Skip to content
2000
image of Pharmacokinetic Study: Liquid Chromatographic Assay of Apigenin and Analogues in Rat Plasma after Oral Administration

Abstract

Introduction

Various methods are available for estimating apigenin, but no methods have been applied to the pharmacokinetic study of its prepared analogues, such as polymorphs, co-crystals, and complexes. This study aims to develop a method for the pharmacokinetic assessment of apigenin and its analogues using HPLC-UV.

Methods

The internal standardization approach was utilized to analyse apigenin and its derivatives using UV detection at 340 nm, with chromatographic separation achieved under isocratic conditions on a Phenomenex C18 column (250 mm × 4.6 mm id, 5 μm). The optimal mobile phase consisted of a mixture of 0.3% formic acid and methanol (30:70, ) at a 1.5 mL/min flow rate. The system demonstrated a significant and well-resolved peak for apigenin and the internal standard quercetin, with retention times of 4.2 and 2.9 minutes, respectively. The calibration curve’s linear regression analysis revealed a robust linear relationship over the concentration range of 2–10. 0 μg/mL; R2 was determined to be 0.9995.

Results

The findings indicated that the limit of quantification (LOQ) and limit of detection (LOD) were 0.0803μg and 0.0265μg, respectively. The pharmacokinetics in rats were evaluated using this approach. Cmax, the plasma concentration of apigenin and its analogs, was reached following an oral dose of 60 mg/kg/rat. The collected data were utilized to calculate all pharmacokinetic parameters.

Discussion

The pharmacokinetic study revealed that apigenin analogues (A2–A7 and C1) significantly improved the oral bioavailability of apigenin (AP), as indicated by elevated Cmax and AUC values relative to AP alone. Specifically, analogues A6 and A7 reached peak plasma concentrations more swiftly, implying a quicker onset of action, whereas A3 exhibited a delayed Tmax, reflecting slower absorption.

Conclusion

Following oral administration of a single dose of apigenin, this method was deemed suitable for quantifying the levels of apigenin and its derivatives in rats. This HPLC methodology could be an effective tool for determining apigenin analogues in plasma due to its excellent sensitivity, accuracy, linearity, and specificity.

Loading

Article metrics loading...

/content/journals/dmb/10.2174/0118723128392798250807200527
2025-09-01
2025-11-17
Loading full text...

Full text loading...

References

  1. Thomas M.B. The Systematic Identification of Flavonoids. Berlin, Germany Springer Verlag 1970
    [Google Scholar]
  2. O’Neil M.J. Heckelman P.E. Dobbelaar P.H. Roman K.J. Apigenin. In: The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 15th ed.; : Whitehouse Station, NJ, 2013
    [Google Scholar]
  3. Hostetler G.L. Ralston R.A. Schwartz S.J. Flavones: Food sources, bioavailability, metabolism, and bioactivity. Adv. Nutr. 2017 8 3 423 435 10.3945/an.116.012948 28507008
    [Google Scholar]
  4. Ullah A. Munir S. Badshah S.L. Khan N. Ghani L. Poulson B.G. Emwas A.H. Jaremko M. Important flavonoids and their role as a therapeutic agent. Molecules 2020 25 22 5243 10.3390/molecules25225243
    [Google Scholar]
  5. Panche A.N. Diwan A.D. Chandra S.R. Flavonoids: An overview. J. Nutr. Sci. 2016 5 47 10.1017/jns.2016.41 28620474
    [Google Scholar]
  6. Al-Khayri J.M. Sahana G.R. Nagella P. Joseph B.V. Alessa F.M. Al-Mssallem M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules 2022 27 9 2901 10.3390/molecules27092901
    [Google Scholar]
  7. Briguglio G. Costa C. Pollicino M. Giambò F. Catania S. Fenga C. Polyphenols in cancer prevention: New insights (Review). Int. J. Funct. Nutr. 2020 1 2 9 10.3892/ijfn.2020.9
    [Google Scholar]
  8. Mahmud A.R. Ema T.I. Siddiquee M.F.R. Shahriar A. Ahmed H. Mosfeq-Ul-Hasan M. Rahman N. Islam R. Uddin M.R. Mizan M.F.R. Natural flavonols: Actions, mechanisms, and potential therapeutic utility for various diseases. Beni. Suef Univ. J. Basic Appl. Sci. 2023 12 1 47 10.1186/s43088‑023‑00387‑4 37216013
    [Google Scholar]
  9. Savjani K.T. Gajjar A.K. Savjani J.K. Drug solubility: Importance and enhancement techniques. ISRN Pharm. 2012 2012 1 10 10.5402/2012/195727 22830056
    [Google Scholar]
  10. Hyunmyung K. Hyun K. Seunho J. Aqueous solubility enhancement of some flavone by complexation with cyclodextrins. Bull. Korean Chem. Soc. 2008 29 3 590 594 10.5012/BKCS.2008.29.3.590
    [Google Scholar]
  11. Gupta K.R. Gautam A. Ganorkar A.V. Umekar M.J. Solubility enhancement and pharmacokinetic assessment of chemically modified lamotrigine in rat blood plasma by HPLC. Asian J. Appl. Chem. Res. 2019 4 1 1 16 10.9734/ajacr/2019/v4i1‑230101
    [Google Scholar]
  12. Ali F. Rahul; Naz, F.; Jyoti, S.; Siddique, Y.H. Health functionality of apigenin: A review. Int. J. Food Prop. 2017 20 6 1197 1238 10.1080/10942912.2016.1207188
    [Google Scholar]
  13. Yuan J.L. Liu H. Kang X. Lv Z. Zou G.L. Characteristics of the isomeric flavonoids apigenin and genistein binding to hemoglobin by spectroscopic methods. J. Mol. Struct. 2008 891 1-3 333 339 10.1016/j.molstruc.2008.04.017
    [Google Scholar]
  14. Corredor C. Teslova T. Cañamares M.V. Chen Z. Zhang J. Lombardi J.R. Leona M. Raman and surface-enhanced Raman spectra of chrysin, apigenin and luteolin. Vib. Spectrosc. 2009 49 2 190 195 10.1016/j.vibspec.2008.07.012
    [Google Scholar]
  15. Min X. Weidone Y. Zizhang Z. Solubility of apigenin in ethanol + water at different temperature. J. Chem. Eng. Data 2010 55 3349 3348 10.1021/JE100120
    [Google Scholar]
  16. Al Shaal L. Shegokar R. Müller R.H. Production and characterization of antioxidant apigenin nanocrystals as a novel UV skin protective formulation. Int. J. Pharm. 2011 420 1 133 140 10.1016/j.ijpharm.2011.08.018 21871547
    [Google Scholar]
  17. Dighe V. Mestry D. Shambhu N. High performance liquid chromatographic method for quantization of apigenin from. Int. J. Pharma Bio Sci. 2011 2 1 742749
    [Google Scholar]
  18. Romanová D. Grančai D. Jóžová B. Božek P. Vachálková A. Determination of apigenin in rat plasma by high-performance liquid chromatography. J. Chromatogr. A 2000 870 1-2 463 467 10.1016/S0021‑9673(99)00939‑5 10722103
    [Google Scholar]
  19. Zhang J. Liu D. Huang Y. Gao Y. Qian S. Biopharmaceutics classification and intestinal absorption study of apigenin. Int. J. Pharm. 2012 436 1-2 311 317 10.1016/j.ijpharm.2012.07.002 22796171
    [Google Scholar]
  20. Mariappan G. Sundaraganesan N. Manoharan S. The spectroscopic properties of anticancer drug Apigenin investigated by using DFT calculations, FT-IR, FT-Raman and NMR analysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2012 95 86 99 10.1016/j.saa.2012.04.089 22617215
    [Google Scholar]
  21. Zhang J. Huang Y. Liu D. Gao Y. Qian S. Preparation of apigenin nanocrystals using supercritical antisolvent process for dissolution and bioavailability enhancement. Eur. J. Pharm. Sci. 2013 48 4-5 740 747 10.1016/j.ejps.2012.12.026 23305994
    [Google Scholar]
  22. Aiyalu R. Vivekanandan K. Nagulsamy S. Muthusamy K. Simultanious estimation of leutolin and apigenin in methanolic leaf extract of cardiospermum halicacabum by HPLC. Int. Res. J. Pharm. 2013 4 7 109 113 10.7897/2230‑8407.04724
    [Google Scholar]
  23. Guzelmeric E. Vovk I. Yesilada E. Development and validation of an HPTLC method for apigenin 7-O-glucoside in chamomile flowers and its application for fingerprint discrimination of chamomile-like materials. J. Pharm. Biomed. Anal. 2015 107 108 118 10.1016/j.jpba.2014.12.021
    [Google Scholar]
  24. Yu X. Xia K. Wu S. Wang Q. Cheng W. Ji C. Yang W. Kang C. Yuan Z. Li Y. Simultaneous determination and pharmacokinetic study of six components in beagle dog plasma by UPLC-MS/MS after oral administration of Astragalus Membranaceus aqueous extract. Biomed. Chromatogr. 2022 36 12 e5488 10.1002/bmc.5488
    [Google Scholar]
  25. Yu X. Zhao L. Yuan Z. Li Y. Pharmacokinetic drug-drug interactions involving antiretroviral agents: An update. Curr. Drug Metab. 2023 24 7 493 524 10.2174/1389200224666230418093139 37076461
    [Google Scholar]
  26. Wal P. Bioanalytical method development –determination of drugs in biological fluids. J. Pharm. Sci. Technol. 2010 2 10 333347
    [Google Scholar]
  27. Kirthi A. Shanmugam R. Shanti M. Jamal D. A review on bioanalytical method development and validation by Rp-HPLC. J. Glob. Trends Pharm. Sci. 2014 5 4 2265 2271
    [Google Scholar]
  28. Guideline, FDA Guidance for Industry Bioanalytical Method Validation This guidance has been prepared by the Biopharmaceutics Coordinating Committee in the Center for Drug Evaluation and Research (CDER) in cooperation with the Center for Veterinary Medicine (CVM) at the Food and Drug Administration.
    [Google Scholar]
  29. Singh G. Pai R.S. Sanual M. Liquid chromatographic assay for the analysis of atazanavir in rat plasma after oral administration: Application to a pharmacokinetic study. J. Chromatograph Separat Techniq 2014 5 222 10.4172/2157‑7064.1000222
    [Google Scholar]
/content/journals/dmb/10.2174/0118723128392798250807200527
Loading
/content/journals/dmb/10.2174/0118723128392798250807200527
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: Liquid chromatographic ; plasma ; apigenin ; HPLC ; pharmacokinetics ; validation
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test