Skip to content
2000
image of CYP3A4 Interaction with Green Tea Catechins: Insights from Molecular Docking Simulations

Abstract

Introduction

Green tea contains abundant bioactive polyphenols recognized for their various pharmacological effects, including the regulation of drug-metabolizing enzymes. Cytochrome P450 3A4 (CYP3A4) is essential for the metabolism of a broad range of drugs. This study examines the binding interactions between prominent green tea polyphenols and CYP3A4 to assess their potential impact on drug metabolism and diet-medicine interactions.

Methods

Molecular docking simulations using AutoDock Vina were conducted to evaluate the binding affinities of five main components of green tea, myricetin, kaempferol, gallocatechin (GC), epigallocatechin (EGC), and epigallocatechin gallate (EGCG), with the active site of CYP3A4. Emphasis was centered on interactions mediated by hydrogen bonding and π-π stacking, enabled by polyphenolic hydroxyl groups.

Results

EGCG had the highest binding affinity (-10.6 kcal/mol), closely followed by EGC and GC, both at -10.4 kcal/mol. Myricetin and kaempferol demonstrated moderate affinities of -8.7 and -8.8 kcal/mol, respectively. The strong interactions observed for EGCG, EGC, and GC were mainly facilitated by hydrogen bonding and aromatic stacking with essential amino acid residues in the enzyme's active site. The findings suggest a possibility of competitive inhibition of CYP3A4 by green tea polyphenols.

Discussion

This study highlights the importance of considering dietary components, such as green tea polyphenols, in drug metabolism. The findings suggest that green tea polyphenols, particularly EGCG, EGC, and GC, may competitively inhibit CYP3A4, potentially altering the pharmacokinetics of co-administered drugs.

Conclusion

These results underscore the need for further experimental validation and molecular dynamics simulations to assess the long-term stability and clinical relevance of these interactions.

Loading

Article metrics loading...

/content/journals/dmb/10.2174/0118723128421990251029074158
2025-11-21
2026-01-05
Loading full text...

Full text loading...

References

  1. Shi J. Yang G. You Q. Sun S. Chen R. Lin Z. Simal-Gandara J. Lv H. Updates on the chemistry, processing characteristics, and utilization of tea flavonoids in last two decades (2001-2021). Crit. Rev. Food Sci. Nutr. 2023 63 20 4757 4784 10.1080/10408398.2021.2007353 34898343
    [Google Scholar]
  2. Wan C. Ouyang J. Li M. Rengasamy K.R.R. Liu Z. Effects of green tea polyphenol extract and Epigallocatechin-3-O-gallate on diabetes mellitus and diabetic complications: Recent advances. Crit. Rev. Food Sci. Nutr. 2024 64 17 5719 5747 10.1080/10408398.2022.2157372 36533409
    [Google Scholar]
  3. Trisha A.T. Shakil M.H. Talukdar S. Rovina K. Huda N. Zzaman W. Tea polyphenols and their preventive measures against cancer: Current trends and directions. Foods 2022 11 21 3349 10.3390/foods11213349 36359962
    [Google Scholar]
  4. El-Saadony M.T. Yang T. Saad A.M. Alkafaas S.S. Elkafas S.S. Eldeeb G.S. Mohammed D.M. Salem H.M. Korma S.A. Loutfy S.A. Alshahran M.Y. Ahmed A.E. Mosa W.F.A. Abd El-Mageed T.A. Ahmed A.F. Fahmy M.A. El-Tarabily M.K. Mahmoud R.M. AbuQamar S.F. El-Tarabily K.A. Lorenzo J.M. Polyphenols: Chemistry, bioavailability, bioactivity, nutritional aspects and human health benefits: A review. Int. J. Biol. Macromol. 2024 277 Pt 3 134223 10.1016/j.ijbiomac.2024.134223 39084416
    [Google Scholar]
  5. Bukowska B. Grzegorowska A. Szczerkowska-Majchrzak E. Bukowski K. Kadac-Czapska K. Grembecka M. Broncel M. Hazardous interactions between food, herbs, and drugs in the first stage of biotransformation: Case reports of adverse drug interactions in humans. Int. J. Mol. Sci. 2025 26 11 5188 10.3390/ijms26115188 40507996
    [Google Scholar]
  6. Hossam Abdelmonem B. Abdelaal N.M. Anwer E.K.E. Rashwan A.A. Hussein M.A. Ahmed Y.F. Khashana R. Hanna M.M. Abdelnaser A. Decoding the role of CYP450 enzymes in metabolism and disease: A comprehensive review. Biomedicines 2024 12 7 1467 10.3390/biomedicines12071467 39062040
    [Google Scholar]
  7. Samynathan R. Thiruvengadam M. Nile S.H. Shariati M.A. Rebezov M. Mishra R.K. Venkidasamy B. Periyasamy S. Chung I.M. Pateiro M. Lorenzo J.M. Recent insights on tea metabolites, their biosynthesis and chemo-preventing effects: A review. Crit. Rev. Food Sci. Nutr. 2023 63 18 3130 3149 10.1080/10408398.2021.1984871 34606382
    [Google Scholar]
  8. Srinivasa D.G.B. Kadiri S.K. Interaction risk: Green tea consumption in patients taking alprazolam. Drug Metab. Bioanal. Lett. 2024 17 3 104 113 10.2174/0118723128366248250206081121 40296492
    [Google Scholar]
  9. Singh H. Kumar R. Mazumder A. Salahuddin; Mazumder, R.; Abdullah, M.M. Insights into interactions of human cytochrome P450 17A1: A review. Curr. Drug Metab. 2022 23 3 172 187 10.2174/1389200223666220401093833 35366770
    [Google Scholar]
  10. Zhang Y. Wang Z. Wang Y. Jin W. Zhang Z. Jin L. Qian J. Zheng L. CYP3A4 and CYP3A5: The crucial roles in clinical drug metabolism and the significant implications of genetic polymorphisms. PeerJ 2024 12 e18636 10.7717/peerj.18636 39650550
    [Google Scholar]
  11. Liu W. Wang Y. Xia L. Li J. Research progress of plant-derived natural products against drug-resistant cancer. Nutrients 2024 16 6 797 10.3390/nu16060797 38542707
    [Google Scholar]
  12. Ogbodo U.C. Enejoh O.A. Okonkwo C.H. Gnanasekar P. Gachanja P.W. Osata S. Atanda H.C. Iwuchukwu E.A. Achilonu I. Awe O.I. Computational identification of potential inhibitors targeting cdk1 in colorectal cancer. Front Chem. 2023 11 1264808 10.3389/fchem.2023.1264808 38099190
    [Google Scholar]
  13. Timotheous R. Naz H. Arif U. Dar M.T. Sarwar M.F. Awan M.F. Ali S. Rab S.O. Virtual screening assisted identification of a phytocompound as potent inhibitor against Candida lusitaniae: An in-silico study. BMC Infect. Dis. 2025 25 1 24 10.1186/s12879‑024‑10400‑5 39762758
    [Google Scholar]
  14. Guengerich, FP Roles of cytochrome P450 enzymes in pharmacology and toxicology: Past, present, and future. Adv. Pharmacol. 2022 95 1 47 10.1016/bs.apha.2021.12.001 35953152
    [Google Scholar]
  15. Kwon Y.J. Shin S. Chun Y.J. Biological roles of cytochrome P450 1A1, 1A2, and 1B1 enzymes. Arch. Pharm. Res. 2021 44 1 63 83 10.1007/s12272‑021‑01306‑w 33484438
    [Google Scholar]
  16. Tan H.J. Ling W.C. Chua A.L. Lee S.K. Oral epigallocatechin gallate reduces intestinal nadolol absorption via modulation of Oatp1a5 and Oct1 transcriptional levels in spontaneously hypertensive rats. Phytomedicine 2021 90 153623 10.1016/j.phymed.2021.153623 34303263
    [Google Scholar]
  17. Wang Q. Liu Z. Wang R. Li R. Lian X. Yang Y. Yan J. Yin Z. Wang G. Sun J. Peng Y. Effect of Ginkgo biloba extract on pharmacology and pharmacokinetics of atorvastatin in rats with hyperlipidaemia. Food Funct. 2023 14 7 3051 3066 10.1039/D2FO03238D 36916480
    [Google Scholar]
  18. Kimani S.W. Perveen S. Szewezyk M. Zeng H. Dong A. Li F. Ghiabi P. Li Y. Chau I. Arrowsmith C.H. Barsyte-Lovejoy D. Santhakumar V. Vedadi M. Halabelian L. The co-crystal structure of Cbl-b and a small-molecule inhibitor reveals the mechanism of Cbl-b inhibition. Commun. Biol. 2023 6 1 1272 10.1038/s42003‑023‑05655‑8 38104184
    [Google Scholar]
  19. Sengupta S. Pandit A. Krishnan M.A. Sharma R. Kularatne S.A. Chelvam V. Design, synthesis, and biological evaluation of novel thiourea derivatives as small molecule inhibitors for prostate specific membrane antigen. Bioorg. Chem. 2025 155 108130 10.1016/j.bioorg.2025.108130 39787914
    [Google Scholar]
  20. Mokra D. Adamcakova J. Mokry J. Green tea polyphenol (-)-epigallocatechin-3-gallate (EGCG): A time for a new player in the treatment of respiratory diseases? Antioxidants 2022 11 8 1566 10.3390/antiox11081566 36009285
    [Google Scholar]
  21. Talib W.H. Awajan D. Alqudah A. Alsawwaf R. Althunibat R. Abu AlRoos M. Al Safadi A. Abu Asab S. Hadi R.W. Al Kury L.T. Targeting cancer hallmarks with epigallocatechin gallate (EGCG): mechanistic basis and therapeutic targets. Molecules 2024 29 6 1373 10.3390/molecules29061373 38543009
    [Google Scholar]
  22. Selvaraj C. Rudhra O. Alothaim A.S. Alkhanani M. Singh S.K. Structure and chemistry of enzymatic active sites that play a role in the switch and conformation mechanism. Adv. Protein Chem. Struct. Biol. 2022 130 59 83 10.1016/bs.apcsb.2022.02.002 35534116
    [Google Scholar]
  23. Ali Y. Imtiaz H. Tahir M.M. Gul F. Saddozai U.A.K. ur Rehman, A.; Ren, Z.G.; Khattak, S.; Ji, X.Y. Fragment-based approaches identified tecovirimat-competitive novel drug candidate for targeting the F13 protein of the monkeypox virus. Viruses 2023 15 2 570 10.3390/v15020570 36851785
    [Google Scholar]
  24. Chunarkar-Patil P. Kaleem M. Mishra R. Ray S. Ahmad A. Verma D. Bhayye S. Dubey R. Singh H. Kumar S. Anticancer drug discovery based on natural products: From computational approaches to clinical studies. Biomedicines 2024 12 1 201 10.3390/biomedicines12010201 38255306
    [Google Scholar]
  25. Jin H. Wu C. Su R. Sun T. Li X. Guo C. Identifying dopamine D3 receptor ligands through virtual screening and exploring the binding modes of hit compounds. Molecules 2023 28 2 527 10.3390/molecules28020527 36677583
    [Google Scholar]
  26. Bahadar N. Bahadar S. Sajid A. Wahid M. Ali G. Alghamdi A. Zada H. Khan T. Ullah S. Sun Q. Epigallocatechin gallate and curcumin inhibit Bcl-2: A pharmacophore and docking based approach against cancer. Breast Cancer Res. 2024 26 1 114 10.1186/s13058‑024‑01868‑9 38978121
    [Google Scholar]
  27. Singh A.P. Ahmad S. Raza K. Gautam H.K. Computational screening and MM/GBSA-based MD simulation studies reveal the high binding potential of FDA-approved drugs against Cutibacterium acnes sialidase. J. Biomol. Struct. Dyn. 2024 42 12 6245 6255 10.1080/07391102.2023.2242950 37545341
    [Google Scholar]
  28. Edache E.I. Adedayo A. Dawi H.A. Ugbe F.A. Drug-like screening, molecular docking, molecular dynamics simulations, and binding free energies on the interaction of pyrazole derivatives as inhibitors of lysosomal storage disorders and anticancer activity. Discover Chemistry 2024 1 1 22 10.1007/s44371‑024‑00025‑7
    [Google Scholar]
  29. Das I.J. Bhatta K. Sarangi I. Samal H.B. Innovative computational approaches in drug discovery and design. Adv. Pharmacol. 2025 103 1 22 10.1016/bs.apha.2025.01.006 40175036
    [Google Scholar]
  30. Rahman H Bintang MI Asnawi A Febrina E Exploring the molecular interactions between volatile compounds in coconut shell liquid smoke and human bitter taste TAS2R46 based on the molecular docking and molecular dynamics. Trop. J. Nat. Prod Res 2023 7 12 10.26538/tjnpr/v7i12.31
    [Google Scholar]
  31. Sakhawat A. Khan M.U. Rehman R. Khan S. Shan M.A. Batool A. Javed M.A. Ali Q. Natural compound targeting BDNF V66M variant: Insights from in silico docking and molecular analysis. AMB Express 2023 13 1 134 10.1186/s13568‑023‑01640‑w 38015338
    [Google Scholar]
  32. Shah M. Patel M. Shah M. Patel M. Prajapati M. Computational transformation in drug discovery: A comprehensive study on molecular docking and quantitative structure activity relationship (QSAR). Intelligent Pharmacy 2024 2 5 589 595 10.1016/j.ipha.2024.03.001
    [Google Scholar]
  33. Onifade I.A. Umar H.I. Aborode A.T. Awaji A.A. Jegede I.D. Adeleye B.H. Fatoba D.O. Bello R.O. Fakorede S. Idowu N. In silico study of selected alkaloids as dual inhibitors of β- and γ-secretases for Alzheimer’s disease. J. Alzheimers Dis. 2025 103 4 1191 1215 10.1177/13872877241313049 39956948
    [Google Scholar]
  34. Iqbal D. Alsaweed M. Jamal Q.M.S. Asad M.R. Rizvi S.M.D. Rizvi M.R. Albadrani H.M. Hamed M. Jahan S. Alyenbaawi H. Pharmacophore-based screening, molecular docking, and dynamic simulation of fungal metabolites as inhibitors of multi-targets in neurodegenerative disorders. Biomolecules 2023 13 11 1613 10.3390/biom13111613 38002295
    [Google Scholar]
  35. Hassan A.M. Bajrai L.H. Alharbi A.S. Alhamdan M.M. Dwivedi V.D. Azhar E.I. Elucidating the role of PPARG inhibition in enhancing MERS virus immune response: A network pharmacology and computational drug discovery. J. Infect. Public Health 2024 17 11 102561 10.1016/j.jiph.2024.102561 39437592
    [Google Scholar]
  36. Xing F. Wang Z. Bahadar N. Wang C. Wang X.D. Molecular insights into kaempferol derivatives as potential inhibitors for CDK2 in colon cancer: Pharmacophore modeling, docking, and dynamic analysis. Front Chem. 2024 12 1440196 10.3389/fchem.2024.1440196 39233923
    [Google Scholar]
  37. Zhao T. Li C. Wang S. Song X. Green tea (Camellia sinensis); A review of its phytochemistry, pharmacology, and toxicology. Molecules 2022 27 12 3909 10.3390/molecules27123909 35745040
    [Google Scholar]
  38. Luo Q. Luo L. Zhao J. Wang Y. Luo H. Biological potential and mechanisms of Tea’s bioactive compounds: An Updated review. J. Adv. Res. 2024 65 345 363 10.1016/j.jare.2023.12.004 38056775
    [Google Scholar]
  39. Farhan M. Green tea catechins: Nature’s way of preventing and treating cancer. Int. J. Mol. Sci. 2022 23 18 10713 10.3390/ijms231810713 36142616
    [Google Scholar]
  40. Sheng Y. Sun Y. Tang Y. Yu Y. Wang J. Zheng F. Li Y. Sun Y. Catechins: Protective mechanism of antioxidant stress in atherosclerosis. Front. Pharmacol. 2023 14 1144878 10.3389/fphar.2023.1144878 37033663
    [Google Scholar]
  41. Truong V.L. Jeong W.S. Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases. Food Sci. Hum. Wellness 2022 11 3 502 511 10.1016/j.fshw.2021.12.008
    [Google Scholar]
  42. Dzah C.S. Zhang H. Gobe V. Asante-Donyinah D. Duan Y. Anti- and pro-oxidant properties of polyphenols and their role in modulating glutathione synthesis, activity and cellular redox potential: Potential synergies for disease management. Adv. Redox Res. 2024 11 100099 10.1016/j.arres.2024.100099
    [Google Scholar]
  43. James A. Wang K. Wang Y. Therapeutic activity of green tea epigallocatechin-3-gallate on metabolic diseases and non-alcoholic fatty liver diseases: The current updates. Nutrients 2023 15 13 3022 10.3390/nu15133022 37447347
    [Google Scholar]
  44. Wei Y. Shao J. Pang Y. Wen C. Wei K. Peng L. Wang Y. Wei X. Antidiabetic potential of tea and its active compounds: From molecular mechanism to clinical evidence. J. Agric. Food Chem. 2024 72 21 11837 11853 10.1021/acs.jafc.3c08492 38743877
    [Google Scholar]
  45. Ntamo Y. Jack B. Ziqubu K. Mazibuko-Mbeje S.E. Nkambule B.B. Nyambuya T.M. Mabhida S.E. Hanser S. Orlando P. Tiano L. Dludla P.V. Epigallocatechin gallate as a nutraceutical to potentially target the metabolic syndrome: novel insights into therapeutic effects beyond its antioxidant and anti-inflammatory properties. Crit. Rev. Food Sci. Nutr. 2024 64 1 87 109 10.1080/10408398.2022.2104805 35916835
    [Google Scholar]
  46. Capasso L. De Masi L. Sirignano C. Maresca V. Basile A. Nebbioso A. Rigano D. Bontempo P. Epigallocatechin gallate (EGCG): Pharmacological properties, biological activities and therapeutic potential. Molecules 2025 30 3 654 10.3390/molecules30030654 39942757
    [Google Scholar]
  47. Alam M. Ali S. Ashraf G.M. Bilgrami A.L. Yadav D.K. Hassan M.I. Epigallocatechin 3-gallate: From green tea to cancer therapeutics. Food Chem. 2022 379 132135 10.1016/j.foodchem.2022.132135 35063850
    [Google Scholar]
  48. Sahadevan R. Singh S. Binoy A. Sadhukhan S. Chemico-biological aspects of (−)- epigallocatechin- 3 -gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects. Crit. Rev. Food Sci. Nutr. 2023 63 30 10382 10411 10.1080/10408398.2022.2068500 35491671
    [Google Scholar]
  49. Li D. Cao D. Sun Y. Cui Y. Zhang Y. Jiang J. Cao X. The roles of epigallocatechin gallate in the tumor microenvironment, metabolic reprogramming, and immunotherapy. Front. Immunol. 2024 15 1331641 10.3389/fimmu.2024.1331641 38348027
    [Google Scholar]
  50. Ghobadi N. Asoodeh A. Curcumin and epigallocatechin-3-gallate: Targeting receptor tyrosine kinases and their signaling pathways in cancer therapy. Curr. Pharmacol. Rep. 2024 10 6 297 311 10.1007/s40495‑024‑00379‑7
    [Google Scholar]
  51. Gómez-Garduño J. León-Rodríguez R. Alemón-Medina R. Pérez-Guillé B.E. Soriano-Rosales R.E. González-Ortiz A. Chávez-Pacheco J.L. Solorio-López E. Fernandez-Pérez P. Rivera-Espinosa L. Phytochemicals that interfere with drug metabolism and transport, modifying plasma concentration in humans and animals. Dose Response 2022 20 3 15593258221120485 10.1177/15593258221120485 36158743
    [Google Scholar]
  52. Duda-Chodak A. Tarko T. Possible side effects of polyphenols and their interactions with medicines. Molecules 2023 28 6 2536 10.3390/molecules28062536 36985507
    [Google Scholar]
  53. Khelfaoui H. Harkati D. Saleh B.A. Molecular docking, molecular dynamics simulations and reactivity, studies on approved drugs library targeting ACE2 and SARS-CoV-2 binding with ACE2. J. Biomol. Struct. Dyn. 2021 39 18 7246 7262 10.1080/07391102.2020.1803967 32752951
    [Google Scholar]
/content/journals/dmb/10.2174/0118723128421990251029074158
Loading
/content/journals/dmb/10.2174/0118723128421990251029074158
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test