-
oa Formation of A Novel Purine Metabolite through CYP3A4 Bioactivation and Glutathione Conjugation
- Source: Drug Metabolism Letters, Volume 10, Issue 2, Jun 2016, p. 144 - 150
-
- 01 Jun 2016
Abstract
Background: The study of novel sites of metabolism is important in understanding new mechanisms of biotransformation of a particular moiety by metabolic enzymes. This information is valuable in designing metabolically-stable compounds with drug-like properties. It may also provide insights into the existence of active and reactive metabolites. Methods: We utilized small scale incubations to generate adequate amounts of the metabolite of interest. After purification, LC-MS/MS and Proton Nuclear Magnetic Resonance (1H-NMR) were utilized to unequivocally assign the novel site of glutathione conjugation on the purine ring system. Results: A proposed novel site of glutathione conjugation was investigated on a diaminopurine-containing molecule. It was demonstrated that the formation of the glutathione conjugate at the C-6 position of the purine ring system was due to the bioactivation of the compound to a di-imine intermediate by CYP3A4, followed by the nucleophilic addition of glutathione. Conclusion: S-glutathionylation at C-6 position of a purine was proven unequivocally. This previously unreported mechanism constitutes a novel biotransformation for purines.