Skip to content
2000
image of Contribution of Type 2 Diabetes Susceptible Gene GCKR Polymorphisms Rs780094 and Rs1260326 to Gestational Diabetes Mellitus: A Meta-Analysis

Abstract

Background

There is still no conclusive understanding of whether the glucokinase regulator (GCKR) gene rs780094 and rs1260326 polymorphisms predispose to gestational diabetes mellitus (GDM).

Objective

This systematic review and meta-analysis aimed to determine the effect of the GCKR polymorphisms on GDM susceptibility.

Methods

Seven literature databases were searched (from inception to February 17, 2024) to locate relevant studies included in further meta-analysis. Odds ratio (OR) and 95% confidence intervals (CI) in the pooled population were estimated to assess the effects of the variant allele on GDM risk.

Results

For the rs780094 polymorphism, 13 datasets with 3443 GDM cases and 5930 nondiabetic controls were included. The pooled estimates in the allele model (OR: 1.19, 95% CI: 1.07~1.32), homozygote model (OR: 1.27, 95% CI: 1.10~1.47), dominant model (OR: 1.16, 95% CI: 1.03~1.31), and recessive model (OR: 1.31, 95% CI: 1.09~1.57) suggested that the C allele carriers were prone to GDM. For the rs1260326 polymorphism, five datasets with 1495 cases and 2678 controls were integrated. The statistically significant effect of the C allele was evident in the allele model (OR: 1.12, 95% CI: 1.01~1.24) and the homozygote model (OR: 1.26, 95% CI: 1.03~1.54).

Conclusion

This meta-analysis suggested that the C allele of the rs780094 and rs1260326 polymorphisms in the GCKR gene are significantly associated with increased risk of GDM.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303313654241101042033
2025-01-09
2025-02-10
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/10.2174/0118715303313654241101042033/BMS-EMIDDT-2024-124.html?itemId=/content/journals/emiddt/10.2174/0118715303313654241101042033&mimeType=html&fmt=ahah

References

  1. McIntyre H.D. Catalano P. Zhang C. Desoye G. Mathiesen E.R. Damm P. Gestational diabetes mellitus. Nat. Rev. Dis. Primers 2019 5 1 47 10.1038/s41572‑019‑0098‑8 31296866
    [Google Scholar]
  2. Sweeting A. Wong J. Murphy H.R. Ross G.P. A clinical update on gestational diabetes mellitus. Endocr. Rev. 2022 43 5 763 793 10.1210/endrev/bnac003 35041752
    [Google Scholar]
  3. Castillo-Castrejon M. Powell T.L. Placental nutrient transport in gestational diabetic pregnancies. Front. Endocrinol. 2017 8 306 10.3389/fendo.2017.00306 29163373
    [Google Scholar]
  4. Chen Y. Lu M. Nie J. Liu J. Liu Y. Meng Y. Sun X. Ji C. Zhang J. Yang X. Increasing prevalence of gestational diabetes mellitus when carrying the T variant allele of the MTHFR gene C677T polymorphism: a systematic review and meta-analysis. Arch. Gynecol. Obstet. 2022 305 5 1193 1202 10.1007/s00404‑021‑06303‑4 34694432
    [Google Scholar]
  5. He J. Zhang M. Ren J. Jiang X. Correlation between TCF7L2 and CAPN10 gene polymorphisms and gestational diabetes mellitus in different geographical regions: a meta-analysis. BMC Pregnancy Childbirth 2024 24 1 15 10.1186/s12884‑023‑06177‑1 38166877
    [Google Scholar]
  6. Golshan-Tafti M. Bahrami R. Dastgheib S.A. Karimi-Zarchi M. Azizi S. Marzbanrad Z. Hajizadeh N. Aghasipour M. Yeganegi M. Shiri A. Aghili K. Neamatzadeh H. Comprehensive data on the relationship between KCNJ11 polymorphisms and gestational diabetes mellitus predisposition: a meta-analysis. J. Diabetes Metab. Disord. 2024 23 1 475 486 10.1007/s40200‑024‑01428‑0 38932913
    [Google Scholar]
  7. Agius L. Hormonal and metabolite regulation of hepatic glucokinase. Annu. Rev. Nutr. 2016 36 1 389 415 10.1146/annurev‑nutr‑071715‑051145 27146014
    [Google Scholar]
  8. Matschinsky F.M. Wilson D.F. The central role of glucokinase in glucose homeostasis: A perspective 50 years after demonstrating the presence of the enzyme in islets of langerhans. Front. Physiol. 2019 10 148 10.3389/fphys.2019.00148 30949058
    [Google Scholar]
  9. Mohás M. Kisfali P. Járomi L. Maász A. Fehér E. Csöngei V. Polgár N. Sáfrány E. Cseh J. Sümegi K. Hetyésy K. Wittmann I. Melegh B. GCKR gene functional variants in type 2 diabetes and metabolic syndrome: do the rare variants associate with increased carotid intima-media thickness? Cardiovasc. Diabetol. 2010 9 1 79 10.1186/1475‑2840‑9‑79 21114848
    [Google Scholar]
  10. Bi M. Kao W.H.L. Boerwinkle E. Hoogeveen R.C. Rasmussen-Torvik L.J. Astor B.C. North K.E. Coresh J. Köttgen A. Association of rs780094 in GCKR with metabolic traits and incident diabetes and cardiovascular disease: the ARIC Study. PLoS One 2010 5 7 e11690 10.1371/journal.pone.0011690 20661421
    [Google Scholar]
  11. Vaxillaire M. Cavalcanti-Proença C. Dechaume A. Tichet J. Marre M. Balkau B. Froguel P. The common P446L polymorphism in GCKR inversely modulates fasting glucose and triglyceride levels and reduces type 2 diabetes risk in the DESIR prospective general French population. Diabetes 2008 57 8 2253 2257 10.2337/db07‑1807 18556336
    [Google Scholar]
  12. Beer N.L. Tribble N.D. McCulloch L.J. Roos C. Johnson P.R.V. Orho-Melander M. Gloyn A.L. The P446L variant in GCKR associated with fasting plasma glucose and triglyceride levels exerts its effect through increased glucokinase activity in liver. Hum. Mol. Genet. 2009 18 21 4081 4088 10.1093/hmg/ddp357 19643913
    [Google Scholar]
  13. López R.M. Kaminska D. Lappalainen K. Pihlajamäki J. Kaikkonen M.U. Laakso M. Identification and characterization of a FOXA2-regulated transcriptional enhancer at a type 2 diabetes intronic locus that controls GCKR expression in liver cells. Genome Med. 2017 9 1 63 10.1186/s13073‑017‑0453‑x 28683826
    [Google Scholar]
  14. Li H. Xu R. Peng X. Wang Y. Wang T. Association of glucokinase regulatory protein polymorphism with type 2 diabetes and fasting plasma glucose: a meta-analysis. Mol. Biol. Rep. 2013 40 6 3935 3942 10.1007/s11033‑012‑2470‑6 23307301
    [Google Scholar]
  15. Chen G. Shriner D. Zhang J. Zhou J. Adikaram P. Doumatey A.P. Bentley A.R. Adeyemo A. Rotimi C.N. Additive genetic effect of GCKR, G6PC2, and SLC30A8 variants on fasting glucose levels and risk of type 2 diabetes. PLoS One 2022 17 6 e0269378 10.1371/journal.pone.0269378 35657990
    [Google Scholar]
  16. Nisar T. Arshad K. Abbas Z. Khan M.A. Safdar S. Shaikh R.S. Saeed A. Prevalence of GCKR rs1260326 variant in subjects with obesity associated NAFLD and T2DM: A case-control study in south punjab, pakistan. J. Obes. 2023 2023 1 9 10.1155/2023/6661858 37829557
    [Google Scholar]
  17. Powe C.E. Hivert M.F. Udler M.S. Defining heterogeneity among women with gestational diabetes mellitus. Diabetes 2020 69 10 2064 2074 10.2337/dbi20‑0004 32843565
    [Google Scholar]
  18. Li J. Zhao Y. Zhang H. Hua W. Jiao W. Du X. Rui J. Li S. Teng H. Shi B. Yang X. Zhu L. Contribution of rs780094 and rs1260326 polymorphisms in gckr gene to non-alcoholic fatty liver disease: A meta-analysis involving 26,552 participants. Endocr. Metab. Immune Disord. Drug Targets 2021 21 9 1696 1708 10.2174/1871530320999201126202706 33243135
    [Google Scholar]
  19. Chai T.Y.L. Rajaratnam R.M. Deng D. George J. Pasupathy D. Cheung N.W. The prevalence of gestational diabetes mellitus in women diagnosed with non-alcoholic fatty liver disease during pregnancy: A systematic review and meta-analysis. J. Diabetes Complications 2021 35 9 107991 10.1016/j.jdiacomp.2021.107991 34219018
    [Google Scholar]
  20. Anghebem-Oliveira M.I. Webber S. Alberton D. de Souza E.M. Klassen G. Picheth G. Rego F.G.M. The GCKR gene polymorphism rs780094 is a risk factor for gestational diabetes in a brazilian population. J. Clin. Lab. Anal. 2017 31 2 e22035 10.1002/jcla.22035 27554451
    [Google Scholar]
  21. Franzago M. Fraticelli F. Marchetti D. Celentano C. Liberati M. Stuppia L. Vitacolonna E. Nutrigenetic variants and cardio-metabolic risk in women with or without gestational diabetes. Diabetes Res. Clin. Pract. 2018 137 64 71 10.1016/j.diabres.2018.01.001 29325775
    [Google Scholar]
  22. Huopio H. Cederberg H. Vangipurapu J. Hakkarainen H. Pääkkönen M. Kuulasmaa T. Heinonen S. Laakso M. Association of risk variants for type 2 diabetes and hyperglycemia with gestational diabetes. Eur. J. Endocrinol. 2013 169 3 291 297 10.1530/EJE‑13‑0286 23761423
    [Google Scholar]
  23. Jamalpour S. Zain S.M. Mosavat M. Mohamed Z. Omar S.Z. A case-control study and meta-analysis confirm glucokinase regulatory gene rs780094 is a risk factor for gestational diabetes mellitus. Gene 2018 650 34 40 10.1016/j.gene.2018.01.091 29410004
    [Google Scholar]
  24. Kasuga Y. Hata K. Tajima A. Ochiai D. Saisho Y. Matsumoto T. Arata N. Miyakoshi K. Tanaka M. Association of common polymorphisms with gestational diabetes mellitus in Japanese women: A case-control study. Endocr. J. 2017 64 4 463 475 10.1507/endocrj.EJ16‑0431 28202837
    [Google Scholar]
  25. Li W. Association of HNFlA, GCK and GCKR gene polymorphism with gestational diabetes mellitus in a Chinese population. Doctoral, Peking Union Medical College 2011
    [Google Scholar]
  26. Ramos-Levi A. Barabash A. Valerio J. García de la Torre N. Mendizabal L. Zulueta M. de Miguel M.P. Diaz A. Duran A. Familiar C. Jimenez I. del Valle L. Melero V. Moraga I. Herraiz M.A. Torrejon M.J. Arregi M. Simón L. Rubio M.A. Calle-Pascual A.L. Genetic variants for prediction of gestational diabetes mellitus and modulation of susceptibility by a nutritional intervention based on a Mediterranean diet. Front. Endocrinol. (Lausanne) 2022 13 1036088 10.3389/fendo.2022.1036088 36313769
    [Google Scholar]
  27. She L. Li W. Guo Y. Zhou J. Liu J. Zheng W. Dai A. Chen X. Wang P. He H. Zhang P. Zeng J. Xiang B. Li S. Wang L. Dai Q. Yang M. Association of glucokinase gene and glucokinase regulatory protein gene polymorphisms with gestational diabetes mellitus: A case–control study. Gene 2022 824 146378 10.1016/j.gene.2022.146378 35276241
    [Google Scholar]
  28. Stuebe A.M. Wise A. Nguyen T. Herring A. North K.E. Siega-Riz A.M. Maternal genotype and gestational diabetes. Am. J. Perinatol. 2014 31 1 69 76 23456907
    [Google Scholar]
  29. Tarnowski M. Malinowski D. Pawlak K. Dziedziejko V. Safranow K. Pawlik A. GCK, GCKR, FADS1, DGKB/TMEM195 and CDKAL1 gene polymorphisms in women with gestational diabetes. Can. J. Diabetes 2017 41 4 372 379 10.1016/j.jcjd.2016.11.009 28359772
    [Google Scholar]
  30. Zhu M. Lv Y. Peng Y. Wu Y. Feng Y. Jia T. Xu S. Li S. Wang W. Tian J. Sun L. GCKR and ADIPOQ gene polymorphisms in women with gestational diabetes mellitus. Acta Diabetol. 2023 60 12 1709 1718 10.1007/s00592‑023‑02165‑1 37524927
    [Google Scholar]
  31. Guo F. Long W. Zhou W. Zhang B. Liu J. Yu B. FTO, GCKR, CDKAL1 and CDKN2A/B gene polymorphisms and the risk of gestational diabetes mellitus: a meta-analysis. Arch. Gynecol. Obstet. 2018 298 4 705 715 10.1007/s00404‑018‑4857‑7 30074065
    [Google Scholar]
  32. Lin Z. Wang Y. Zhang B. Jin Z. Association of type 2 diabetes susceptible genes GCKR, SLC30A8, and FTO polymorphisms with gestational diabetes mellitus risk: a meta-analysis. Endocrine 2018 62 1 34 45 10.1007/s12020‑018‑1651‑z 30091126
    [Google Scholar]
  33. Page M.J. McKenzie J.E. Bossuyt P.M. Boutron I. Hoffmann T.C. Mulrow C.D. Shamseer L. Tetzlaff J.M. Akl E.A. Brennan S.E. Chou R. Glanville J. Grimshaw J.M. Hróbjartsson A. Lalu M.M. Li T. Loder E.W. Mayo-Wilson E. McDonald S. McGuinness L.A. Stewart L.A. Thomas J. Tricco A.C. Welch V.A. Whiting P. Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 2021 372 71 n71 10.1136/bmj.n71 33782057
    [Google Scholar]
  34. DerSimonian R. Laird N. Meta-analysis in clinical trials. Control. Clin. Trials 1986 7 3 177 188 10.1016/0197‑2456(86)90046‑2 3802833
    [Google Scholar]
  35. Mantel N. Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J. Natl. Cancer Inst. 1959 22 4 719 748 13655060
    [Google Scholar]
  36. Galbraith R.F. A note on graphical presentation of estimated odds ratios from several clinical trials. Stat. Med. 1988 7 8 889 894 10.1002/sim.4780070807 3413368
    [Google Scholar]
  37. Galbraith R.F. Graphical display of estimates having differing standard errors. Technometrics 1988 30 3 271 281 10.1080/00401706.1988.10488400
    [Google Scholar]
  38. Begg C.B. Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics 1994 50 4 1088 1101 10.2307/2533446 7786990
    [Google Scholar]
  39. Egger M. Smith G.D. Schneider M. Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997 315 7109 629 634 10.1136/bmj.315.7109.629 9310563
    [Google Scholar]
  40. Duval S. Tweedie R. Trim and fill: A simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics 2000 56 2 455 463 10.1111/j.0006‑341X.2000.00455.x 10877304
    [Google Scholar]
  41. Jiao X. The association of GDM comorbid depression on the outcome of neonatal birth morphology and the effect of gene polymorphism: A cohort study. Bachelor, Anhui Medical University, Hefei 2021
    [Google Scholar]
  42. Sullivan S.D. Jablonski K.A. Florez J.C. Dabelea D. Franks P.W. Dagogo-Jack S. Kim C. Knowler W.C. Christophi C.A. Ratner R. Genetic risk of progression to type 2 diabetes and response to intensive lifestyle or metformin in prediabetic women with and without a history of gestational diabetes mellitus. Diabetes Care 2014 37 4 909 911 10.2337/dc13‑0700 24271189
    [Google Scholar]
  43. Li Y. Xiao J. Wu Y. Wang Y. Correlation analysis between GCKR gene rs780094(C>T)polymorphism and onset risk of gestational diabetes mellitus. Zhonghua Fuyou Linchuang Yixue Zazhi 2018 14 04 453 458
    [Google Scholar]
  44. Zhou J. Association of glucokinase gene and glucokinase regulatory protein gene polymorphisms with gestational diabetes mellitus. Bachelor, Wuhan University of Science and Technology 2020
    [Google Scholar]
  45. Franzago M. Fraticelli F. Nicolucci A. Celentano C. Liberati M. Stuppia L. Vitacolonna E. Molecular analysis of a genetic variants panel related to nutrients and metabolism: Association with susceptibility to gestational diabetes and cardiometabolic risk in affected women. J Diabetes Res. 2017 2017 4612623
    [Google Scholar]
  46. Harrer M. Cuijpers P. Furukawa T. Ebert D. Doing Meta-analysis with R: A Hands-on Guide. Psychological Methods & Statistics 1st Ed. New York Chapman and Hall/CRC 2021 234 10.1201/9781003107347
    [Google Scholar]
  47. Crippa A. Khudyakov P. Wang M. Orsini N. Spiegelman D. A new measure of between-studies heterogeneity in meta-analysis. Stat. Med. 2016 35 21 3661 3675 10.1002/sim.6980 27161124
    [Google Scholar]
  48. IntHout J. Ioannidis J.P.A. Borm G.F. Goeman J.J. Small studies are more heterogeneous than large ones: a meta-meta-analysis. J. Clin. Epidemiol. 2015 68 8 860 869 10.1016/j.jclinepi.2015.03.017 25959635
    [Google Scholar]
  49. Namipashaki A. Razaghi-Moghadam Z. Ansari-Pour N. The essentiality of reporting hardy-weinberg equilibrium calculations in population-based genetic association studies. Cell J. 2015 17 2 187 192 26199897
    [Google Scholar]
  50. van Aert R.C.M. Wicherts J.M. van Assen M.A.L.M. Publication bias examined in meta-analyses from psychology and medicine: A meta-meta-analysis. PLoS One 2019 14 4 e0215052 10.1371/journal.pone.0215052 30978228
    [Google Scholar]
  51. Deeks J.J. Higgins J.P. Altman D.G. Group C.S.M. Analysing data and undertaking meta-analyses. Cochrane Handb. Syste. Rev. Inter. 2019 241 284 10.1002/9781119536604.ch10
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303313654241101042033
Loading
/content/journals/emiddt/10.2174/0118715303313654241101042033
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article. Supplementary material is available on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test