Skip to content
2000
Volume 25, Issue 7
  • ISSN: 1871-5303
  • E-ISSN: 2212-3873

Abstract

Background

Recurrent Pregnancy Loss (RPL) and Polycystic Ovary Syndrome (PCOS) are both common diseases involving women of childbearing age, and their pathogenesis is still not sufficiently known.

Objective

This study aimed to explore the relationship between RPL and PCOS in bioinformatics.

Methods

Two expression chips, GSE86241 (obtained from 8 PCOS patients and 9 healthy controls) and GSE73025 (obtained from 5 RPL patients and 5 healthy controls), were downloaded from the Gene Expression Omnibus (GEO) database. We used the GEO database to analyze the gene expression profiles of PCOS and RPL to identify the intersection of abnormal miRNA expression, predicted the target genes of the intersecting miRNAs from miRDB, miRTarBase, and TargetScan databases, and then incorporated the miRNA-mRNA modulation network. By using the string database, the PPI network was built, which could screen the Hub genes and enrich them for analysis. Ultimately, the critical miRNA-mRNA regulatory network was set on the basis of the relationship between hub genes and miRNA.

Results

A total of 39 significantly altered miRNAs of PCOS and 137 significantly altered miRNAs of RPL were obtained, three miRNAs (miR-767-5p, miR-3196, and miR-187-3p), five signaling pathways (PI3K-Akt, p53, Toll-like receptor, C-type lectin receptor, and TNF signaling pathways), and six Hub genes (CASP8, PIK3R1, ADAMTS2, ADAMTS3, COL3A1, and MDM2) were found to be related to the development and progression of two diseases. More importantly, all Hub genes were regulated by miR-767-5p.

Conclusion

This research clarifies the possible relationship between miRNA and mRNA with PCOS and RPL for the first time. It provides a basis for illustrating the pathogenic mechanism and a target of therapies for these two diseases.

Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303308816240918062247
2025-06-01
2025-09-04
Loading full text...

Full text loading...

References

  1. DimitriadisE. MenkhorstE. SaitoS. KuttehW.H. BrosensJ.J. Recurrent pregnancy loss.Nat. Rev. Dis. Primers2020619810.1038/s41572‑020‑00228‑z 33303732
    [Google Scholar]
  2. Evaluation and treatment of recurrent pregnancy loss: A committee opinion.Fertil. Steril.20129851103111110.1016/j.fertnstert.2012.06.048 22835448
    [Google Scholar]
  3. Bender AtikR. ChristiansenO.B. ElsonJ. KolteA.M. LewisS. MiddeldorpS. McheikS. PeramoB. QuenbyS. NielsenH.S. van der HoornM.L. VermeulenN. GoddijnM. ESHRE guideline: recurrent pregnancy loss: An update in 2022.Hum. Reprod. Open202220231hoad00210.1093/hropen/hoad002 36873081
    [Google Scholar]
  4. Bender AtikR. ChristiansenO.B. ElsonJ. KolteA.M. LewisS. MiddeldorpS. NelenW. PeramoB. QuenbyS. VermeulenN. GoddijnM. ESHRE guideline: Recurrent pregnancy loss.Hum. Reprod. Open201820182hoy00410.1093/hropen/hoy004 31486805
    [Google Scholar]
  5. VomsteinK. KrogM.C. WrøndingT. NielsenH.S. The microbiome in recurrent pregnancy loss – A scoping review.J. Reprod. Immunol.202416310425110.1016/j.jri.2024.104251 38718429
    [Google Scholar]
  6. WolfW.M. WattickR.A. KinkadeO.N. OlfertM.D. Geographical prevalence of polycystic ovary syndrome as determined by region and race/ethnicity.Int. J. Environ. Res. Public Health20181511258910.3390/ijerph15112589 30463276
    [Google Scholar]
  7. Escobar-MorrealeH.F. Polycystic ovary syndrome: Definition, aetiology, diagnosis and treatment.Nat. Rev. Endocrinol.201814527028410.1038/nrendo.2018.24 29569621
    [Google Scholar]
  8. JohamA.E. NormanR.J. Stener-VictorinE. LegroR.S. FranksS. MoranL.J. BoyleJ. TeedeH.J. Polycystic ovary syndrome.Lancet Diabetes Endocrinol.202210966868010.1016/S2213‑8587(22)00163‑2 35934017
    [Google Scholar]
  9. LiuY. DuM. GanY. BaoS. FengL. ZhangJ. Triglyceride induced metabolic inflammation: Potential connection of insulin resistance and recurrent pregnancy loss.Front. Endocrinol.20211262184510.3389/fendo.2021.621845 33935964
    [Google Scholar]
  10. KiconcoS. TeedeH.J. AzzizR. NormanR.J. JohamA.E. the need to reassess the diagnosis of polycystic ovary syndrome (PCOS): A review of diagnostic recommendations from the international evidence-based guideline for the assessment and management of PCOS. Semin. Reprod. Med.,20213903/0407107710.1055/s‑0041‑1735259 34404096
    [Google Scholar]
  11. LaX. WangW. ZhangM. LiangL. Definition and multiple factors of recurrent spontaneous abortion.Adv. Exp. Med. Biol.2021130023125710.1007/978‑981‑33‑4187‑6_11 33523437
    [Google Scholar]
  12. HantoushzadehS. Kohandel GargariO. ShafieeA. SeighaliN. GhaemiM. Glucose metabolism tests and recurrent pregnancy loss: Evidence from a systematic review and meta-analysis.Diabetol. Metab. Syndr.2023151310.1186/s13098‑022‑00973‑z 36604717
    [Google Scholar]
  13. ChenB. XuP. WangJ. ZhangC. The role of MiRNA in polycystic ovary syndrome (PCOS).Gene2019706919610.1016/j.gene.2019.04.082 31054362
    [Google Scholar]
  14. LiY. XiangY. SongY. ZhangD. TanL. MALAT1 downregulation is associated with polycystic ovary syndrome via binding with MDM2 and repressing p53 degradation.Mol. Cell. Endocrinol.202254311152810.1016/j.mce.2021.111528 34883204
    [Google Scholar]
  15. LuT.X. RothenbergM.E. MicroRNA.J. Allergy Clin. Immunol.201814141202120710.1016/j.jaci.2017.08.034 29074454
    [Google Scholar]
  16. AliA. BoumaG.J. AnthonyR.V. WingerQ.A. The role of LIN28-let-7-ARID3B pathway in placental development.Int. J. Mol. Sci.20202110363710.3390/ijms21103637 32455665
    [Google Scholar]
  17. AndreiD. NagyR.A. van MontfoortA. TietgeU. TerpstraM. KokK. van den BergA. HoekA. KluiverJ. DonkerR. Differential miRNA expression profiles in cumulus and mural granulosa cells from human pre-ovulatory follicles.MicroRNA201881616710.2174/2211536607666180912152618 30207252
    [Google Scholar]
  18. DehghanZ. Mohammadi-YeganehS. SalehiM. MiRNA-155 regulates cumulus cells function, oocyte maturation, and blastocyst formation.Biol. Reprod.2020103354855910.1093/biolre/ioaa098 32507875
    [Google Scholar]
  19. RitchieM.E. PhipsonB. WuD. HuY. LawC.W. ShiW. SmythG.K. Limma powers differential expression analyses for RNA-sequencing and microarray studies.Nucleic Acids Res.2015437e4710.1093/nar/gkv007 25605792
    [Google Scholar]
  20. WuT. HuE. XuS. ChenM. GuoP. DaiZ. FengT. ZhouL. TangW. ZhanL. FuX. LiuS. BoX. YuG. clusterProfiler 4.0: A universal enrichment tool for interpreting omics data.Innovation20212310014110.1016/j.xinn.2021.100141 34557778
    [Google Scholar]
  21. WangX. WeiK. WangM. ZhangL. Identification of potential key ferroptosis- and autophagy-related genes in myelomeningocele through bioinformatics analysis.Heliyon2024108e2965410.1016/j.heliyon.2024.e29654 38660270
    [Google Scholar]
  22. SunR. LiuJ. NieS. LiS. YangJ. JiangY. ChengW. Construction of miRNA-mRNA regulatory network and prognostic signature in endometrial cancer.OncoTargets Ther.2021142363237810.2147/OTT.S272222 33854334
    [Google Scholar]
  23. KhomtchoukB.B. Van BoovenD.J. WahlestedtC. Heatmap Generator: High performance RNAseq and microarray visualization software suite to examine differential gene expression levels using an R and C++ hybrid computational pipeline.Source Code Biol. Med.2014913010.1186/s13029‑014‑0030‑2 25550709
    [Google Scholar]
  24. ItoK. MurphyD. Application of ggplot2 to pharmacometric graphics.CPT Pharmacometrics Syst. Pharmacol.201321011610.1038/psp.2013.56 24132163
    [Google Scholar]
  25. KhatunM.S. AlamM.A. ShoombuatongW. MollahM.N.H. KurataH. HasanM.M. Recent development of bioinformatics tools for microRNA target prediction.Curr. Med. Chem.202229586588010.2174/0929867328666210804090224 34348604
    [Google Scholar]
  26. ChenL. HeikkinenL. WangC. YangY. SunH. WongG. Trends in the development of miRNA bioinformatics tools.Brief. Bioinform.20192051836185210.1093/bib/bby054 29982332
    [Google Scholar]
  27. BuccitelliC. SelbachM. mRNAs, proteins and the emerging principles of gene expression control.Nat. Rev. Genet.2020211063064410.1038/s41576‑020‑0258‑4 32709985
    [Google Scholar]
  28. de Sousa AbreuR. PenalvaL.O. MarcotteE.M. VogelC. Global signatures of protein and mRNA expression levels.Mol. Biosyst.20095121512152610.1039/b908315d 20023718
    [Google Scholar]
  29. WangW. SongX. DingS. MaH. Identification of diagnosis and typological characteristics associated with ferroptosis for ulcerative colitis via bioinformatics and machine learning.Endocr. Metab. Immune Disord. Drug Targets202424894695710.2174/0118715303263609231101074056 37957905
    [Google Scholar]
  30. XuW. LiangY. ZhuangY. YuanZ. Identification of miRNA-mRNA regulatory networks associated with diabetic retinopathy using bioinformatics analysis.Endocr. Metab. Immune Disord. Drug Targets202323131628163610.2174/1871530323666230419081351 37114785
    [Google Scholar]
  31. GuY. WangJ.M. ZhangZ.F. WangJ. CaoY.L. PanC.J. YinL.R. DuJ. The association between polymorphisms of genes related to inflammation and recurrent pregnancy loss.Gynecol. Endocrinol.20183434935210.1080/09513590.2017.1395837
    [Google Scholar]
  32. AlecsandruD. KlimczakA.M. Garcia VelascoJ.A. PirteaP. FranasiakJ.M. Immunologic causes and thrombophilia in recurrent pregnancy loss.Fertil. Steril.2021115356156610.1016/j.fertnstert.2021.01.017 33610320
    [Google Scholar]
  33. TheocharisA.D. SkandalisS.S. GialeliC. KaramanosN.K. Extracellular matrix structure.Adv. Drug Deliv. Rev.20169742710.1016/j.addr.2015.11.001 26562801
    [Google Scholar]
  34. KaramanosN.K. TheocharisA.D. PiperigkouZ. ManouD. PassiA. SkandalisS.S. VyniosD.H. Orian-RousseauV. Ricard-BlumS. SchmelzerC.E.H. DucaL. DurbeejM. AfratisN.A. TroebergL. FranchiM. MasolaV. OnistoM. A guide to the composition and functions of the extracellular matrix.FEBS J.2021288246850691210.1111/febs.15776 33605520
    [Google Scholar]
  35. MouwJ.K. OuG. WeaverV.M. Extracellular matrix assembly: A multiscale deconstruction.Nat. Rev. Mol. Cell Biol.2014151277178510.1038/nrm3902 25370693
    [Google Scholar]
  36. HeisenbergC.P. FässlerR. Cell–cell adhesion and extracellular matrix: Diversity counts.Curr. Opin. Cell Biol.201224555956110.1016/j.ceb.2012.09.002 23046839
    [Google Scholar]
  37. KuivaniemiH. TrompG. Type III collagen (COL3A1): Gene and protein structure, tissue distribution, and associated diseases.Gene201970715117110.1016/j.gene.2019.05.003 31075413
    [Google Scholar]
  38. ManouD. CaonI. BourisP. TriantaphyllidouI.E. GiaroniC. PassiA. KaramanosN.K. VigettiD. TheocharisA.D. The complex interplay between extracellular matrix and cells in tissues.Methods Mol. Biol.2019195212010.1007/978‑1‑4939‑9133‑4_1 30825161
    [Google Scholar]
  39. TheocharisA.D. ManouD. KaramanosN.K. The extracellular matrix as a multitasking player in disease.FEBS J.2019286152830286910.1111/febs.14818 30908868
    [Google Scholar]
  40. JamaluddinM.F.B. NaharP. TanwarP.S. Proteomic characterization of the extracellular matrix of human uterine fibroids.Endocrinology201815972656266910.1210/en.2018‑00151 29788081
    [Google Scholar]
  41. ChermułaB. KrancW. JopekK. Budna-TukanJ. HutchingsG. DompeC. MoncrieffL. JanowiczK. JózkowiakM. JesetaM. PetitteJ. MozdziakP. PawelczykL. SpaczyńskiR.Z. KempistyB. Human cumulus cells in long-term in vitro culture reflect differential expression profile of genes responsible for planned cell death and aging-a study of new molecular markers.Cells202095126510.3390/cells9051265 32455542
    [Google Scholar]
  42. MeadT.J. ApteS.S. ADAMTS proteins in human disorders.Matrix Biol.201871-7222523910.1016/j.matbio.2018.06.002
    [Google Scholar]
  43. ZhangQ. GodfredK.T. ZhangY. WeiX. ChenW. ZhangQ. Research progress of chondrocyte mechanotransduction mediated by TRPV4 and PIEZOs.Sheng Wu Yi Xue Gong Cheng Xue Za Zhi20234063864410.7507/1001‑5515.202301029
    [Google Scholar]
  44. QueY. WongC. QiuJ. GaoW. LinY. ZhouH. GaoB. LiP. DengZ. ShiH. HuW. LiuS. PengY. SuP. XuC. LiangA. QiuX. HuangD. Maslinic acid alleviates intervertebral disc degeneration by inhibiting the PI3K/AKT and NF-κB signaling pathways.Acta Biochim. Biophys. Sin.202456577678810.3724/abbs.2024027 38495003
    [Google Scholar]
  45. RussellD.L. BrownH.M. DunningK.R. ADAMTS proteases in fertility.Matrix Biol.2015444610.1016/j.matbio.2015.03.007
    [Google Scholar]
  46. BekhoucheM. ColigeA. The procollagen N-proteinases ADAMTS2, 3 and 14 in pathophysiology.Matrix Biol.201544-46465310.1016/j.matbio.2015.04.001
    [Google Scholar]
  47. WangL. DengZ. YangJ. ZhaoY. ZhouL. DiaoL. LiL. ChengY. Epigenetic and transcriptomic characterization of maternal-fetal interface in patients with recurrent miscarriage via an integrated multi-omics approach.J. Reprod. Immunol.202215410375410.1016/j.jri.2022.103754 36206604
    [Google Scholar]
  48. SchatzF. Guzeloglu-KayisliO. ArlierS. KayisliU.A. LockwoodC.J. The role of decidual cells in uterine hemostasis, menstruation, inflammation, adverse pregnancy outcomes and abnormal uterine bleeding.Hum. Reprod. Update201622449751510.1093/humupd/dmw004 26912000
    [Google Scholar]
  49. LockwoodC.J. PaidasM. MurkW.K. KayisliU.A. GopinathA. HuangS.J. KrikunG. SchatzF. Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption.Thromb. Res.2009124551652010.1016/j.thromres.2009.07.017 19720393
    [Google Scholar]
  50. HummitzschK. HatzirodosN. MacphersonA.M. SchwartzJ. RodgersR.J. Irving-RodgersH.F. Transcriptome analyses of ovarian stroma: Tunica albuginea, interstitium and theca interna.Reproduction2019157654556510.1530/REP‑18‑0323 30925461
    [Google Scholar]
  51. KinnearH.M. TomaszewskiC.E. ChangA.L. MoravekM.B. XuM. PadmanabhanV. ShikanovA. The ovarian stroma as a new frontier.Reproduction20201603R25R3910.1530/REP‑19‑0501 32716007
    [Google Scholar]
  52. BrileyS.M. JastiS. McCrackenJ.M. HornickJ.E. FegleyB. PritchardM.T. DuncanF.E. Reproductive age-associated fibrosis in the stroma of the mammalian ovary.Reproduction2016152324526010.1530/REP‑16‑0129 27491879
    [Google Scholar]
  53. MorsiA.A.A. MersalE. RazikH. FarragA.M. AbdelmoneimA.M. AbdelmenemA.S. SalimM. Histomorphological changes in a rat model of polycystic ovary syndrome and the contribution of stevia leaf extract in modulating the ovarian fibrosis, VEGF, and TGF-β immunoexpressions: Comparison with metformin.Acta Histochem. Cytochem.202255192310.1267/ahc.21‑00081 35444350
    [Google Scholar]
  54. ZhouF. ShiL.B. ZhangS.Y. Ovarian fibrosis.Chin. Med. J.2017130336537110.4103/0366‑6999.198931 28139522
    [Google Scholar]
  55. OuyangX. YouS. ZhangY. ZhangC. ZhangG. ShaoX. HeF. HuL. Transplantation of human amnion epithelial cells improves endometrial regeneration in rat model of intrauterine adhesions.Stem Cells Dev.202029201346136210.1089/scd.2019.0246 32772798
    [Google Scholar]
  56. SamakovaA. GazovaA. SabovaN. ValaskovaS. JurikovaM. KyselovicJ. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia.Physiol. Res.201968Suppl. 2S131S13810.33549/physiolres.934345 31842576
    [Google Scholar]
  57. Machado-NetoJ.A. FenerichB.A. Rodrigues AlvesA.P.N. FernandesJ.C. Scopim-RibeiroR. Coelho-SilvaJ.L. TrainaF. Insulin substrate receptor (IRS) proteins in normal and malignant hematopoiesis.Clinics (São Paulo)201873Suppl. 1e566s10.6061/clinics/2018/e566s 30328953
    [Google Scholar]
  58. MuJ. YuP. LiQ. microRNA-103 contributes to progression of polycystic ovary syndrome through modulating the IRS1/PI3K/] AKT signal axis.Arch. Med. Res.202152549450410.1016/j.arcmed.2021.01.008 33583602
    [Google Scholar]
  59. LiT. MoH. ChenW. LiL. XiaoY. ZhangJ. LiX. LuY. Role of the PI3K-Akt signaling pathway in the pathogenesis of polycystic ovary syndrome.Reprod. Sci.201724564665510.1177/1933719116667606 27613818
    [Google Scholar]
  60. CrespoR.P. RochaT.P. MontenegroL.R. NishiM.Y. JorgeA.A.L. MacielG.A.R. BaracatE. LatronicoA.C. MendoncaB.B. GomesL.G. High-throughput sequencing to identify monogenic etiologies in a preselected polycystic ovary syndrome cohort.J. Endocr. Soc.202269bvac10610.1210/jendso/bvac106 35898701
    [Google Scholar]
  61. CaiW.Y. LuoX. LvH.Y. FuK.Y. XuJ. Insulin resistance in women with recurrent miscarriage: A systematic review and meta-analysis.BMC Pregnancy Childbirth202222191610.1186/s12884‑022‑05256‑z 36482358
    [Google Scholar]
  62. HuangJ. Current developments of targeting the p53 signaling pathway for cancer treatment.Pharmacol. Ther.202122010772010.1016/j.pharmthera.2020.107720 33130194
    [Google Scholar]
  63. KubbutatM.H.G. JonesS.N. VousdenK.H. Regulation of p53 stability by Mdm2.Nature1997387663029930310.1038/387299a0 9153396
    [Google Scholar]
  64. RusieckiR. WitkowskiJ. Jaszczewska-AdamczakJ. MDM2-p53 interaction inhibitors: The current state-of-art and updated patent review (2010-Present).Recent Patents Anticancer Drug Discov.202014432436910.2174/1574892814666191022163540 31642413
    [Google Scholar]
  65. SoniU.K. ChadchanS.B. JoshiA. KumarV. MauryaV.K. VermaR.K. JhaR.K. Poly(ADP-ribose) polymerase-2 is essential for endometrial receptivity and blastocyst implantation, and regulated by caspase-8.Mol. Cell. Endocrinol.202051811094610.1016/j.mce.2020.110946 32679243
    [Google Scholar]
  66. KelleherA.M. SetlemR. DantzerF. DeMayoF.J. LydonJ.P. KrausW.L. Deficiency of PARP-1 and PARP-2 in the mouse uterus results in decidualization failure and pregnancy loss.Proc. Natl. Acad. Sci. U.S.A202111840e210925211810.1073/pnas.2109252118
    [Google Scholar]
  67. de AzevedoB.C. MansurF. PodgaecS. A systematic review of toll-like receptors in endometriosis.Arch. Gynecol. Obstet.2021304230931610.1007/s00404‑021‑06075‑x 33928453
    [Google Scholar]
  68. FitzgeraldK.A. KaganJ.C. Toll-like receptors and the control of immunity.Cell202018061044106610.1016/j.cell.2020.02.041 32164908
    [Google Scholar]
  69. BrownG.D. WillmentJ.A. WhiteheadL. C-type lectins in immunity and homeostasis.Nat. Rev. Immunol.201818637438910.1038/s41577‑018‑0004‑8 29581532
    [Google Scholar]
  70. MayerS. RaulfM.K. LepeniesB. C-type lectins: Their network and roles in pathogen recognition and immunity.Histochem. Cell Biol.2017147222323710.1007/s00418‑016‑1523‑7 27999992
    [Google Scholar]
  71. UzdoganA. Kuru PekcanM. CilA.P. KisaU. AkbiyikF. Progranulin and tumor necrosis factor-alpha in lean polycystic ovary syndrome patients.Gynecol. Endocrinol.20213792592910.1080/09513590.2021.1958311
    [Google Scholar]
  72. LiuD. ZhongZ. KarinM. NF-κB: A double-edged sword controlling inflammation.Biomedicines2022106125010.3390/biomedicines10061250 35740272
    [Google Scholar]
  73. ParkM. HongJ. Roles of NF-κB in cancer and inflammatory diseases and their therapeutic approaches.Cells2016521510.3390/cells5020015 27043634
    [Google Scholar]
  74. HaydenM.S. GhoshS. Regulation of NF-κB by TNF family cytokines.Semin. Immunol.201426325326610.1016/j.smim.2014.05.004 24958609
    [Google Scholar]
  75. LiuT. ZhangL. JooD. SunS.C. NF-κB signaling in inflammation.Signal Transduct. Target. Ther.201721702310.1038/sigtrans.2017.23
    [Google Scholar]
  76. RulandJ. HartjesL. CARD–BCL-10–MALT1 signalling in protective and pathological immunity.Nat. Rev. Immunol.201919211813410.1038/s41577‑018‑0087‑2 30467369
    [Google Scholar]
  77. JanygaS. KajdaniukD. CzubaZ. Ogrodowczyk-BobikM. UrbanekA. Kos-KudłaB. MarekB. Interleukin (IL)-23, IL-31, and IL-33 play a role in the course of autoimmune endocrine diseases.Endocr. Metab. Immune Disord. Drug Targets202424558559510.2174/1871530323666230908143521 37694787
    [Google Scholar]
  78. JameelS. BhuwalkaR. BegumM. BonuR. JahanP. Circulating levels of cytokines (IL-6, IL-10 and TGF- β) and CD4+CD25+FOXP3+Treg cell population in recurrent pregnancy loss.Reprod. Biol.202424110084210.1016/j.repbio.2023.100842 38176116
    [Google Scholar]
  79. RaghupathyR. MakhseedM. AziziehF. HassanN. Al-AzemiM. Al-ShamaliE. Maternal Th1- and Th2-type reactivity to placental antigens in normal human pregnancy and unexplained recurrent spontaneous abortions.Cell. Immunol.1999196212213010.1006/cimm.1999.1532 10527564
    [Google Scholar]
  80. FigueiredoA.S. SchumacherA. The T helper type 17/regulatory T cell paradigm in pregnancy.Immunology20161481132110.1111/imm.12595 26855005
    [Google Scholar]
  81. LiY. YaoG. WangR. ZhuJ. LiH. YangD. MaS. FuY. LiuC. GuanS. Maternal immune activation mediated prenatal chronic stress induces Th17/Treg cell imbalance may relate to the PI3K/Akt/NF-κB signaling pathway in offspring rats.Int. Immunopharmacol.202412611130810.1016/j.intimp.2023.111308 38061121
    [Google Scholar]
  82. NasriF. DoroudchiM. Namavar JahromiB. Gharesi-FardB. T helper cells profile and CD4+CD25+Foxp3+Regulatory T cells in poly-cystic ovary syndrome.Iran. J. Immunol.201815317518510.22034/iji.2018.39387 30246693
    [Google Scholar]
  83. WangM. ZhangP. YuS. ZhouG. LvJ. NallapothulaD. GuoC. WangQ. SinghR.R. Heparin and aspirin combination therapy restores T-cell phenotype in pregnant patients with antiphospholipid syndrome-related recurrent pregnancy loss.Clin. Immunol.201920810825910.1016/j.clim.2019.108259 31513884
    [Google Scholar]
  84. AhmadiM. Abdolmohammadi-VahidS. GhaebiM. Aghebati-MalekiL. AfkhamA. DanaiiS. Abdollahi-FardS. HeidariL. Jadidi-NiaraghF. YounesiV. NouriM. YousefiM. Effect of intravenous immunoglobulin on Th1 and Th2 lymphocytes and improvement of pregnancy outcome in recurrent pregnancy loss (RPL).Biomed. Pharmacother.2017921095110210.1016/j.biopha.2017.06.001
    [Google Scholar]
  85. GongP. ShiB. WangJ. CaoP. DiaoZ. WangY. HuY. Li, S Association between Th1/Th2 immune imbalance and obesity in women with or without polycystic ovary syndrome.Gynecol. Endocrinol.20183470971410.1080/09513590.2018.1428301
    [Google Scholar]
  86. WangJ. GongP. LiC. PanM. DingZ. GeX. ZhuW. ShiB. Correlation between leptin and IFN-γ involved in granulosa cell apoptosis in PCOS.Gynecol. Endocrinol.2020361051105610.1080/09513590.2020.1760817
    [Google Scholar]
  87. RostamtabarM. EsmaeilzadehS. TouraniM. RahmaniA. BaeeM. ShirafkanF. SalekiK. MirzababayiS.S. EbrahimpourS. NouriH.R. Pathophysiological roles of chronic low‐grade inflammation mediators in polycystic ovary syndrome.J. Cell. Physiol.2021236282483810.1002/jcp.29912 32617971
    [Google Scholar]
  88. RudnickaE. SuchtaK. GrymowiczM. Calik-KsepkaA. SmolarczykK. DuszewskaA.M. SmolarczykR. MeczekalskiB. Chronic low grade inflammation in pathogenesis of PCOS.Int. J. Mol. Sci.2021227378910.3390/ijms22073789 33917519
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303308816240918062247
Loading
/content/journals/emiddt/10.2174/0118715303308816240918062247
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test