Skip to content
2000
Volume 25, Issue 13
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Reactive oxygen species production, inflammation, an elevated serum profile, mitochondrial dysfunction, and up-regulation of proapoptotic mediators are the main mechanisms underlying chemotherapy-related hepatotoxicity, which results in hepatocyte disorders such as hepatitis, steatohepatitis, and fibrosis. The article aims to examine a prospective herbal remedy and its bioactive ingredients in terms of its antioxidant, anti-inflammatory, and anti-apoptotic capabilities, which offer superior protection against liver damage during chemotherapy administration. Plants including , , , , and may have hepatoprotective properties, according to the author. Last but not least, this will give aspiring scientists new knowledge for natural-based development in mitigating liver damage caused by chemotherapy medications.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303319815240819053924
2024-09-23
2025-12-15
Loading full text...

Full text loading...

References

  1. SharmaR. Mapping of global, regional and national incidence, mortality and mortality-to-incidence ratio of lung cancer in 2020 and 2050.Int. J. Clin. Oncol.202227466567510.1007/s10147‑021‑02108‑235020103
    [Google Scholar]
  2. ChandraprasadM.S. DeyA. SwamyM.K. Introduction to cancer and treatment approaches.Paclitaxel.Academic Press2022
    [Google Scholar]
  3. ManaviM.A. Fathian NasabM.H. Mohammad JafariR. DehpourA.R. Mechanisms underlying dose-limiting toxicities of conventional chemotherapeutic agents.J. Chemother.202436813110.1080/1120009X.2023.230021738179685
    [Google Scholar]
  4. SantaK. Healthy diet, grape phytochemicals, and vitamin d: preventing chronic inflammation and keeping good microbiota.Endocr. Metab. Immune Disord. Drug Targets202323677780036263483
    [Google Scholar]
  5. Ruiz de PorrasV. FigolsM. FontA. PardinaE. Curcumin as a hepatoprotective agent against chemotherapy-induced liver injury.Life Sci.202333212211910.1016/j.lfs.2023.12211937741319
    [Google Scholar]
  6. YadavA. TiwariN.N. SrivastavaS.P. TripathiS.M. MishraS. Bioactive compound containing hepatoprotective activity.Curr. Bioact. Compd.2023199e11042321565810.2174/1573407219666230411111304
    [Google Scholar]
  7. MihajlovicM. VinkenM. Mitochondria as the target of hepatotoxicity and drug-induced liver injury: molecular mechanisms and detection methods.Int. J. Mol. Sci.2022236331510.3390/ijms2306331535328737
    [Google Scholar]
  8. ChatterjeeA. SarkarB. Polyphenols and terpenoids derived from Ocimum species as prospective hepatoprotective drug leads: a comprehensive mechanistic review.Phytochem. Rev.2024242087212910.1007/s11101‑024‑09992‑2
    [Google Scholar]
  9. UpaganlawarA. PolshettiwarS. RautS. TagalpallewarA. PandeV. Effective cancer management: Inimitable role of phytochemical based nano-formulations.Curr. Drug Metab.2022231186988110.2174/138920022366622090516224536065928
    [Google Scholar]
  10. YahfoufiN. AlsadiN. JambiM. MatarC. The immunomodulatory and anti-inflammatory role of polyphenols.Nutrients20181011161810.3390/nu1011161830400131
    [Google Scholar]
  11. AbdolahadM. JanmalekiM. MohajerzadehS. AkhavanO. AbbasiS. Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells.Mater. Sci. Eng. C20133331498150510.1016/j.msec.2012.12.05223827601
    [Google Scholar]
  12. Bin HeyatM.B. LaiD. WuK. AkhtarF. SultanaA. TumraniS. TeelhawodB.N. AbbasiR. Amjad KamalM. MuaadA.Y. Role of oxidative stress and inflammation in insomnia sleep disorder and cardiovascular diseases: herbal antioxidants and anti-inflammatory coupled with insomnia detection using machine learning.Curr. Pharm. Des.202228453618363610.2174/138161282966622120116163636464881
    [Google Scholar]
  13. KimE. ChoiA.S. NamH. Drug repositioning of herbal compounds via a machine-learning approach.BMC Bioinformatics201920Suppl. 1024710.1186/s12859‑019‑2811‑831138103
    [Google Scholar]
  14. MinnadyM. JayapalG. PoochiS. NethajiP. MathalaimuthuB. Hepatoprotective effect of indigenous medicinal plants: A review.Indian J. Pharm. Sci.202284511161132
    [Google Scholar]
  15. KumarP. SharmaS. AshawatM.S. PanditV. VermaC.S. SharmaD.K. Silymarin: A Phytoconstituent with significant therapeutic potential - a narrative review.Curr. Drug Ther.2023182899710.2174/1574885518666221227100052
    [Google Scholar]
  16. BhardwajH. VasudevaN. SharmaS. Possible mechanism and pharmacological activities of a Flavolignan Silibinin.Curr. Bioact. Compd.2023197e23012321301510.2174/1573407219666230123122441
    [Google Scholar]
  17. KöksalE. GülçinI. BeyzaS. SarikayaO. BursalE. In vitro antioxidant activity of silymarin.J. Enzyme Inhib. Med. Chem.200924239540510.1080/1475636080218808118830883
    [Google Scholar]
  18. OkiljevićB. MartićN. GovedaricaS. Andrejić VišnjićB. BosanacM. BaljakJ. PavlićB. MilanovićI. RaškovićA. Cardioprotective and hepatoprotective potential of silymarin in paracetamol-induced oxidative stress.Pharmaceutics202416452010.3390/pharmaceutics1604052038675181
    [Google Scholar]
  19. KoltaiT. FliegelL. Role of silymarin in cancer treatment: facts, hypotheses, and questions.J. Evid. Based Integ. Med.2022272515690X21106882610.1177/2515690X211068826
    [Google Scholar]
  20. MasodKhooyM.J. FarasatM. Salehi SalmiM. MirzaeiH. Combinatorial treatment with Silybum marianum essential oil enhances the therapeutic efficacy of a 5-fluorouracil base therapy for hepatocellular carcinoma.Phytother. Res.20233751968198510.1002/ptr.771636788749
    [Google Scholar]
  21. SuraiP.F. SuraiA. Earle-PayneK. Silymarin and inflammation: food for thoughts.Antioxidants20241319810.3390/antiox1301009838247522
    [Google Scholar]
  22. LakshmiN.C. VenkataR.R. Medicobotanical properties of Phyllanthus species (Euphorbiaceae) used by the Aboriginal Adivasis of Eastern Ghats, Andhra Pradesh.Indian J. Tradit. Knowl.2013122326333
    [Google Scholar]
  23. MishraA. MandalS. Hepatoprotective potential of Phyllanthus niruri and Andrographis paniculata in isoniazid-rifampicin induced hepatotoxicity in rats.Indian J. Tuberc.202572218919340518209
    [Google Scholar]
  24. ZhuangX. LiL. LiuT. ZhangR. YangP. WangX. DaiL. Mechanisms of isoniazid and rifampicin-induced liver injury and the effects of natural medicinal ingredients: A review.Front. Pharmacol.202213103781410.3389/fphar.2022.103781436299895
    [Google Scholar]
  25. EzhilarasanD. Antitubercular drugs induced liver injury: an updated insight into molecular mechanisms.Drug Metab. Rev.202355323925310.1080/03602532.2023.221547837218081
    [Google Scholar]
  26. OmoruyiS.I. DelportJ. KangwaT.S. RahmanZ. HusseinA.A. LorkeD.E. EkpoO.E. An update on the bioactivities and health benefits of two plant-derived lignans, phyllanthin and hypophyllanthin.Adv. Tradit. Med.20242712610.1007/s13596‑023‑00738‑7
    [Google Scholar]
  27. TanS. YulandiA. TjandrawinataR.R. Network pharmacology study of Phyllanthus niruri: Potential target proteins and their hepatoprotective activities.J. Appl. Pharm. Sci.2023131223224210.7324/JAPS.2023.146937
    [Google Scholar]
  28. HarikrishnanH. JantanI. AlaganA. HaqueM.A. Modulation of cell signaling pathways by Phyllanthus amarus and its major constituents: potential role in the prevention and treatment of inflammation and cancer.Inflammopharmacology202028111810.1007/s10787‑019‑00671‑931792765
    [Google Scholar]
  29. HasanM. SafariantiS. RamadhaniA.F. KhilfiS. SuryawatiS. HusnaF. Bioactive compounds and in vitro evaluation of phyllanthus niruri extract as antioxidant and antimicrobial activities.Trends Sci.2024212713010.48048/tis.2024.7130
    [Google Scholar]
  30. ManogaranP. BeerakaN.M. PaulrajR.S. SathiyachandranP. ThammaiappaM. Impediment of cancer by dietary plant-derived alkaloids through oxidative stress: implications of PI3K/AKT pathway in apoptosis, autophagy, and ferroptosis.Curr. Top. Med. Chem.2023231086087710.2174/156802662366623011115453736635931
    [Google Scholar]
  31. BhatS. JogheeS. IyerM.S. The therapeutic potential of nelumbo nucifera: a comprehensive review of its phytochemistry and medicinal properties.Int. J. Health Allied Sci.2023124810.55691/2278‑344X.1059
    [Google Scholar]
  32. KakarM.U. KarimH. ShabirG. IqbalI. AkramM. AhmadS. ShafiM. GulP. RiazS. RehmanR.U. SalariH. A review on extraction, composition, structure, and biological activities of polysaccharides from different parts of Nelumbo nucifera. Food Sci. Nutr.20231173655367410.1002/fsn3.337637457175
    [Google Scholar]
  33. HuangB. BanX. HeJ. TongJ. TianJ. WangY. Hepatoprotective and antioxidant activity of ethanolic extracts of edible lotus (Nelumbo nucifera Gaertn.) leaves.Food Chem.2010120387387810.1016/j.foodchem.2009.11.020
    [Google Scholar]
  34. MaZ. MaY. LiuY. ZhouB. ZhaoY. WuP. ZhangD. LiD. Effects of maturity and processing on the volatile components, phytochemical profiles and antioxidant activity of Lotus (Nelumbo nucifera) Leaf.Foods202312119810.3390/foods1201019836613414
    [Google Scholar]
  35. JeJ.Y. LeeD.B. Nelumbo nucifera leaves protect hydrogen peroxide-induced hepatic damage via antioxidant enzymes and HO-1/Nrf2 activation.Food Funct.2015661911191810.1039/C5FO00201J25962859
    [Google Scholar]
  36. LinH.H. HsuJ.Y. TsengC.Y. HuangX.Y. TsengH.C. ChenJ.H. Hepatoprotective Activity of Nelumbo nucifera Gaertn. Seedpod extract attenuated acetaminophen-induced hepatotoxicity.Molecules20222713403010.3390/molecules2713403035807275
    [Google Scholar]
  37. PeriyasamyL. MuruganthamB. SundarajR. KrishnamoorthiS. MuthusamiS. Screening of MMP-2 inhibiting phytoconstituents for the development of newer pancreatic cancer treatment modalities.Protein Pept. Lett.202330430431310.2174/092986653066623021311383536779494
    [Google Scholar]
  38. ThakorN. JanathiaB. Plumbagin: A potential candidate for future research and development.Curr. Pharm. Biotechnol.202223151800181210.2174/138920102366621123011314634967293
    [Google Scholar]
  39. ZiaG. GuptaT. GargV. ChauhanM. DuttR. Antidiabetic and antioxidant activities of Plumbago zeylanica roots in streptozotocin-induced diabetic rats.World J. Tradit. Chin. Med.202410339940510.4103/2311‑8571.395060
    [Google Scholar]
  40. SelimN.M. MelkM.M. MelekF.R. SalehD.O. SobehM. El-HawaryS.S. Phytochemical profiling and anti-fibrotic activities of Plumbago indica L. and Plumbago auriculata Lam. in thioacetamide-induced liver fibrosis in rats.Sci. Rep.2022121986410.1038/s41598‑022‑13718‑935701526
    [Google Scholar]
  41. DwivediS. SinghS. SinghJ. Effect of extraction solvent and plant part on the yield of phenolic compounds, plumbagin and biological activity of Plumbago zeylanica. J. Pharmacogn. Phytochem.202312651010.22271/phyto.2023.v12.i6a.14760
    [Google Scholar]
  42. IslamM.T. QuispeC. IslamM.A. AliE.S. SahaS. AshaU.H. MondalM. RazisA.F.A. SunusiU. KamalR.M. KumarM. Sharifi-RadJ. Effects of nerol on paracetamol-induced liver damage in Wistar albino rats.Biomed. Pharmacother.202114011173210.1016/j.biopha.2021.11173234130201
    [Google Scholar]
  43. UsmanF.N. SinghalN.K. Evaluation of hepatoprotective activity of ethanolic extract of Plumbago Zeylanica. Neuroquantology202220172208221510.21203/rs.3.rs‑3689548/v1
    [Google Scholar]
  44. KambojP. ThakurA.K. Ameliorative potential of glycyrrhiza glabra extracts on memory impairments in stress triggered rats.Curr. Tradit. Med.202175e14122018912510.2174/2215083806999201214155503
    [Google Scholar]
  45. WahabS. AnnaduraiS. AbullaisS.S. DasG. AhmadW. AhmadM.F. KandasamyG. VasudevanR. AliM.S. AmirM. Glycyrrhiza glabra (Licorice): A comprehensive review on its phytochemistry, biological activities, clinical evidence and toxicology.Plants20211012275110.3390/plants1012275134961221
    [Google Scholar]
  46. WangK.L. YuY.C. ChenH.Y. ChiangY.F. AliM. ShiehT.M. HsiaS.M. Recent advances in glycyrrhiza glabra (licorice)-containing herbs alleviating radiotherapy- and chemotherapy-induced adverse reactions in cancer treatment.Metabolites202212653510.3390/metabo1206053535736467
    [Google Scholar]
  47. ChauhanP. SharmaH. KumarU. MayachariA. SangliG. SinghS. Protective effects of Glycyrrhiza glabra supplementation against methotrexate-induced hepato-renal damage in rats: An experimental approach.J. Ethnopharmacol.202026311320910.1016/j.jep.2020.11320932738390
    [Google Scholar]
  48. YangH. CaoQ. YuanZ. WuX. LiM. Enhanced therapeutic efficacy of a novel self-micellizing nanoformulation-loading fisetin against acetaminophen-induced liver injury.Nanomedicine (Lond.)202116272431244810.2217/nnm‑2021‑023234632809
    [Google Scholar]
  49. BekkouchO. DalliM. HarnafiM. TouissI. MokhtariI. AssriS.E. HarnafiH. ChoukriM. KoS.J. KimB. AmraniS. Ginger (zingiber officinale roscoe), lemon (citrus limon L.) juices as preventive agents from chronic liver damage induced by CCl4: A biochemical and histological study.Antioxidants202211239010.3390/antiox1102039035204272
    [Google Scholar]
  50. ZahrS. ZahrR. El HajjR. KhalilM. Phytochemistry and biological activities of Citrus sinensis and Citrus limon: an update.J. Herb. Med.20234110073710.1016/j.hermed.2023.100737
    [Google Scholar]
  51. PetrettoG.L. VaccaG. AddisR. PintoreG. NiedduM. PirasF. SogosV. FancelloF. ZaraS. RosaA. Waste citrus limon leaves as source of essential oil rich in limonene and citral: chemical characterization, antimicrobial and antioxidant properties, and effects on cancer cell viability.Antioxidants2023126123810.3390/antiox1206123837371968
    [Google Scholar]
  52. KıranT.R. OtluO. KarabulutA.B. Oxidative stress and antioxidants in health and disease.J. Lab. Med.202347111110.1515/labmed‑2022‑0108
    [Google Scholar]
  53. BoyeA. AsiamahE.A. MarteyO. AyerteyF. Citrus limon (L.) Osbeck fruit peel extract attenuates carbon tetrachloride-induced hepatocarcinogenesis in sprague-dawley rats.BioMed Res. Int.2024202411510.1155/2024/667355038204757
    [Google Scholar]
  54. DamianoS. LongobardiC. SalzanoA. D’AngeloL. AmentaM. MaggiolinoA. De PaloP. ClapsS. RufranoD. IannacconeF. MateraR. CiarciaR. Red orange and lemon extract preserve from oxidative stress, DNA damage and inflammatory status in lambs.Ital. J. Anim. Sci.202221193494210.1080/1828051X.2022.2056527
    [Google Scholar]
  55. Benazzouz-SmailL. AchatS. BrahmiF. Bachir-BeyM. ArabR. LorenzoJ.M. BenbouricheA. BoudiabK. HauchardD. BoulekbacheL. MadaniK. Biological properties, phenolic profile, and botanical aspect of Nigella sativa L. and Nigella damascena L. seeds: A comparative study.Molecules202328257110.3390/molecules2802057136677629
    [Google Scholar]
  56. KemalM. EsertaşÜ.Z.Ü. KanburE.D. KaraY. ÖzçelikA.E. CanZ. KolaylıS. Characterization of the black cumin (Nigella sativa L.) honey from Türkiye.Food Biosci.20235310276010.1016/j.fbio.2023.102760
    [Google Scholar]
  57. OjueromiO.O. ObohG. AdemosunA.O. Black seed (Nigella sativa): a favourable alternative therapy for inflammatory and immune system disorders.Inflammopharmacology20223051623164310.1007/s10787‑022‑01035‑635972596
    [Google Scholar]
  58. DąbrowskiG. CzaplickiS. KonopkaI. Variation in the composition and quality of nigella sativa l. seed oils—the underestimated impact on possible health-promoting properties.Molecules2024296136010.3390/molecules2906136038542995
    [Google Scholar]
  59. Al ShawoushA.M. SaidR.S. HassanF.E. AliS.B. MohamedA.S. ElbatranM.M. Therapeutic effect of Nigella sativa extract on folic acid-induced acute hepatorenal injury: influences and underlying mechanisms.Curr. Top. Pharmacol.2022264955
    [Google Scholar]
  60. El-DemerdashF.M. Al MhannaA.B. El-SayedR.A. MohamedT.M. SalemM.M. Hepatoprotective impact of Nigella sativa silver nanocomposite against genotoxicity, oxidative stress, and inflammation induced by thioacetamide.Tissue Cell20248710233210.1016/j.tice.2024.10233238367325
    [Google Scholar]
  61. AdnyanaI. UtomoB. FauziyahS. EljatinD.S. SetyawanM.F. SumahL.H.M. KarinaC.A. Activity and potential of Phyllantus niruri L. and Phyllantus urinaria L. as Hepatitis B virus inhibitors: A narrative review of the SANRA protocol.J. Res. Pharmacy202428133535010.29228/jrp.700
    [Google Scholar]
  62. AkhavanO. Graphene with East taste in herbal nanomedicine.Acta Sci. App. Physics.2022262225
    [Google Scholar]
  63. HanoC. TungmunnithumD. Plant polyphenols, more than just simple natural antioxidants: Oxidative stress, aging and age-related diseases.Medicines (Basel)2020752610.3390/medicines705002632397520
    [Google Scholar]
  64. AkhavanO. KalaeeM. AlaviZ.S. GhiasiS.M.A. EsfandiarA. Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide.Carbon20125083015302510.1016/j.carbon.2012.02.087
    [Google Scholar]
  65. SrichairatanakoolS. OunjaijeanS. ThephinlapC. KhansuwanU. PhisalpongC. FucharoenS. Iron-chelating and free-radical scavenging activities of microwave-processed green tea in iron overload.Hemoglobin200630231132710.1080/0363026060064266616798656
    [Google Scholar]
  66. Chagas-PaulaD. OliveiraT. ZhangT. Edrada-EbelR. Da CostaF. Prediction of anti-inflammatory plants and discovery of their biomarkers by machine learning algorithms and metabolomic studies.Planta Med.201581645045810.1055/s‑0034‑139620625615275
    [Google Scholar]
  67. CherkasA. HolotaS. MdzinarashviliT. GabbianelliR. ZarkovicN. Glucose as a major antioxidant: when, what for and why it fails?Antioxidants20209214010.3390/antiox902014032033390
    [Google Scholar]
  68. AkhavanO. GhaderiE. AghayeeS. FereydooniY. TalebiA. The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy.J. Mater. Chem.20122227137731378110.1039/c2jm31396k
    [Google Scholar]
  69. Malekpour-DehkordiZ. NourbakhshM. ShahidiM. SarrafN. SharifiR. Silymarin diminishes oleic acid-induced lipid accumulation in HepG2 cells by modulating the expression of endoplasmic reticulum stress markers.J. Herb. Med.20223310056510.1016/j.hermed.2022.100565
    [Google Scholar]
  70. BanerjeeT. SarS. SahaS. BaidyaA. SarkarA. KarmakarS. HalderA.K. GhoshN. Herbal Medicines for the Treatment of Liver Cirrhosis.Role of Herbal Medicines: Management of Lifestyle Diseases.Springer2024
    [Google Scholar]
  71. SheJ. GuT. PangX. LiuY. TangL. ZhouX. Natural products targeting liver X receptors or farnesoid X receptor.Front. Pharmacol.20221277243510.3389/fphar.2021.77243535069197
    [Google Scholar]
  72. RubioK. Molina-HerreraA. Pérez-GonzálezA. Hernández-GaldámezH.V. Piña-VázquezC. Araujo-RamosT. SinghI. EP300 as a molecular integrator of fibrotic transcriptional programs.Int. J. Mol. Sci.202324151230210.3390/ijms24151230237569677
    [Google Scholar]
  73. WangZ. MaJ. HeY. MiuK.K. YaoS. TangC. YeY. LinG. Nrf2-mediated liver protection by 18β-glycyrrhetinic acid against pyrrolizidine alkaloid-induced toxicity through PI3K/Akt/GSK3β pathway.Phytomedicine202210215416210.1016/j.phymed.2022.15416235598524
    [Google Scholar]
  74. MuslikhF.A. PriatnaP.A. EkasariW. Pharmacological effects of Glycyrrhiza glabra l. as antihepatitis and hepatoprotective for children.Pharm. Pharmaceut. Sci. J.2023101115
    [Google Scholar]
  75. ZhouL. SongZ. ZhangS. LiY. XuJ. GuoY. Construction and antitumor activity of selenium nanoparticles decorated with the polysaccharide extracted from Citrus limon (L.) Burm. f. (Rutaceae).Int. J. Biol. Macromol.202118890491310.1016/j.ijbiomac.2021.07.14234331980
    [Google Scholar]
  76. SowunmiK. KakaZ. Antioxidant Activity of Nigella sativa Essential Oil.Recent Developments in Antioxidants from Natural Sources.IntechOpen2023
    [Google Scholar]
  77. ZhangR. LiX. GaoY. TaoQ. LangZ. ZhanY. LiC. ZhengJ. Ginsenoside Rg1 epigenetically modulates Smad7 expression in liver fibrosis via MicroRNA-152.J. Ginseng Res.202347453454210.1016/j.jgr.2022.12.00537397418
    [Google Scholar]
  78. LuK.H. WengC.Y. ChenW.C. SheenL.Y. Ginseng essence, a medicinal and edible herbal formulation, ameliorates carbon tetrachloride-induced oxidative stress and liver injury in rats.J. Ginseng Res.201741331632510.1016/j.jgr.2016.06.00228701872
    [Google Scholar]
  79. ParkS.K. HyunS.H. InG. ParkC.K. KwakY.S. JangY.J. KimB. KimJ.H. HanC.K. The antioxidant activities of Korean Red Ginseng (Panax ginseng) and ginsenosides: A systemic review through in vivo and clinical trials.J. Ginseng Res.2021451414710.1016/j.jgr.2020.09.00633437155
    [Google Scholar]
  80. AkhavanO. GhaderiE. AboueiE. HatamieS. GhasemiE. Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets.Carbon20146639540610.1016/j.carbon.2013.09.015
    [Google Scholar]
  81. AlamamiA. ElshibaniF. ElremaliN. DaboubA. ZaedS.B. BumadianM. The species of genus fagonia in Libya: (A comprehensive review).J. Pharmacogn. Phytochem.2022115283710.22271/phyto.2022.v11.i5a.14501
    [Google Scholar]
  82. BarikS. PandaP.K. JenaD. A review on hepatoprotective efficacy of various phytochemicals.Int. J. Pharma Sci.20241121
    [Google Scholar]
  83. TangY.X. LiuM. LiuL. ZhenB.R. WangT.T. LiN. LvN. ZhuZ. SunG. WangX. ChenS. Lipophilic constituents in Salvia miltiorrhiza Inhibit activation of the hepatic stellate cells by suppressing the JAK1/STAT3 signaling pathway: A network pharmacology study and experimental validation.Front. Pharmacol.20221377034410.3389/fphar.2022.77034435517817
    [Google Scholar]
  84. HassanA. RijoP. AbuamaraT.M.M. Ali LashinL.S. KamarS.A. BangayG. Al-SawahliM.M. FouadM.K. ZoairM.A. AbdalrhmanT.I. ElebeedyD. IbrahimI.A. MohamedA.F. Abd El MaksoudA.I. Synergistic differential DNA demethylation activity of danshensu (salvia miltiorrhiza) associated with different probiotics in nonalcoholic fatty liver disease.Biomedicines202412227910.3390/biomedicines1202027938397881
    [Google Scholar]
  85. AkarZ. AkayS. EjderN. Özad DüzgünA. Determination of the cytotoxicity and antibiofilm potential effect of Equisetum arvense silver nanoparticles.Appl. Biochem. Biotechnol.2024196290992237273097
    [Google Scholar]
  86. SureshkumarJ. JenipherC. SriramavaratharajanV. GuravS.S. GandhiG.R. RavichandranK. AyyanarM. Genus Equisetum L: Taxonomy, toxicology, phytochemistry and pharmacology.J. Ethnopharmacol.202331411663010.1016/j.jep.2023.11663037207877
    [Google Scholar]
  87. NarayananM. GopiA. NatarajanD. KandasamyS. SaravananM. El AskaryA. ElfasakhanyA. PugazhendhiA. Hepato and nephroprotective activity of methanol extract of Hygrophila spinosa and its antibacterial potential against multidrug resistant Pandoraea sputorum.Environ. Res.202120111159410.1016/j.envres.2021.11159434186080
    [Google Scholar]
  88. DevanesanS. JayamalaM. AlSalhiM.S. UmamaheshwariS. RanjitsinghA.J.A. Antimicrobial and anticancer properties of Carica papaya leaves derived di-methyl flubendazole mediated silver nanoparticles.J. Infect. Public Health202114557758710.1016/j.jiph.2021.02.00433848887
    [Google Scholar]
  89. GancedoN.C. IsolaniR. de OliveiraN.C. NakamuraC.V. de Medeiros AraújoD.C. SanchesA.C.C. ToninF.S. Fernandez-LlimosF. ChierritoD. de MelloJ.C.P. Chemical constituents, anticancer and anti-proliferative potential of limonium species: a systematic review.Pharmaceuticals (Basel)202316229310.3390/ph1602029337259435
    [Google Scholar]
  90. JangD.K. LeeI.S. ShinH.S. YooH.M. 2α-Hydroxyeudesma-4, 11 (13)-Dien-8β, 12-Olide isolated from inula britannica induces apoptosis in diffuse large B-cell lymphoma cells.Biomolecules202010232410.3390/biom1002032432085513
    [Google Scholar]
  91. MengZ. LiM. WangX. ZhangK. WuC. ZhangX. Inula britannica ameliorates alcohol-induced liver injury by modulating SIRT1-AMPK/Nrf2/NF-κB signaling pathway.Chin. Herb. Med.202416466767810.1016/j.chmed.2023.12.00639606269
    [Google Scholar]
  92. HasanA.E.Z. SetiyonoA. AfrianM. Hepatoprotective activity of propolis trigona spp., hibiscus sabdariffa, and myrmeleon sp. in rats induced by paracetamol.Curr. Chem.202291385010.29244/cb.9.1.4
    [Google Scholar]
  93. ObidiegwuJ.E. LyonsJ.B. ChilakaC.A. The Dioscorea Genus (Yam)—An appraisal of nutritional and therapeutic potentials.Foods202099130410.3390/foods909130432947880
    [Google Scholar]
  94. DiwaniN. ChellyM. AthmouniK. ChellyS. GammoudiS. TurkiM. BoudawaraT. AyadiH. Bouaziz-KetataH. β-cyclodextrin microencapsulation enhanced antioxidant and antihyperlipidemic properties of Tunisian Periploca angustifolia roots condensed tannins in rats.Environ. Sci. Pollut. Res. Int.20222940610496106410.1007/s11356‑022‑20095‑335435548
    [Google Scholar]
  95. ChoiE.Y. ChoiJ.O. ParkC.Y. KimS.H. KimD. Water extract of Artemisia annua L. exhibits hepatoprotective effects through improvement of lipid accumulation and oxidative stress-induced cytotoxicity.J. Med. Food202023121312132210.1089/jmf.2020.469633202166
    [Google Scholar]
  96. LiaqatH. KimK.J. ParkS. JungS.K. ParkS.H. LimS. KimJ.Y. Antioxidant effect of wheat germ extracts and their antilipidemic effect in palmitic acid-induced steatosis in HepG2 and 3T3-L1 cells.Foods2021105106110.3390/foods1005106134065831
    [Google Scholar]
  97. LimJ.Y. YunD.H. LeeJ.H. KwonY.B. LeeY.M. LeeD.H. KimD.K. Extract of Triticum aestivum sprouts suppresses acetaminophen-induced hepatotoxicity in mice by inhibiting oxidative stress.Molecules20212621633610.3390/molecules2621633634770745
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303319815240819053924
Loading
/content/journals/emiddt/10.2174/0118715303319815240819053924
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test