaJ. García-DavisS. ViteriR. TaborgaL. CarrascoH. Ethanolic extract from fruits of Pintoa chilensis, a Chilean Extremophile Plant.Plants20241310140910.3390/plants1310140938794478
    [Google Scholar]
  46. ManolarasI. Del BondioA. GrisoO. ReutenauerL. EisenmannA. HabermannB.H. PuccioH. Mitochondrial dysfunction and calcium dysregulation in COQ8A -ataxia Purkinje neurons are rescued by CoQ10 treatment.Brain202314693836385010.1093/brain/awad09936960552
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303324204240905111835
Loading
/content/journals/emiddt/10.2174/0118715303324204240905111835
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test