Skip to content
2000
image of Advances in Sources, Content Determination, and Bioactivity of 20α-Hydroxyprogesterone

Abstract

20α-hydroxyprogesterone [(20)-20-hydroxypregn-4-en-3-one, 20α-DHP] is one of the endogenous metabolites of progesterone (Pregn-4-ene-3,20-dione, P4) and a steroid hormone. The literature related to 20α-DHP mainly concentrates on the years from the 1950s to 1970s, and a review of 20α-DHP has not been conducted. In this work, the endogenous and exogenous sources of 20α-DHP are introduced, and methods for determining 20α-DHP in biological samples are described. The biological activities of 20α-DHP are summarized in detail, including the maintenance of pregnancy, endometrial protection, regulation of hormone secretion, ovulation promotion, uterine epithelial cell proliferation, antagonism of breast cancer, and as a diagnostic indicator for psoriasis and polycystic ovarian syndrome. Finally, the pharmacokinetic characteristics of 20α-DHP are briefly introduced to provide a reference for the further development and utilization of 20α-DHP.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Loading

Article metrics loading...

/content/journals/emiddt/10.2174/0118715303302957250117052100
2025-02-10
2025-10-31
Loading full text...

Full text loading...

/deliver/fulltext/emiddt/10.2174/0118715303302957250117052100/BMS-EMIDDT-2024-17.html?itemId=/content/journals/emiddt/10.2174/0118715303302957250117052100&mimeType=html&fmt=ahah

References

  1. Bick A.J. Louw-du Toit R. Skosana S.B. Africander D. Hapgood J.P. Pharmacokinetics, metabolism and serum concentrations of progestins used in contraception. Pharmacol. Ther. 2021 222 107789 10.1016/j.pharmthera.2020.107789 33316287
    [Google Scholar]
  2. Stanczyk F.Z. All progestins are not created equal. Steroids 2003 68 10-13 879 890 10.1016/j.steroids.2003.08.003 14667980
    [Google Scholar]
  3. Henderson V.W. Progesterone and human cognition. Climacteric 2018 21 4 333 340 10.1080/13697137.2018.1476484 29852783
    [Google Scholar]
  4. Morel Y. Roucher F. Plotton I. Goursaud C. Tardy V. Mallet D. Evolution of steroids during pregnancy: Maternal, placental and fetal synthesis. Ann. Endocrinol. 2016 77 2 82 89 10.1016/j.ando.2016.04.023 27155772
    [Google Scholar]
  5. Qian L. J. Zhai Z. C. Application of progesterone in clinical practice. Foreign Medicine 2001 20 2 101 102
    [Google Scholar]
  6. Warren M.P. Shantha S. Uses of progesterone in clinical practice. Int. J. Fertil. Womens Med. 1999 44 2 96 103 10338267
    [Google Scholar]
  7. Zander J. Von Munstermann A.M. Further studies on progesterone in human blood and tissues. Klin. Wochenschr. 1954 32 35-36 894 10.1007/BF01466844 13202434
    [Google Scholar]
  8. Zander J. Forbes T.R. Von Münstermann A.M. Neher R. Δ 4 -3-ketopregnene-20α-ol and δ 4 -3-ketopregnene-20β-ol, two naturally occurring metabolites of progesterone. Isolation, identification, biologic activity and concentration in human tissues. J. Clin. Endocrinol. Metab. 1958 18 4 337 353 10.1210/jcem‑18‑4‑337 13513735
    [Google Scholar]
  9. Monsalve L.N. Machado Rada M.Y. Ghini A.A. Baldessari A. An efficient enzymatic preparation of 20-pregnane succinates: Chemoenzymatic synthesis of 20β-hemisuccinyloxy-5αH-pregnan-3-one. Tetrahedron 2008 64 8 1721 1730 10.1016/j.tet.2007.12.006
    [Google Scholar]
  10. Farooq A. Hanson J.R. Iqbal Z. Hydroxylation of progesterone by Cephalosporium aphidicola. Phytochemistry 1994 37 3 723 726 10.1016/S0031‑9422(00)90346‑7 7765686
    [Google Scholar]
  11. Rižner T.L. Šmuc T. Rupreht R. Šinkovec J. Penning T.M. AKR1C1 and AKR1C3 may determine progesterone and estrogen ratios in endometrial cancer. Mol. Cell. Endocrinol. 2006 248 1-2 126 135 10.1016/j.mce.2005.10.009 16338060
    [Google Scholar]
  12. Kobayashi K. Ohno S. Shinoda M. Toyoshima S. Nakajin S. Immunochemical distribution and immunohistochemical localization of 20β-hydroxysteroid dehydrogenase in neonatal pig tissues. J. Steroid Biochem. Mol. Biol. 1996 59 5-6 485 493 10.1016/S0960‑0760(96)00137‑9 9010354
    [Google Scholar]
  13. Rehm K. Hankele A.K. Ulbrich S.E. Bigler L. Simultaneous quantification of progestogens in plasma and serum by UHPLC-HRMS employing multiplexed targeted single ion monitoring. Talanta 2021 232 122358 10.1016/j.talanta.2021.122358 34074386
    [Google Scholar]
  14. Hilliard J. Hayward J.N. Sawyer C.H. Postcoital patterns of secretion of pituitary gonadotropin and ovarian progestin in the rabbit. Endocrinology 1964 75 6 957 963 10.1210/endo‑75‑6‑957 14236107
    [Google Scholar]
  15. Nowak F.V. Distribution and metabolism of 20α-hydroxylated progestins in the female rat. J. Steroid Biochem. Mol. Biol. 2002 80 4-5 469 479 10.1016/S0960‑0760(02)00039‑0 11983494
    [Google Scholar]
  16. Altinkilic E.M. du Toit T. Sakin Ö. Attar R. Groessl M. Flück C.E. The serum steroid signature of PCOS hints at the involvement of novel pathways for excess androgen biosynthesis. J. Steroid Biochem. Mol. Biol. 2023 233 106366 10.1016/j.jsbmb.2023.106366 37499841
    [Google Scholar]
  17. Verma P. Hassan M.I. Singh A. Singh I.K. Design and development of novel inhibitors of aldo-ketoreductase 1C1 as potential lead molecules in treatment of breast cancer. Mol. Cell. Biochem. 2021 476 8 2975 2987 10.1007/s11010‑021‑04134‑0 33770316
    [Google Scholar]
  18. Michelini S. Chiurazzi P. Marino V. Dell’Orco D. Manara E. Baglivo M. Fiorentino A. Maltese P.E. Pinelli M. Herbst K.L. Dautaj A. Bertelli M. Aldo-keto reductase 1C1 (AKR1C1) as the first mutated gene in a family with nonsyndromic primary lipedema. Int. J. Mol. Sci. 2020 21 17 6264 10.3390/ijms21176264 32872468
    [Google Scholar]
  19. Shujing Y. Chunli C. Xiangyun X. Xiaoli G. Preparation of 20β-hydroxyprogesterone and study of progesterone-like effects. Xinjiang Yike Daxue Xuebao 2022 45 6 666 671
    [Google Scholar]
  20. Izichkis L.S. Basque A. Martin L.J. High concentrations of progesterone inhibit the expression of genes related to steroid metabolism in MA-10 Leydig cells. Mol. Cell. Endocrinol. 2024 594 112375 10.1016/j.mce.2024.112375 39307342
    [Google Scholar]
  21. Mindnich R.D. Penning T.M. Aldo-keto reductase (AKR) superfamily: Genomics and annotation. Hum. Genomics 2009 3 4 362 370 10.1186/1479‑7364‑3‑4‑362 19706366
    [Google Scholar]
  22. Zhang Y. Dufort I. Rheault P. Luu-The V. Characterization of a human 20alpha-hydroxysteroid dehydrogenase. J. Mol. Endocrinol. 2000 25 2 221 228 10.1677/jme.0.0250221 11013348
    [Google Scholar]
  23. Penning T.M. Burczynski M.E. Jez J.M. Hung C.F. Lin H.K. Ma H. Moore M. Palackal N. Ratnam K. Human 3α-hydroxysteroid dehydrogenase isoforms (AKR1C1–AKR1C4) of the aldo-keto reductase superfamily: Functional plasticity and tissue distribution reveals roles in the inactivation and formation of male and female sex hormones. Biochem. J. 2000 351 1 67 77 10.1042/bj3510067 10998348
    [Google Scholar]
  24. Oppermann U. Filling C. Hult M. Shafqat N. Wu X. Lindh M. Shafqat J. Nordling E. Kallberg Y. Persson B. Jörnvall H. Short-chain dehydrogenases/reductases (SDR): The 2002 update. Chem. Biol. Interact. 2003 143-144 247 253 10.1016/S0009‑2797(02)00164‑3 12604210
    [Google Scholar]
  25. Sugiyama T. Ohno S. Ghosh D. Nakajin S. 3α/β,20β-Hydroxysteroid dehydrogenase (porcine testicular carbonyl reductase) also has a cysteine residue that is involved in binding of cofactor NADPH. J. Steroid Biochem. Mol. Biol. 2004 88 4-5 393 398 10.1016/j.jsbmb.2003.12.013 15145449
    [Google Scholar]
  26. Matsunaga T. Shintani S. Hara A. Multiplicity of mammalian reductases for xenobiotic carbonyl compounds. Drug Metab. Pharmacokinet. 2006 21 1 1 18 10.2133/dmpk.21.1 16547389
    [Google Scholar]
  27. Oppermann U. Carbonyl reductases: The complex relationships of mammalian carbonyl- and quinone-reducing enzymes and their role in physiology. Annu. Rev. Pharmacol. Toxicol. 2007 47 1 293 322 10.1146/annurev.pharmtox.47.120505.105316 17009925
    [Google Scholar]
  28. Hankele A.K. Rehm K. Berard J. Schuler G. Bigler L. Ulbrich S.E. Progestogen profiling in plasma during the estrous cycle in cattle using an LC-MS based approach. Theriogenology 2020 142 376 383 10.1016/j.theriogenology.2019.10.005 31708192
    [Google Scholar]
  29. Guan G. Tanaka M. Todo T. Young G. Yoshikuni M. Nagahama Y. Cloning and expression of two carbonyl reductase-like 20beta-hydroxysteroid dehydrogenase cDNAs in ovarian follicles of rainbow trout (Oncorhynchus mykiss). Biochem. Biophys. Res. Commun. 1999 255 1 123 128 10.1006/bbrc.1998.0127 10082666
    [Google Scholar]
  30. Senthilkumaran B. Sudhakumari C.C. Chang X.T. Kobayashi T. Oba Y. Guan G. Yoshiura Y. Yoshikuni M. Nagahama Y. Ovarian carbonyl reductase-like 20beta-hydroxysteroid dehydrogenase shows distinct surge in messenger RNA expression during natural and gonadotropin-induced meiotic maturation in nile tilapia. Biol. Reprod. 2002 67 4 1080 1086 10.1095/biolreprod67.4.1080 12297521
    [Google Scholar]
  31. MacNevin C.J. Atif F. Sayeed I. Stein D.G. Liotta D.C. Development and screening of water-soluble analogues of progesterone and allopregnanolone in models of brain injury. J. Med. Chem. 2009 52 19 6012 6023 10.1021/jm900712n 19791804
    [Google Scholar]
  32. Long N. Y. Liu J. Gan H. X. Tian Q. The methods of synthesis to progesterone impurities. Patent CN113788874A, 2021
  33. Naumann J.M. Messinger J. Bureik M. Human 20α-hydroxysteroid dehydrogenase (AKR1C1)-dependent biotransformation with recombinant fission yeast Schizosaccharomyces pombe. J. Biotechnol. 2010 150 1 161 170 10.1016/j.jbiotec.2010.08.004 20727920
    [Google Scholar]
  34. Wiest W.G. Progesterone and 4-pregnen-20 alpha-ol-3-one in the tissues of pregnant rats. Endocrinology 1959 65 5 825 830 10.1210/endo‑65‑5‑825 13844674
    [Google Scholar]
  35. Short R.V. Progesterone in blood. I. The chemical determination of progesterone in peripheral blood. J. Endocrinol. 1958 16 4 415 425 10.1677/joe.0.0160415 13539288
    [Google Scholar]
  36. Lindner H.R. Zmigrod A. Microdetermination of progestins in rat ovaries: Progesterone and 20 alpha-hydroxy-pregn-4-en-3-one content during proestrus, oestrus and pseudopregnancy. Eur. J. Endocrinol. 1967 56 1 16 26 10.1530/acta.0.0560016 4952199
    [Google Scholar]
  37. Abraham G. Solid-phase radioimmunoassay of estradiol-17 beta. J. Clin. Endocrinol. Metab. 1969 29 6 866 870 10.1210/jcem‑29‑6‑866 5783587
    [Google Scholar]
  38. Wudy S.A. Schuler G. Sánchez-Guijo A. Hartmann M.F. The art of measuring steroids. J. Steroid Biochem. Mol. Biol. 2018 179 88 103 10.1016/j.jsbmb.2017.09.003 28962971
    [Google Scholar]
  39. Stanczyk F.Z. Clarke N.J. Advantages and challenges of mass spectrometry assays for steroid hormones. J. Steroid Biochem. Mol. Biol. 2010 121 3-5 491 495 10.1016/j.jsbmb.2010.05.001 20470886
    [Google Scholar]
  40. Krone N. Hughes B.A. Lavery G.G. Stewart P.M. Arlt W. Shackleton C.H.L. Gas chromatography/mass spectrometry (GC/MS) remains a pre-eminent discovery tool in clinical steroid investigations even in the era of fast liquid chromatography tandem mass spectrometry (LC/MS/MS). J. Steroid Biochem. Mol. Biol. 2010 121 3-5 496 504 10.1016/j.jsbmb.2010.04.010 20417277
    [Google Scholar]
  41. Fang K. Pan X. Huang B. Liu J. Wang Y. Gao J. Simultaneous derivatization of hydroxyl and ketone groups for the analysis of steroid hormones by GC–MS. Chromatographia 2010 72 9-10 949 956 10.1365/s10337‑010‑1736‑1
    [Google Scholar]
  42. Marcos J. Pozo O.J. Current LC–MS methods and procedures applied to the identification of new steroid metabolites. J. Steroid Biochem. Mol. Biol. 2016 162 41 56 10.1016/j.jsbmb.2015.12.012 26709140
    [Google Scholar]
  43. Wiest W.G. Forbes T.R. Failure of 20α-Hydroxy-Δ4-pregnen-3-one and 20β-Hydroxy-Δ4-pregnen-3-one to maintain pregnancy in ovariectomized mice1. Endocrinology 1964 74 1 149 150 10.1210/endo‑74‑1‑149 14114661
    [Google Scholar]
  44. Talwalker P.K. Krähenbühl C. Desaulles P.A. Maintenance of pregnancy in spayed rats with 20α-Hydroxypregn-4-ene-3-one and 20β-Hydroxypregn-4-ene-3-one. Nature 1966 209 5018 86 87 10.1038/209086a0 5925339
    [Google Scholar]
  45. Sawada T. Secretion of pregnane compounds from follicular and luteal ovaries in rats. Horm. Metab. Res. 1988 20 2 100 102 10.1055/s‑2007‑1010762 3371861
    [Google Scholar]
  46. Wiest W.G. Kidwell W.R. Balogh K. Jr Progesterone catabolism in the rat ovary: A regulatory mechanism for progestational potency during pregnancy. Endocrinology 1968 82 4 844 859 10.1210/endo‑82‑4‑844 5742200
    [Google Scholar]
  47. Piekorz R.P. Gingras S. Hoffmeyer A. Ihle J.N. Weinstein Y. Regulation of progesterone levels during pregnancy and parturition by signal transducer and activator of transcription 5 and 20alpha-hydroxysteroid dehydrogenase. Mol. Endocrinol. 2005 19 2 431 440 10.1210/me.2004‑0302 15471942
    [Google Scholar]
  48. Teglund S. McKay C. Schuetz E. van Deursen J.M. Stravopodis D. Wang D. Brown M. Bodner S. Grosveld G. Ihle J.N. Stat5a and Stat5b proteins have essential and nonessential, or redundant, roles in cytokine responses. Cell 1998 93 5 841 850 10.1016/S0092‑8674(00)81444‑0 9630227
    [Google Scholar]
  49. Liu X. Robinson G.W. Wagner K.U. Garrett L. Wynshaw-Boris A. Hennighausen L. Stat5a is mandatory for adult mammary gland development and lactogenesis. Genes Dev. 1997 11 2 179 186 10.1101/gad.11.2.179 9009201
    [Google Scholar]
  50. Udy G.B. Towers R.P. Snell R.G. Wilkins R.J. Park S.H. Ram P.A. Waxman D.J. Davey H.W. Requirement of STAT5b for sexual dimorphism of body growth rates and liver gene expression. Proc. Natl. Acad. Sci. USA 1997 94 14 7239 7244 10.1073/pnas.94.14.7239 9207075
    [Google Scholar]
  51. Albarracin C.T. Parmer T.G. Duan W.R. Nelson S.E. Gibori G. Identification of a major prolactin-regulated protein as 20 alpha-hydroxysteroid dehydrogenase: Coordinate regulation of its activity, protein content, and messenger ribonucleic acid expression. Endocrinology 1994 134 6 2453 2460 10.1210/endo.134.6.8194472 8194472
    [Google Scholar]
  52. Hooker C.W. Forbes T.R. A bio-assay for minute amounts of progesterone. Endocrinology 1947 41 2 158 169 10.1210/endo‑41‑2‑158 20266711
    [Google Scholar]
  53. Ober K.G. Klein I. Weber M. [The problem of progesterone therapy; Experimental studies on the Hooker-Forbes test and clinical observations on crystalline suspensions]. Arch. Gynakol. 1954 184 5 543 616 10.1007/BF00976991 13198154
    [Google Scholar]
  54. Forbes T.R. Influence of 16-alpha-hydroxyprogesterone, 20-alpha-hydroxyprogesterone and 20-beta-hydroxyprogesterone on progesterone activity in a bio-assay. Exp. Biol. Med. 1970 134 4 1184 1186 10.3181/00379727‑134‑34970 5460387
    [Google Scholar]
  55. Hilliard J. Archibald D. Sawyer C.H. Gonadotropic activation of prevulatory synthesis and release of progestin in the rabbit. Endocrinology 1963 72 1 59 66 10.1210/endo‑72‑1‑59 13954592
    [Google Scholar]
  56. Dorrington J.H. Kilpatrick R. Effects of pituitary hormones on progestational hormone production by the rabbit ovary in vivo and in vitro. J. Endocrinol. 1966 35 1 53 63 10.1677/joe.0.0350053 5950190
    [Google Scholar]
  57. Hilliard J. Penardi R. Sawyer C.H. A functional role for 20-alpha-hydroxypregn-4-en-3-one in the rabbit. Endocrinology 1967 80 5 901 909 10.1210/endo‑80‑5‑901 6023558
    [Google Scholar]
  58. Rasmussen D.D. Yen S.S.C. Progesterone and 20α-hydroxyprogesterone stimulate the in vitro release of GnRH by the isolated mediobasal hypothalamus. Life Sci. 1983 32 13 1523 1530 10.1016/0024‑3205(83)90919‑0 6339857
    [Google Scholar]
  59. Leyendecker G. Wildt L. Gips H. Nocke W. Plotz E.J. Experimental studies on the positive feedback effect of progesterone, 17 alpha-hydroxyprogesterone and 20 alpha-dihydroprogesterone on the pituitary release of LH and FSH in the human female. The estrogen priming of the progesterone feedback on pituitary gonadotropins in the eugonadal woman. Arch. Gynakol. 1976 221 1 29 45 10.1007/BF00667679 989265
    [Google Scholar]
  60. Goodman A.L. Neill J.D. Ovarian regulation of postcoital gonadotropin release in the rabbit: Reexamination of a functional role for 20 alphadihydroprogesterone. Endocrinology 1976 99 3 852 860 10.1210/endo‑99‑3‑852 986294
    [Google Scholar]
  61. Moon Y.S. Duleba A.J. Yuen B.H. Actions of LH/hCG on accumulation and catabolism of progestins in cultured rat granulosa cells. Biochem. Biophys. Res. Commun. 1986 141 3 1025 1031 10.1016/S0006‑291X(86)80147‑4 3468947
    [Google Scholar]
  62. Ichikawa S. Sawada T. Nakamura Y. Morioka H. Ovarian secretion of pregnane compounds during the estrous cycle and pregnancy in rats. Endocrinology 1974 94 6 1615 1620 10.1210/endo‑94‑6‑1615 4857494
    [Google Scholar]
  63. Sawada T. Ovarian secretion of pregnane compounds at first ovulation in rats treated with pregnant mare’s serum gonadotropin. Steroids 1986 47 4-5 327 335 10.1016/0039‑128X(86)90102‑9 3590243
    [Google Scholar]
  64. Ainsworth L. Ryan K.J. Steroid hormone transformations by endocrine organs from pregnant mammals. II. Formation and metabolism of progesterone by bovine and sheep placental preparations in vitro. Endocrinology 1967 81 6 1349 1356 10.1210/endo‑81‑6‑1349 5582641
    [Google Scholar]
  65. Wiener M. Allen S.H.G. Inhibition of placental steroid synthesis by steroid metabolites: Possible feedback control. Steroids 1967 9 6 567 582 10.1016/0039‑128X(67)90063‑3 4291817
    [Google Scholar]
  66. Stites D.P. Siiteri P.K. Steroids as immunosuppressants in pregnancy. Immunol. Rev. 1983 75 1 117 138 10.1111/j.1600‑065X.1983.tb01093.x 6226589
    [Google Scholar]
  67. Voorhis B.J.V. Anderson D.J. Hill J.A. The effects of RU 486 on immune function and steroid-induced immunosuppression in vitro. J. Clin. Endocrinol. Metab. 1989 69 6 1195 1199 10.1210/jcem‑69‑6‑1195 2584354
    [Google Scholar]
  68. Chien E.J. Chang C.P. Lee W.F. Su T.H. Wu C.H. Non‐genomic immunosuppressive actions of progesterone inhibits PHA‐induced alkalinization and activation in T cells. J. Cell. Biochem. 2006 99 1 292 304 10.1002/jcb.20858 16619256
    [Google Scholar]
  69. Frelin C. Vigne P. Ladoux A. Lazdunski M. The regulation of the intracellular pH in cells from vertebrates. Eur. J. Biochem. 1988 174 1 3 14 10.1111/j.1432‑1033.1988.tb14055.x 2836200
    [Google Scholar]
  70. Fliegel L. Karmazyn M. The cardiac Na-H exchanger: A key downstream mediator for the cellular hypertrophic effects of paracrine, autocrine and hormonal factors. Biochem. Cell Biol. 2004 82 6 626 635 10.1139/o04‑129 15674430
    [Google Scholar]
  71. Veomett M.J. Daniel J.C. Jr Termination of pregnancy after accelerated lactation in the rat. Reproduction 1971 26 3 415 417 10.1530/jrf.0.0260415 5106120
    [Google Scholar]
  72. Taketa Y. Yoshida M. Inoue K. Takahashi M. Sakamoto Y. Watanabe G. Taya K. Yamate J. Nishikawa A. The newly formed corpora lutea of normal cycling rats exhibit drastic changes in steroidogenic and luteolytic gene expressions. Exp. Toxicol. Pathol. 2012 64 7-8 775 782 10.1016/j.etp.2011.01.015 21345661
    [Google Scholar]
  73. Aedo A.R. Nuñez M. Landgren B.M. Cekan S.Z. Diczfalusy E. Studies on the pattern of circulating steroids in the normal menstrual cycle. Circadian variation in theperi-ovulatory period. Acta Endocrinol. 1977 84 2 320 332 138325
    [Google Scholar]
  74. Florensa E. Harrison R. Johnson M. Youssefnejadian E. Plasma 20 alpha-dihydroprogesterone, progesterone and 17-hydroxyprogesterone in normal human pregnancy. Acta Endocrinol. 1977 86 3 634 640 579026
    [Google Scholar]
  75. Strauss J.F. III Stambaugh R.L. Induction of 20α-hydroxysteroid dehydrogenase in rat corpora lutea of pregnancy by prostaglandin F2α. Prostaglandins 1974 5 1 73 85 10.1016/S0090‑6980(74)80134‑6 4816721
    [Google Scholar]
  76. Choi J. Ishida M. Matsuwaki T. Yamanouchi K. Nishihara M. Involvement of 20alpha-hydroxysteroid dehydrogenase in the maintenance of pregnancy in mice. J. Reprod. Dev. 2008 54 6 408 412 10.1262/jrd.20045 18667791
    [Google Scholar]
  77. Nakajima T. Yasuda K. Nishizawa M. Okada H. Yoshimura T. Ito S. Kanzaki H. Expression of 20alpha-hydroxysteroid dehydrogenase mRNA in human endometrium and decidua. Endocr. J. 2003 50 1 105 111 10.1507/endocrj.50.105 12733716
    [Google Scholar]
  78. Goldman B.D. Kamberi I.A. Siiteri P.K. Porter J.C. Temporal relationship of progestin secretion, LH release and ovulation in rats. Endocrinology 1969 85 6 1137 1143 10.1210/endo‑85‑6‑1137 5388412
    [Google Scholar]
  79. Hashimoto I. Henricks D.M. Anderson L.L. Melampy R.M. Progesterone and pregn-4-en-20 alpha-ol-3-one in ovarian venous blood during various reproductive states in the rat. Endocrinology 1968 82 2 333 341 10.1210/endo‑82‑2‑333 4951280
    [Google Scholar]
  80. Nequin L.G. Alvarez J. Schwartz N.B. Measurement of serum steroid and gonadotropin levels and uterine and ovarian variables throughout 4 day and 5 day estrous cycles in the rat. Biol. Reprod. 1979 20 3 659 670 10.1095/biolreprod20.3.659 572241
    [Google Scholar]
  81. Piacsek B.E. Schneider T.C. Gay V.L. Sequential study of luteinizing hormone (LH) and “Progestin” secretion on the afternoon of proestrus in the rat. Endocrinology 1971 89 1 39 45 10.1210/endo‑89‑1‑39 5103608
    [Google Scholar]
  82. Gilles P.A. Karavolas H.J. Effect on ovulation of 20α-hydroxy-4-pregnen-3-one and its 5α-reduced metabolites in immature rats treated with pregnant mare serum gonadotrophin. J. Endocrinol. 1981 88 2 289 292 10.1677/joe.0.0880289 7205130
    [Google Scholar]
  83. Conti C.J. Conner E.A. Gimenez-Conti I.B. Silverberg S.G. Gerschenson L.E. Regulation of ciliogenesis and proliferation of uterine epithelium by 20 alpha-hydroxy-pregn-4-en-3-one administration and withdrawal in ovariectomized rabbits. Biol. Reprod. 1981 24 4 903 911 10.1095/biolreprod24.4.903 7248417
    [Google Scholar]
  84. Gerschenson L.E. Berliner J. Yang J. Diethylstilbestrol and progesterone regulation of cultured rabbit endometrial cell growth. Cancer Res. 1974 34 11 2873 2880 4420927
    [Google Scholar]
  85. Gerschenson L.E. Conner E. Murai J.T. Regulation of the cell cycle by diethylstilbestrol and progesterone in cultured endometrial cells. Endocrinology 1977 100 5 1468 1471 10.1210/endo‑100‑5‑1468 849738
    [Google Scholar]
  86. Gerschenson L.E. Conner E.A. Yang J. Andersson M. Hormonal regulation of proliferation in two populations of rabbit endometrial cells in culture. Life Sci. 1979 24 15 1337 1343 10.1016/0024‑3205(79)90002‑X 314557
    [Google Scholar]
  87. Conner E.A. Murai J.T. Gerschenson L.E. Histodifferentiation and cytodifferentiation in rabbit endometrium. A comparison of the effects of progesterone and various progesterone metabolites. Life Sci. 1978 22 12 1015 1020 10.1016/0024‑3205(78)90269‑2 642711
    [Google Scholar]
  88. Schueller E.F. Ultrastructure of ciliated cells in the human endometrium. Obstet. Gynecol. 1973 41 2 188 194 4684201
    [Google Scholar]
  89. Wiebe J.P. Muzia D. Hu J. Szwajcer D. Hill S.A. Seachrist J.L. The 4-pregnene and 5alpha-pregnane progesterone metabolites formed in nontumorous and tumorous breast tissue have opposite effects on breast cell proliferation and adhesion. Cancer Res. 2000 60 4 936 943 10706108
    [Google Scholar]
  90. Pasqualini J.R. Chetrite G. The anti-aromatase effect of progesterone and of its natural metabolites 20alpha- and 5alpha-dihydroprogesterone in the MCF-7aro breast cancer cell line. Anticancer Res. 2008 28 4B 2129 2133 18751385
    [Google Scholar]
  91. Kishikawa T. Arase N. Tsuji S. Maeda Y. Nii T. Hirata J. Suzuki K. Yamamoto K. Masuda T. Ogawa K. Ohshima S. Inohara H. Kumanogoh A. Fujimoto M. Okada Y. Large-scale plasma-metabolome analysis identifies potential biomarkers of psoriasis and its clinical subtypes. J. Dermatol. Sci. 2021 102 2 78 84 10.1016/j.jdermsci.2021.03.006 33836926
    [Google Scholar]
  92. Nowak F. Karavolas H.J. Conversion of 20α-Hydroxypregn-4-en-3-one to 20α-Hydroxy-5α-pregnan-3-one and 5α-Pregnane-3α, 20α-diol by rat medial basal hypothalamus °. Endocrinology 1974 94 4 994 997 10.1210/endo‑94‑4‑994 4818785
    [Google Scholar]
  93. Nowak F.V. Karavolas H.J. Conversion of 20α-hydroxy-4-pregnen-3-one to 20α-hydroxy-5α-pregnan-3-one and 5α-pregnane-3α,20α-diol by rat anterior pituitary. Steroids 1974 24 3 351 357 10.1016/0039‑128X(74)90032‑4 4472042
    [Google Scholar]
  94. Zhang L.W. Chao R.B. Determination of progesterone and its main metabolite in rat plasma and uterus using HPLC. Yao Xue Xue Bao 2004 39 8 613 617 15563063
    [Google Scholar]
/content/journals/emiddt/10.2174/0118715303302957250117052100
Loading
/content/journals/emiddt/10.2174/0118715303302957250117052100
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test