Skip to content
2000
Volume 6, Issue 1
  • ISSN: 1872-3128
  • E-ISSN: 1874-0758

Abstract

N-Hexanoylsphingosine (C6-Cer) is currently being evaluated as an antineoplastic agent, after preclinical studies showing its property to reduce tumor growth. Herein it is reported that the cytotoxic effect of C6-Cer, as observed in CHP-100 neurotumor cells, impinges on its continuous uptake from the culture medium, ensuring maintainance of elevated steady-state intracellular levels, in the face of the rapid metabolic removal. C6-Cer metabolism not only does occur by direct glucosylation but is also relevantly driven by utilization via the sphingosine salvage pathway, leading to accumulation of natural ceramide that, in CHP-100 cells, has been demonstrated to lack apoptotic properties. Upon inhibition of glucosylceramide synthase by D,L-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol, previously shown to enhance C6-Cer cytotoxic activity, short-chain ceramide metabolism was partly redirected to the salvage pathway, likely attenuating the chemosensitizing effect of the above-mentioned compound. Elucidation of the metabolic machinery driving C6-Cer recycling via the salvage pathway might thus be relevant for optimization of its therapeutic utilization.

Loading

Article metrics loading...

/content/journals/dml/10.2174/187231212800229264
2012-03-01
2025-09-16
Loading full text...

Full text loading...

/content/journals/dml/10.2174/187231212800229264
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test