Skip to content
2000
image of Assessment of Impacts of Clinically Effective Antihypertensive Herbal Medicines on the Activities of Major Drug Metabolizing Enzymes and Transport Proteins

Abstract

Introduction

Hypertension is one of the most common non-communicable diseases, and reports indicate that its prevalence is escalating globally due to several factors. Studies in different countries have shown an upsurge in the use of Herbal Medicinal Products (HMPs), including herbal antihypertensive medicines taken by people with hypertension, and 20-80% of hypertensive patients concurrently use these herbal medicines and conventional antihypertensive medicines or other drugs. The safety and efficacy of the concurrent use of herbal and orthodox medicines are of great concern because of the high possibility of herb-drug interactions.

Methods

An extensive literature search was undertaken, and the information obtained was subjected to critical analysis. This review aimed to update the available data on HMPs with reproducible evidence-based antihypertensive efficacies. Additionally, the major phytochemical and bioactive constituents of these HMPs were identified along with a discussion of their potential to modulate activities of drug-metabolizing enzymes and drug transport systems, especially P-glycoprotein.

Results

More than 50 commonly used medicinal plants from different regions of the world have been documented for their anti-hypertensive activity. Most of these studies used animal models to authenticate the antihypertensive activities of the herbs. In contrast, a few studies on extracts of , and involved clinical trials. Potentials for herb-drug interactions varied among the clinically effective HMPs due to the wide variability in their phytochemical constituents.

Conclusion

Safety issues in using these HMPs were highlighted by the identification of beneficial or adverse, clinically significant herb-drug interactions.

Loading

Article metrics loading...

/content/journals/dmb/10.2174/0118723128380660250717140750
2025-08-07
2025-11-17
Loading full text...

Full text loading...

References

  1. Mills K.T. Stefanescu A. He J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 2020 16 4 223 237 10.1038/s41581‑019‑0244‑2 32024986
    [Google Scholar]
  2. Azizah N. Halimah E. Puspitasari I.M. Hasanah A.N. Simultaneous use of herbal medicines and antihypertensive drugs among hypertensive patients in the community: A review. J. Multidiscip. Healthc. 2021 14 259 270 10.2147/JMDH.S289156 33568913
    [Google Scholar]
  3. Zhou B. Carrillo-Larco R.M. Danaei G. Riley L.M. Paciorek C.J. Stevens G.A. Gregg E.W. Bennett J.E. Solomon B. Singleton R.K. Sophiea M.K. Iurilli M.L.C. Lhoste V.P.F. Cowan M.J. Savin S. Woodward M. Balanova Y. Cifkova R. Damasceno A. Elliott P. Farzadfar F. He J. Ikeda N. Kengne A.P. Khang Y-H. Kim H.C. Laxmaiah A. Lin H-H. Margozzini Maira P. Miranda J.J. Neuhauser H. Sundström J. Varghese C. Widyahening I.S. Zdrojewski T. Abarca-Gómez L. Abdeen Z.A. Abdul Rahim H.F. Abu-Rmeileh N.M. Acosta-Cazares B. Adams R.J. Aekplakorn W. Afsana K. Afzal S. Agdeppa I.A. Aghazadeh-Attari J. Aguilar-Salinas C.A. Agyemang C. Ahmad N.A. Ahmadi A. Ahmadi N. Ahmadi N. Ahmadizar F. Ahmed S.H. Ahrens W. Ajlouni K. Al-Raddadi R. Alarouj M. AlBuhairan F. AlDhukair S. Ali M.M. Alkandari A. Alkerwi A. Allin K. Aly E. Amarapurkar D.N. Amougou N. Amouyel P. Andersen L.B. Anderssen S.A. Anjana R.M. Ansari-Moghaddam A. Ansong D. Aounallah-Skhiri H. Araújo J. Ariansen I. Aris T. Arku R.E. Arlappa N. Aryal K.K. Aspelund T. Assah F.K. Assunção M.C.F. Auvinen J. Avdićová M. Azevedo A. Azimi-Nezhad M. Azizi F. Azmin M. Babu B.V. Bahijri S. Balakrishna N. Bamoshmoosh M. Banach M. Banadinović M. Bandosz P. Banegas J.R. Baran J. Barbagallo C.M. Barceló A. Barkat A. Barreto M. Barros A.J.D. Barros M.V.G. Bartosiewicz A. Basit A. Bastos J.L.D. Bata I. Batieha A.M. Batyrbek A. Baur L.A. Beaglehole R. Belavendra A. Ben Romdhane H. Benet M. Benson L.S. Berkinbayev S. Bernabe-Ortiz A. Bernotiene G. Bettiol H. Bezerra J. Bhagyalaxmi A. Bhargava S.K. Bia D. Biasch K. Lele B. E.C.; Bikbov, M.M.; Bista, B.; Bjerregaard, P.; Bjertness, E.; Bjertness, M.B.; Björkelund, C.; Bloch, K.V.; Blokstra, A.; Bo, S.; Bobak, M.; Boeing, H.; Boggia, J.G.; Boissonnet, C.P.; Bojesen, S.E.; Bongard, V.; Bonilla-Vargas, A.; Bopp, M.; Borghs, H.; Bovet, P.; Boyer, C.B.; Braeckman, L.; Brajkovich, I.; Branca, F.; Breckenkamp, J.; Brenner, H.; Brewster, L.M.; Briceño, Y.; Brito, M.; Bruno, G.; Bueno-de-Mesquita, H.B.; Bueno, G.; Bugge, A.; Burns, C.; Bursztyn, M.; Cabrera de León, A.; Cacciottolo, J.; Cameron, C.; Can, G.; Cândido, A.P.C.; Capanzana, M.V.; Čapková, N.; Capuano, E.; Capuano, V.; Cardoso, V.C.; Carlsson, A.C.; Carvalho, J.; Casanueva, F.F.; Censi, L.; Cervantes-Loaiza, M.; Chadjigeorgiou, C.A.; Chamukuttan, S.; Chan, A.W.; Chan, Q.; Chaturvedi, H.K.; Chaturvedi, N.; Chee, M.L.; Chen, C-J.; Chen, F.; Chen, H.; Chen, S.; Chen, Z.; Cheng, C-Y.; Cheraghian, B.; Cherkaoui Dekkaki, I.; Chetrit, A.; Chien, K-L.; Chiolero, A.; Chiou, S-T.; Chirita-Emandi, A.; Chirlaque, M-D.; Cho, B.; Christensen, K.; Christofaro, D.G.; Chudek, J.; Cinteza, E.; Claessens, F.; Clarke, J.; Clays, E.; Cohen, E.; Concin, H.; Cooper, C.; Coppinger, T.C.; Costanzo, S.; Cottel, D.; Cowell, C.; Craig, C.L.; Crampin, A.C.; Crujeiras, A.B.; Cruz, J.J.; Csilla, S.; Cui, L.; Cureau, F.V.; Cuschieri, S.; D’Arrigo, G.; d’Orsi, E.; Dallongeville, J.; Dankner, R.; Dantoft, T.M.; Dauchet, L.; Davletov, K.; De Backer, G.; De Bacquer, D.; De Curtis, A.; de Gaetano, G.; De Henauw, S.; de Oliveira, P.D.; De Ridder, D.; De Smedt, D.; Deepa, M.; Deev, A.D.; DeGennaro, V.J.; Delisle, H.; Demarest, S.; Dennison, E.; Deschamps, V.; Dhimal, M.; Di Castelnuovo, A.F.; Dias-da-Costa, J.S.; Diaz, A.; Dickerson, T.T.; Dika, Z.; Djalalinia, S.; Do, H.T.P.; Dobson, A.J.; Donfrancesco, C.; Donoso, S.P.; Döring, A.; Dorobantu, M.; Dörr, M.; Doua, K.; Dragano, N.; Drygas, W.; Duante, C.A.; Duboz, P.; Duda, R.B.; Dulskiene, V.; Dushpanova, A.; Džakula, A.; Dzerve, V.; Dziankowska-Zaborszczyk, E.; Eddie, R.; Eftekhar, E.; Eggertsen, R.; Eghtesad, S.; Eiben, G.; Ekelund, U.; El-Khateeb, M.; El Ati, J.; Eldemire-Shearer, D.; Eliasen, M.; Elosua, R.; Erasmus, R.T.; Erbel, R.; Erem, C.; Eriksen, L.; Eriksson, J.G.; Escobedo-de la Peña, J.; Eslami, S.; Esmaeili, A.; Evans, A.; Faeh, D.; Fakhretdinova, A.A.; Fall, C.H.; Faramarzi, E.; Farjam, M.; Fattahi, M.R.; Fawwad, A.; Felix-Redondo, F.J.; Felix, S.B.; Ferguson, T.S.; Fernandes, R.A.; Fernández-Bergés, D.; Ferrante, D.; Ferrao, T.; Ferrari, M.; Ferrario, M.M.; Ferreccio, C.; Ferreira, H.S.; Ferrer, E.; Ferrieres, J.; Figueiró, T.H.; Fink, G.; Fischer, K.; Foo, L.H.; Forsner, M.; Fouad, H.M.; Francis, D.K.; Franco, M.C.; Frikke-Schmidt, R.; Frontera, G.; Fuchs, F.D.; Fuchs, S.C.; Fujita, Y.; Fumihiko, M.; Furdela, V.; Furer, A.; Furusawa, T.; Gaciong, Z.; Galbarczyk, A.; Galenkamp, H.; Galvano, F.; Gao, J.; Gao, P.; Garcia-de-la-Hera, M.; Garcia, P.; Gareta, D.; Garnett, S.P.; Gaspoz, J-M.; Gasull, M.; Gazzinelli, A.; Gehring, U.; Geleijnse, J.M.; George, R.; Ghanbari, A.; Ghasemi, E.; Gheorghe-Fronea, O-F.; Ghimire, A.; Gialluisi, A.; Giampaoli, S.; Gieger, C.; Gill, T.K.; Giovannelli, J.; Gironella, G.; Giwercman, A.; Gkiouras, K.; Goldberg, M.; Goldsmith, R.A.; Gomez, L.F.; Gomula, A.; Gonçalves, H.; Gonçalves, M.; Gonçalves Cordeiro da Silva, B.; Gonzalez-Chica, D.A.; Gonzalez-Gross, M.; González-Rivas, J.P.; González-Villalpando, C.; González-Villalpando, M-E.; Gonzalez, A.R.; Gorbea, M.B.; Gottrand, F.; Graff-Iversen, S.; Grafnetter, D.; Grajda, A.; Grammatikopoulou, M.G.; Gregor, R.D.; Grodzicki, T.; Grosso, G.; Gruden, G.; Gu, D.; Guan, O.P.; Gudmundsson, E.F.; Gudnason, V.; Guerrero, R.; Guessous, I.; Guimaraes, A.L.; Gulliford, M.C.; Gunnlaugsdottir, J.; Gunter, M.J.; Gupta, P.C.; Gupta, R.; Gureje, O.; Gurzkowska, B.; Gutierrez, L.; Gutzwiller, F.; Ha, S.; Hadaegh, F.; Haghshenas, R.; Hakimi, H.; Halkjær, J.; Hambleton, I.R.; Hamzeh, B.; Hange, D.; Hanif, A.A.M.; Hantunen, S.; Hao, J.; Hardman, C.M.; Hari Kumar, R.; Hashemi-Shahri, S.M.; Hata, J.; Haugsgjerd, T.; Hayes, A.J.; He, Y.; Heier, M.; Hendriks, M.E.; Henrique, R.S.; Henriques, A.; Hernandez Cadena, L.; Herqutanto; Herrala, S.; Heshmat, R.; Hill, A.G.; Ho, S.Y.; Ho, S.C.; Hobbs, M.; Holdsworth, M.; Homayounfar, R.; Horasan Dinc, G.; Horimoto, A.R.V.R.; Hormiga, C.M.; Horta, B.L.; Houti, L.; Howitt, C.; Htay, T.T.; Htet, A.S.; Htike, M.M.T.; Hu, Y.; Huerta, J.M.; Huhtaniemi, I.T.; Huiart, L.; Huisman, M.; Husseini, A.S.; Huybrechts, I.; Hwalla, N.; Iacoviello, L.; Iannone, A.G.; Ibrahim, M.M.; Ibrahim Wong, N.; Ikram, M.A.; Iotova, V.; Irazola, V.E.; Ishida, T.; Isiguzo, G.C.; Islam, M.; Islam, S.M.S.; Iwasaki, M.; Jackson, R.T.; Jacobs, J.M.; Jaddou, H.Y.; Jafar, T.; James, K.; Jamrozik, K.; Janszky, I.; Janus, E.; Jarvelin, M-R.; Jasienska, G.; Jelaković, A.; Jelaković, B.; Jennings, G.; Jha, A.K.; Jiang, C.Q.; Jimenez, R.O.; Jöckel, K-H.; Joffres, M.; Johansson, M.; Jokelainen, J.J.; Jonas, J.B.; Jørgensen, T.; Joshi, P.; Joukar, F.; Jóżwiak, J.; Juolevi, A.; Jurak, G.; Jureša, V.; Kaaks, R.; Kafatos, A.; Kajantie, E.O.; Kalmatayeva, Z.; Kalpourtzi, N.; Kalter-Leibovici, O.; Kampmann, F.B.; Kannan, S.; Karaglani, E.; Kårhus, L.L.; Karki, K.B.; Katibeh, M.; Katz, J.; Kauhanen, J.; Kaur, P.; Kavousi, M.; Kazakbaeva, G.M.; Keil, U.; Keinan Boker, L.; Keinänen-Kiukaanniemi, S.; Kelishadi, R.; Kemper, H.C.G.; Keramati, M.; Kerimkulova, A.; Kersting, M.; Key, T.; Khader, Y.S.; Khalili, D.; Khaw, K-T.; Kheiri, B.; Kheradmand, M.; Khosravi, A.; Kiechl-Kohlendorfer, U.; Kiechl, S.; Killewo, J.; Kim, D.W.; Kim, J.; Klakk, H.; Klimek, M.; Klumbiene, J.; Knoflach, M.; Kolle, E.; Kolsteren, P.; Kontto, J.P.; Korpelainen, R.; Korrovits, P.; Kos, J.; Koskinen, S.; Kouda, K.; Kowlessur, S.; Koziel, S.; Kratenova, J.; Kriaucioniene, V.; Kristensen, P.L.; Krokstad, S.; Kromhout, D.; Kruger, H.S.; Kubinova, R.; Kuciene, R.; Kujala, U.M.; Kulaga, Z.; Kumar, R.K.; Kurjata, P.; Kusuma, Y.S.; Kutsenko, V.; Kuulasmaa, K.; Kyobutungi, C.; Laatikainen, T.; Lachat, C.; Laid, Y.; Lam, T.H.; Landrove, O.; Lanska, V.; Lappas, G.; Larijani, B.; Latt, T.S.; Le Coroller, G.; Le Nguyen Bao, K.; Le, T.D.; Lee, J.; Lee, J.; Lehmann, N.; Lehtimäki, T.; Lemogoum, D.; Levitt, N.S.; Li, Y.; Lilly, C.L.; Lim, W-Y.; Lima-Costa, M.F.; Lin, X.; Lin, Y-T.; Lind, L.; Lingam, V.; Linneberg, A.; Lissner, L.; Litwin, M.; Lo, W-C.; Loit, H-M.; Lopez-Garcia, E.; Lopez, T.; Lotufo, P.A.; Lozano, J.E.; Lukačević Lovrenčić, I.; Lukrafka, J.L.; Luksiene, D.; Lundqvist, A.; Lundqvist, R.; Lunet, N.; Lustigová, M.; Luszczki, E.; Ma, G.; Ma, J.; Machado-Coelho, G.L.L.; Machado-Rodrigues, A.M.; Macia, E.; Macieira, L.M.; Madar, A.A.; Maggi, S.; Magliano, D.J.; Magriplis, E.; Mahasampath, G.; Maire, B.; Majer, M.; Makdisse, M.; Malekzadeh, F.; Malekzadeh, R.; Malhotra, R.; Mallikharjuna Rao, K.; Malyutina, S.K.; Maniego, L.V.; Manios, Y.; Mann, J.I.; Mansour-Ghanaei, F.; Manzato, E.; Marcil, A.; Mårild, S.B.; Marinović Glavić, M.; Marques-Vidal, P.; Marques, L.P.; Marrugat, J.; Martorell, R.; Mascarenhas, L.P.; Matasin, M.; Mathiesen, E.B.; Mathur, P.; Matijasevich, A.; Matlosz, P.; Matsha, T.E.; Mavrogianni, C.; Mbanya, J.C.N.; Mc Donald Posso, A.J.; McFarlane, S.R.; McGarvey, S.T.; McLachlan, S.; McLean, R.M.; McLean, S.B.; McNulty, B.A.; Mediene Benchekor, S.; Medzioniene, J.; Mehdipour, P.; Mehlig, K.; Mehrparvar, A.H.; Meirhaeghe, A.; Meisinger, C.; Mendoza Montano, C.; Menezes, A.M.B.; Menon, G.R.; Mereke, A.; Meshram, I.I.; Metspalu, A.; Meyer, H.E.; Mi, J.; Michels, N.; Mikkel, K.; Milkowska, K.; Miller, J.C.; Minderico, C.S.; Mini, G.K.; Mirjalili, M.R.; Mirrakhimov, E.; Mišigoj-Duraković, M.; Modesti, P.A.; Moghaddam, S.S.; Mohajer, B.; Mohamed, M.K.; Mohamed, S.F.; Mohammad, K.; Mohammadi, M.R.; Mohammadi, Z.; Mohammadifard, N.; Mohammadpourhodki, R.; Mohan, V.; Mohanna, S.; Mohd Yusoff, M.F.; Mohebbi, I.; Mohebi, F.; Moitry, M.; Møllehave, L.T.; Molnár, D.; Momenan, A.; Mondo, C.K.; Monterrubio-Flores, E.; Monyeki, K.D.K.; Moon, J.S.; Moosazadeh, M.; Moreira, L.B.; Morejon, A.; Moreno, L.A.; Morgan, K.; Moschonis, G.; Mossakowska, M.; Mostafa, A.; Mostafavi, S-A.; Mota, J.; Motlagh, M.E.; Motta, J.; Moura-dos-Santos, M.A.; Mridha, M.K.; Msyamboza, K.P.; Mu, T.T.; Muhihi, A.J.; Muiesan, M.L.; Müller-Nurasyid, M.; Murphy, N.; Mursu, J.; Musa, K.I.; Musić Milanović, S.; Musil, V.; Mustafa, N.; Nabipour, I.; Naderimagham, S.; Nagel, G.; Naidu, B.M.; Najafi, F.; Nakamura, H.; Námešná, J.; Nang, E.E.K.; Nangia, V.B.; Narake, S.; Ndiaye, N.C.; Neal, W.A.; Nejatizadeh, A.; Nenko, I.; Neovius, M.; Nguyen, C.T.; Nguyen, N.D.; Nguyen, Q.V.; Nguyen, Q.N.; Nieto-Martínez, R.E.; Niiranen, T.J.; Nikitin, Y.P.; Ninomiya, T.; Nishtar, S.; Njelekela, M.A.; Noale, M.; Noboa, O.A.; Noorbala, A.A.; Norat, T.; Nordendahl, M.; Nordestgaard, B.G.; Noto, D.; Nowak-Szczepanska, N.; Nsour, M.A.; Nunes, B.; O’Neill, T.W.; O’Reilly, D.; Ochimana, C.; Oda, E.; Odili, A.N.; Oh, K.; Ohara, K.; Ohtsuka, R.; Olié, V.; Olinto, M.T.A.; Oliveira, I.O.; Omar, M.A.; Onat, A.; Ong, S.K.; Ono, L.M.; Ordunez, P.; Ornelas, R.; Ortiz, P.J.; Osmond, C.; Ostojic, S.M.; Ostovar, A.; Otero, J.A.; Overvad, K.; Owusu-Dabo, E.; Paccaud, F.M.; Padez, C.; Pahomova, E.; Paiva, K.M.; Pająk, A.; Palli, D.; Palmieri, L.; Pan, W-H.; Panda-Jonas, S.; Panza, F.; Paoli, M.; Papandreou, D.; Park, S-W.; Park, S.; Parnell, W.R.; Parsaeian, M.; Pasquet, P.; Patel, N.D.; Pavlyshyn, H.; Pećin, I.; Pednekar, M.S.; Pedro, J.M.; Peer, N.; Peixoto, S.V.; Peltonen, M.; Pereira, A.C.; Peres, K.G.D.A.; Peres, M.A.; Peters, A.; Petkeviciene, J.; Peykari, N.; Pham, S.T.; Pichardo, R.N.; Pigeot, I.; Pikhart, H.; Pilav, A.; Pilotto, L.; Pitakaka, F.; Piwonska, A.; Pizarro, A.; Plans-Rubió, P.; Polašek, O.; Porta, M.; Poudyal, A.; Pourfarzi, F.; Pourshams, A.; Poustchi, H.; Pradeepa, R.; Price, A.J.; Price, J.F.; Providencia, R.; Puhakka, S.E.; Puiu, M.; Punab, M.; Qasrawi, R.F.; Qorbani, M.; Queiroz, D.; Quoc Bao, T.; Radić, I.; Radisauskas, R.; Rahimikazerooni, S.; Rahman, M.; Raitakari, O.; Raj, M.; Rakhimova, E.M.; Ramachandra Rao, S.; Ramachandran, A.; Ramos, E.; Rampal, L.; Rampal, S.; Rangel Reina, D.A.; Rarra, V.; Rech, C.R.; Redon, J.; Reganit, P.F.M.; Regecová, V.; Revilla, L.; Rezaianzadeh, A.; Ribeiro, R.; Riboli, E.; Richter, A.; Rigo, F.; Rinke de Wit, T.F.; Ritti-Dias, R.M.; Robitaille, C.; Rodríguez-Artalejo, F.; Rodriguez-Perez, M.C.; Rodríguez-Villamizar, L.A.; Roggenbuck, U.; Rojas-Martinez, R.; Romaguera, D.; Romeo, E.L.; Rosengren, A.; Roy, J.G.R.; Rubinstein, A.; Ruidavets, J-B.; Ruiz-Betancourt, B.S.; Ruiz-Castell, M.; Rusakova, I.A.; Russo, P.; Rutkowski, M.; Sabanayagam, C.; Sabbaghi, H.; Sachdev, H.S.; Sadjadi, A.; Safarpour, A.R.; Safi, S.; Safiri, S.; Saidi, O.; Sakarya, S.; Saki, N.; Salanave, B.; Salazar Martinez, E.; Salmerón, D.; Salomaa, V.; Salonen, J.T.; Salvetti, M.; Sánchez-Abanto, J.; Sans, S.; Santos, D.A.; Santos, I.S.; Santos, L.C.; Santos, M.P.; Santos, R.; Saramies, J.L.; Sardinha, L.B.; Sarganas, G.; Sarrafzadegan, N.; Sathish, T.; Saum, K-U.; Savva, S.; Sawada, N.; Sbaraini, M.; Scazufca, M.; Schaan, B.D.; Schargrodsky, H.; Schipf, S.; Schmidt, C.O.; Schnohr, P.; Schöttker, B.; Schramm, S.; Schultsz, C.; Schutte, A.E.; Sebert, S.; Sein, A.A.; Sen, A.; Senbanjo, I.O.; Sepanlou, S.G.; Servais, J.; Shalnova, S.A.; Shamah-Levy, T.; Shamshirgaran, M.; Shanthirani, C.S.; Sharafkhah, M.; Sharma, S.K.; Shaw, J.E.; Shayanrad, A.; Shayesteh, A.A.; Shi, Z.; Shibuya, K.; Shimizu-Furusawa, H.; Shin, D.W.; Shirani, M.; Shiri, R.; Shrestha, N.; Si-Ramlee, K.; Siani, A.; Siantar, R.; Sibai, A.M.; Silva, C.R.M.; Silva, D.A.S.; Simon, M.; Simons, J.; Simons, L.A.; Sjöström, M.; Slowikowska-Hilczer, J.; Slusarczyk, P.; Smeeth, L.; So, H-K.; Soares, F.C.; Sobngwi, E.; Söderberg, S.; Soemantri, A.; Sofat, R.; Solfrizzi, V.; Somi, M.H.; Sonestedt, E.; Song, Y.; Sørensen, T.I.A.; Sørgjerd, E.P.; Sorić, M.; Sossa Jérome, C.; Soumaré, A.; Sparboe-Nilsen, B.; Sparrenberger, K.; Staessen, J.A.; Starc, G.; Stavreski, B.; Steene-Johannessen, J.; Stehle, P.; Stein, A.D.; Stergiou, G.S.; Stessman, J.; Stieber, J.; Stöckl, D.; Stocks, T.; Stokwiszewski, J.; Stronks, K.; Strufaldi, M.W.; Suka, M.; Sun, C-A.; Sung, Y-T.; Suriyawongpaisal, P.; Sy, R.G.; Syddall, H.E.; Sylva, R.C.; Szklo, M.; Tai, E.S.; Tammesoo, M-L.; Tamosiunas, A.; Tan, E.J.; Tang, X.; Tanser, F.; Tao, Y.; Tarawneh, M.R.; Tarqui-Mamani, C.B.; Taylor, A.; Taylor, J.; Tebar, W.R.; Tell, G.S.; Tello, T.; Tham, Y.C.; Thankappan, K.R.; Theobald, H.; Theodoridis, X.; Thijs, L.; Thinggaard, M.; Thomas, N.; Thorand, B.; Thuesen, B.H.; Timmermans, E.J.; Tjandrarini, D.H.; Tjonneland, A.; Toft, U.; Tolonen, H.K.; Tolstrup, J.S.; Topbas, M.; Topór-Madry, R.; Tormo, M.J.; Tornaritis, M.J.; Torrent, M.; Torres-Collado, L.; Touloumi, G.; Traissac, P.; Triantafyllou, A.; Trichopoulos, D.; Trichopoulou, A.; Trinh, O.T.H.; Trivedi, A.; Tshepo, L.; Tsugane, S.; Tuliakova, A.M.; Tulloch-Reid, M.K.; Tullu, F.; Tuomainen, T-P.; Tuomilehto, J.; Turley, M.L.; Twig, G.; Tynelius, P.; Tzourio, C.; Ueda, P.; Ugel, E.; Ulmer, H.; Uusitalo, H.M.T.; Valdivia, G.; Valvi, D.; van Dam, R.M.; van den Born, B-J.; Van der Heyden, J.; van der Schouw, Y.T.; Van Herck, K.; Van Minh, H.; Van Schoor, N.M.; van Valkengoed, I.G.M.; van Zutphen, E.M.; Vanderschueren, D.; Vanuzzo, D.; Varbo, A.; Vasan, S.K.; Vega, T.; Veidebaum, T.; Velasquez-Melendez, G.; Veronesi, G.; Verschuren, W.M.M.; Verstraeten, R.; Victora, C.G.; Viet, L.; Villalpando, S.; Vineis, P.; Vioque, J.; Virtanen, J.K.; Visvikis-Siest, S.; Viswanathan, B.; Vlasoff, T.; Vollenweider, P.; Voutilainen, A.; Wade, A.N.; Walton, J.; Wambiya, E.O.A.; Wan Bebakar, W.M.; Wan Mohamud, W.N.; Wanderley Júnior, R.S.; Wang, M-D.; Wang, N.; Wang, Q.; Wang, X.; Wang, Y.X.; Wang, Y-W.; Wannamethee, S.G.; Wareham, N.; Wei, W.; Weres, A.; Werner, B.; Whincup, P.H.; Widhalm, K.; Wiecek, A.; Wilks, R.J.; Willeit, J.; Willeit, P.; Williams, E.A.; Wilsgaard, T.; Wojtyniak, B.; Wong-McClure, R.A.; Wong, A.; Wong, T.Y.; Woo, J.; Wu, F.C.; Wu, S.; Wyszynska, J.; Xu, H.; Xu, L.; Yaacob, N.A.; Yan, W.; Yang, L.; Yang, X.; Yang, Y.; Yasuharu, T.; Ye, X.; Yiallouros, P.K.; Yoosefi, M.; Yoshihara, A.; You, S-L.; Younger-Coleman, N.O.; Yusoff, A.F.; Zainuddin, A.A.; Zakavi, S.R.; Zamani, F.; Zambon, S.; Zampelas, A.; Zapata, M.E.; Zaw, K.K.; Zejglicova, K.; Zeljkovic Vrkic, T.; Zeng, Y.; Zhang, L.; Zhang, Z-Y.; Zhao, D.; Zhao, M-H.; Zhen, S.; Zheng, Y.; Zholdin, B.; Zhu, D.; Zins, M.; Zitt, E.; Zocalo, Y.; Zoghlami, N.; Zuñiga Cisneros, J.; Ezzati, M. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet 2021 398 10304 957 980 10.1016/S0140‑6736(21)01330‑1 34450083
    [Google Scholar]
  4. Mills K.T. Bundy J.D. Kelly T.N. Reed J.E. Kearney P.M. Reynolds K. Chen J. He J. Global disparities of hypertension prevalence and control. Circulation 2016 134 6 441 450 10.1161/CIRCULATIONAHA.115.018912 27502908
    [Google Scholar]
  5. Ettehad D. Emdin C.A. Kiran A. Anderson S.G. Callender T. Emberson J. Chalmers J. Rodgers A. Rahimi K. Blood pressure lowering for prevention of cardiovascular disease and death: A systematic review and meta-analysis. Lancet 2016 387 10022 957 967 10.1016/S0140‑6736(15)01225‑8 26724178
    [Google Scholar]
  6. Harrison M.A. Marfo A.F.A. Annan A. Ankrah D.N.A. Access to cardiovascular medicines in low- and middle-income countries: A mini review. Glob. Health Res. Policy 2023 8 1 17 10.1186/s41256‑023‑00301‑6 37221559
    [Google Scholar]
  7. Ekor M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014 4 177 10.3389/fphar.2013.00177 24454289
    [Google Scholar]
  8. Mphuthi D.D. Husaini D.C. Traditional medicinal plants used by hypertensive patients in Belize: A qualitative evaluation of beliefs and practices. Bull. Natl. Res. Cent. 2022 46 1 107 10.1186/s42269‑022‑00789‑x
    [Google Scholar]
  9. Lee K. Mokhtar H.H. Krauss S.E. Ong B.K. Hypertensive patients’ preferences for complementary and alternative medicine and the influence of these preferences on the adherence to prescribed medication. Complement. Ther. Clin. Pract. 2014 20 2 99 105 10.1016/j.ctcp.2014.03.001 24767954
    [Google Scholar]
  10. Seyed Afshin S. Bagheri-Nesami M. Shafipour V. Knowledge and attitudes of hypertensive patients on the use of traditional and complementary medicine. J. Mazandaran Univ. Med. Sci. 2019 29 171 58 66
    [Google Scholar]
  11. Nailwal D. Venkatashiva R.B. Gupta A. 2021
  12. Ali-Shtayeh M.S. Jamous R.M. Jamous R.M. Salameh N.M.Y. Complementary and alternative medicine (CAM) use among hypertensive patients in Palestine. Complement. Ther. Clin. Pract. 2013 19 4 256 263 10.1016/j.ctcp.2013.09.001 24199984
    [Google Scholar]
  13. Asfaw Erku D. Basazn Mekuria A. Prevalence and correlates of complementary and alternative medicine use among hypertensive patients in gondar town, ethiopia. Evid. Based Complement. Alternat. Med. 2016 2016 1 6987636 10.1155/2016/6987636 27843480
    [Google Scholar]
  14. Osamor P.E. Owumi B.E. Complementary and alternative medicine in the management of hypertension in an urban Nigerian community. BMC Complement. Altern. Med. 2010 10 1 36 10.1186/1472‑6882‑10‑36 20642829
    [Google Scholar]
  15. Kretchy I.A. Owusu-Daaku F. Danquah S. Patterns and determinants of the use of complementary and alternative medicine: A cross-sectional study of hypertensive patients in Ghana. BMC Complement. Altern. Med. 2014 14 1 44 10.1186/1472‑6882‑14‑44 24495363
    [Google Scholar]
  16. Hughes G.D. Aboyade O.M. Clark B.L. Puoane T.R. The prevalence of traditional herbal medicine use among hypertensives living in South African communities. BMC Complement. Altern. Med. 2013 13 1 38 10.1186/1472‑6882‑13‑38 23414344
    [Google Scholar]
  17. Delgoda R. Younger N. Barrett C. Braithwaite J. Davis D. The prevalence of herbs use in conjunction with conventional medicines in Jamaica. Complement. Ther. Med. 2010 18 1 13 20 10.1016/j.ctim.2010.01.002 20178874
    [Google Scholar]
  18. Liwa A.C. Smart L.R. Frumkin A. Epstein H.A.B. Fitzgerald D.W. Peck R.N. Traditional herbal medicine use among hypertensive patients in sub-Saharan Africa: A systematic review. Curr. Hypertens. Rep. 2014 16 6 437 10.1007/s11906‑014‑0437‑9 24764197
    [Google Scholar]
  19. Ramani V. Suresh K.P. Prevalence of hypertension and diabetes morbidity among adults in a few urban slums of Bangalore city, determinants of its risk factors and opportunities for control: A cross-sectional study. J. Family Med. Prim. Care 2020 9 7 3264 3271 10.4103/jfmpc.jfmpc_234_20 33102281
    [Google Scholar]
  20. Igbinoba S. Onyeji C. Akanmu M. Modulation of cytochrome P450 3A4 mediated quinine metabolism in healthy volunteers by two honey samples from different floral and geographical sources. Int. J. Basic Clin. Pharmacol. 2016 5 3 823 828 10.18203/2319‑2003.ijbcp20161528
    [Google Scholar]
  21. Onyeji C. Igbinoba S. Olayiwola G. Adehin A. Insight into clinically effective herbal antimalarial products: Effects on drug metabolizing enzymes and p-glycoprotein. Afr. J. Pharm. Pharmacol. 2017 11 48 591 613 10.5897/AJPP2017.4870
    [Google Scholar]
  22. Rombolà L. Scuteri D. Marilisa S. Watanabe C. Morrone L.A. Bagetta G. Corasaniti M.T. Pharmacokinetic interactions between herbal medicines and drugs: Their mechanisms and clinical relevance. Life 2020 10 7 106 10.3390/life10070106 32635538
    [Google Scholar]
  23. Yu X. Zhao L. Yuan Z. Li Y. Pharmacokinetic drug-drug interactions involving antiretroviral agents: An update. Curr. Drug Metab. 2023 24 7 493 524 10.2174/1389200224666230418093139 37076461
    [Google Scholar]
  24. Mashhadi Akbar Boojar M. Molladizavandi M. Principles of writing review articles. J. Iranian Medical Counci. 2020 3 2 61 67
    [Google Scholar]
  25. Chobanian A.V. Bakris G.L. Black H.R. Cushman W.C. Green L.A. Izzo J.L. Jones D.W. Materson B.J. Oparil S. Wright J.T. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension 2003 42 6 1206 1252 10.1161/01.HYP.0000107251.49515.c2 14656957
    [Google Scholar]
  26. Whelton S.P. Chin A. Xin X. He J. Effect of aerobic exercise on blood pressure: A meta-analysis of randomized, controlled trials. Ann. Intern. Med. 2002 136 7 493 503 10.7326/0003‑4819‑136‑7‑200204020‑00006 11926784
    [Google Scholar]
  27. Herrera-Arellano A. Flores-Romero S. Chávez-Soto M.A. Tortoriello J. Effectiveness and tolerability of a standardized extract from Hibiscus sabdariffa in patients with mild to moderate hypertension: A controlled and randomized clinical trial. Phytomedicine 2004 11 5 375 382 10.1016/j.phymed.2004.04.001 15330492
    [Google Scholar]
  28. Nwachukwu D.C. Aneke E. Nwachukwu N.Z. Obika L.F.O. Nwagha U.I. Eze A.A. Effect of Hibiscus sabdariffa on blood pressure and electrolyte profile of mild to moderate hypertensive Nigerians: A comparative study with hydrochlorothiazide. Niger. J. Clin. Pract. 2015 18 6 762 770 10.4103/1119‑3077.163278 26289514
    [Google Scholar]
  29. Montalvo-González E. Villagrán Z. González-Torres S. Iñiguez-Muñoz L. Isiordia-Espinoza M. Ruvalcaba-Gómez J. Arteaga-Garibay R. Acosta J. González-Silva N. Anaya-Esparza L. Physiological effects and human health benefits of Hibiscus sabdariffa: A review of clinical trials. Pharmaceuticals 2022 15 4 464 10.3390/ph15040464 35455462
    [Google Scholar]
  30. Suhaili N.I.M. Manshoor N. Ethnomedicine, phytochemistry, and bioactivities of Hibiscus sabdariffa L. (Malvaceae). J. Herbmed Pharmacology 2022 11 4 451 460 10.34172/jhp.2022.52
    [Google Scholar]
  31. Hopkins A.L. Lamm M.G. Funk J.L. Ritenbaugh C. Hibiscus sabdariffa L. in the treatment of hypertension and hyperlipidemia: A comprehensive review of animal and human studies. Fitoterapia 2013 85 84 94 10.1016/j.fitote.2013.01.003 23333908
    [Google Scholar]
  32. Haji Faraji M. Haji Tarkhani A.H. The effect of sour tea (Hibiscus sabdariffa) on essential hypertension. J. Ethnopharmacol. 1999 65 3 231 236 10.1016/S0378‑8741(98)00157‑3 10404421
    [Google Scholar]
  33. Herrera-Arellano A. Miranda-Sánchez J. Ávila-Castro P. Herrera-Álvarez S. Jiménez-Ferrer J. Zamilpa A. Román-Ramos R. Ponce-Monter H. Tortoriello J. Clinical effects produced by a standardized herbal medicinal product of Hibiscus sabdariffa on patients with hypertension. A randomized, double-blind, lisinopril-controlled clinical trial. Planta Med. 2007 73 1 6 12 10.1055/s‑2006‑957065 17315307
    [Google Scholar]
  34. Mozaffari-Khosravi H. Jalali-Khanabadi B-A. Afkhami-Ardekani M. Fatehi F. Noori-Shadkam M. The effects of sour tea (Hibiscus sabdariffa) on hypertension in patients with type II diabetes. J. Hum. Hypertens. 2009 23 1 48 54 10.1038/jhh.2008.100 18685605
    [Google Scholar]
  35. Al-Shafei A.I. El-Gendy O.A. Effects of Roselle on arterial pulse pressure and left ventricular hypertrophy in hypertensive patients. Saudi Med. J. 2013 34 12 1248 1254 24343464
    [Google Scholar]
  36. Al-Anbaki M. Nogueira R.C. Cavin A.L. Al-Hadid M. Al-Ajlouni I. Shuhaiber L. Graz B. Treating uncontrolled hypertension with Hibiscus sabdariffa when standard treatment is insufficient: Pilot intervention. J. Altern. Complement. Med. 2019 25 12 1200 1205 10.1089/acm.2019.0220 31599646
    [Google Scholar]
  37. Al-Anbaki M. Cavin A.L. Nogueira R.C. Taslimi J. Ali H. Najem M. Shukur Mahmood M. Abdullah Khaleel I. Saad Mohammed A. Ramadhan Hasan H. Hibiscus sabdariffa, a treatment for uncontrolled hypertension. Plants 2021 10 5 1018 10.3390/plants10051018
    [Google Scholar]
  38. Harmili H. Fadlilah S. Sucipto A. Effectiveness of Hibiscus sabdariffa on blood pressure of hypertension patients. Jurnal Keperawatan Respati Yogyakarta 2021 8 2 99 102 10.35842/jkry.v8i2.609
    [Google Scholar]
  39. Nwachukwu D. Investigation of the antihypertensive effectiveness and tolerability of Hibiscus sabdariffa in mild to moderate hypertensive subjects in Enugu, South-East, Nigeria. American J. Phytomed Clin. Therapeut 2015 3 339 345
    [Google Scholar]
  40. Ojeda D. Jiménez-Ferrer E. Zamilpa A. Herrera-Arellano A. Tortoriello J. Alvarez L. Inhibition of angiotensin convertin enzyme (ACE) activity by the anthocyanins delphinidin- and cyanidin-3-O-sambubiosides from Hibiscus sabdariffa. J. Ethnopharmacol. 2010 127 1 7 10 10.1016/j.jep.2009.09.059 19808084
    [Google Scholar]
  41. Jiménez-Ferrer E. Alarcón-Alonso J. Aguilar-Rojas A. Zamilpa A. Jiménez-Ferrer C.I. Tortoriello J. Herrera-Ruiz M. Diuretic effect of compounds from Hibiscus sabdariffa by modulation of the aldosterone activity. Planta Med. 2012 78 18 1893 1898 10.1055/s‑0032‑1327864 23150077
    [Google Scholar]
  42. Salah A.M. Gathumbi J. Vierling W. Inhibition of intestinal motility by methanol extracts of Hibiscus sabdariffa L. (Malvaceae) in rats. Phytother. Res. 2002 16 3 283 285 10.1002/ptr.846 12164279
    [Google Scholar]
  43. Zheoat A.M. Gray A.I. Igoli J.O. Ferro V.A. Drummond R.M. Hibiscus acid from Hibiscus sabdariffa (Malvaceae) has a vasorelaxant effect on the rat aorta. Fitoterapia 2019 134 5 13 10.1016/j.fitote.2019.01.012 30690125
    [Google Scholar]
  44. Nwachukwu D.C. Aneke E.I. Nwachukwu N.Z. Azubike N. Obika L.F.O. Thirst perception in mild to moderate hypertensive Nigerians treated with aqueous extract of Hibiscus sabdariffa L. Afr. J. Pharm. Pharmacol. 2016 10 18 403 410 10.5897/AJPP2016.4547
    [Google Scholar]
  45. Petrovska B. Cekovska S. Extracts from the history and medical properties of garlic. Pharm. Rev. 2010 4 7 106 110 10.4103/0973‑7847.65321 22228949
    [Google Scholar]
  46. Chen Z.Y. Peng C. Jiao R. Wong Y.M. Yang N. Huang Y. Anti-hypertensive nutraceuticals and functional foods. J. Agric. Food Chem. 2009 57 11 4485 4499 10.1021/jf900803r 19422223
    [Google Scholar]
  47. Drobiova H. Thomson M. Al-Qattan K. Peltonen-Shalaby R. Al-Amin Z. Ali M. Garlic increases antioxidant levels in diabetic and hypertensive rats determined by a modified peroxidase method. Evid. Based Complement. Alternat. Med. 2011 2011 1 703049 10.1093/ecam/nep011 19233877
    [Google Scholar]
  48. Shouk R. Abdou A. Shetty K. Sarkar D. Eid A.H. Mechanisms underlying the antihypertensive effects of garlic bioactives. Nutr. Res. 2014 34 2 106 115 10.1016/j.nutres.2013.12.005 24461311
    [Google Scholar]
  49. Ried K. Frank O.R. Stocks N.P. Aged garlic extract reduces blood pressure in hypertensives: a dose–response trial. Eur. J. Clin. Nutr. 2013 67 1 64 70 10.1038/ejcn.2012.178 23169470
    [Google Scholar]
  50. Ried K. Travica N. Sali A. The effect of aged garlic extract on blood pressure and other cardiovascular risk factors in uncontrolled hypertensives: The AGE at Heart trial. Integr. Blood Press. Control 2016 9 9 21 10.2147/IBPC.S93335 26869811
    [Google Scholar]
  51. Ashraf R. Khan R.A. Ashraf I. Qureshi A.A. Effects of Allium sativum (garlic) on systolic and diastolic blood pressure in patients with essential hypertension. Pak. J. Pharm. Sci. 2013 26 5 859 863 24035939
    [Google Scholar]
  52. Ried K. Frank O.R. Stocks N.P. Aged garlic extract lowers blood pressure in patients with treated but uncontrolled hypertension: A randomised controlled trial. Maturitas 2010 67 2 144 150 10.1016/j.maturitas.2010.06.001 20594781
    [Google Scholar]
  53. Varshney R. Budoff M.J. Garlic and heart disease. J. Nutr. 2016 146 2 416S 421S 10.3945/jn.114.202333 26764327
    [Google Scholar]
  54. Ried K. Garlic lowers blood pressure in hypertensive subjects, improves arterial stiffness and gut microbiota: A review and meta-analysis. Exp. Ther. Med. 2020 19 2 1472 1478 32010325
    [Google Scholar]
  55. Amalia A. Luukmanto F. Randomized control trial complementary therapy garlic capsules in hypertension patients. Jurnal Ilmu Kesehatan 2021 9 2 151 161 10.30650/jik.v9i2.2285
    [Google Scholar]
  56. Houston M. Chen C. D’Adamo C.R. Papathanassiu A.E. Green S.J. Effects of S-allylcysteine-rich garlic extract and dietary inorganic nitrate formula on blood pressure and salivary nitric oxide: An open-label clinical trial among hypertensive subjects. Cureus 2023 15 9 e45369 10.7759/cureus.45369 37849591
    [Google Scholar]
  57. Vila-Nova T.M.S. Vila-Nova T.M.S. Freire A. Barbosa B.F. Effect of aged garlic extract on blood pressure and other cardiovascular markers in hypertensive patients and its relationship with dietary intake. J. Funct. Foods 2024 112 105931 10.1016/j.jff.2023.105931
    [Google Scholar]
  58. Morihara N. Sumioka I. Ide N. Moriguchi T. Uda N. Kyo E. Aged garlic extract maintains cardiovascular homeostasis in mice and rats. [Suppl.] J. Nutr. 2006 136 3 777S 781S
    [Google Scholar]
  59. Ide N. Lau B.H.S. Garlic compounds minimize intracellular oxidative stress and inhibit nuclear factor-kappa b activation. J. Nutr. 2001 131 3 1020S 1026S 10.1093/jn/131.3.1020S 11238809
    [Google Scholar]
  60. Sharifi A.M. Darabi R. Akbarloo N. Investigation of antihypertensive mechanism of garlic in 2K1C hypertensive rat. J. Ethnopharmacol. 2003 86 2-3 219 224 10.1016/S0378‑8741(03)00080‑1 12738090
    [Google Scholar]
  61. Bagheri F. Gol A. Dabiri S. Javadi A. Preventive effect of garlic juice on renal reperfusion injury. Iran. J. Kidney Dis. 2011 5 3 194 200 21525580
    [Google Scholar]
  62. Asdaq S.M. Inamdar M.N. Pharmacodynamic and pharmacokinetic interactions of propranolol with garlic (Allium sativum) in rats. Evid. Based Complement. Alternat. Med. 2011 2011 1 824042 10.1093/ecam/neq076 21792365
    [Google Scholar]
  63. Sumiyoshi H. New pharmacological activities of garlic and its constituents. Jpn. J. Pharmacol. 1997 110 1 93p 97p
    [Google Scholar]
  64. Almogren A. Shakoor Z. Adam M.H. Garlic and onion sensitization among Saudi patients screened for food allergy: A hospital based study. Afr. Health Sci. 2013 13 3 689 693 10.4314/ahs.v13i3.24 24250308
    [Google Scholar]
  65. Verma T. Sinha M. Bansal N. Yadav S.R. Shah K. Chauhan N.S. Plants used as antihypertensive. Nat. Prod. Bioprospect. 2021 11 2 155 184 10.1007/s13659‑020‑00281‑x 33174095
    [Google Scholar]
  66. Oktarina R. Rahmawaty S. 2022
  67. Madhavi D. Kagan D. Rao V.M. A pilot study to evaluate the antihypertensive effect of a celery extract in mild to moderate hypertensive patients original research suggest celery extract may decrease blood. Natural Medicine J. 2013 4 4 1 7
    [Google Scholar]
  68. Gharooni M. Sarkarati A. Application of Apium graveolens in treatment of hypertension. Tehran Univ. Med. J. 2000 58 3 67 69
    [Google Scholar]
  69. Lasria S. Srilina B. Zulkarnain B. The Comparison Study of Celery Leaves in Juice and Celery Boiled Water. to Reduce of Blood Pressure on Elderly Patients with Hypertension. Cham Springer 2021 189 195 10.2991/assehr.k.210415.041
    [Google Scholar]
  70. Illes J.D. Blood pressure change after celery juice ingestion in a hypertensive elderly male. J. Chiropr. Med. 2021 20 2 90 94 10.1016/j.jcm.2021.04.001 34987326
    [Google Scholar]
  71. Shayani Rad M. Moohebati M. Mohajeri S.A. Effect of celery (Apium graveolens) seed extract on hypertension: A randomized, triple‐blind, placebo‐controlled, cross‐over, clinical trial. Phytother. Res. 2022 36 7 2889 2907 10.1002/ptr.7469 35624525
    [Google Scholar]
  72. Rad M. Moohebati M. Mohajeri S.A.: Safety evaluation and biochemical efficacy of celery seed extract (Apium graveolens) capsules in hypertensive patients: A randomized, triple-blind, placebo-controlled, cross-over, clinical trial. Res. Square 2022 1 6 10.21203/rs.3.rs‑1421947/v1
    [Google Scholar]
  73. Jorge V.G. Ángel J.R.L. Adrián T.S. Francisco A.C. Anuar S.G. Samuel E.S. Ángel S.O. Emmanuel H.N. Vasorelaxant activity of extracts obtained from Apium graveolens: Possible source for vasorelaxant molecules isolation with potential antihypertensive effect. Asian Pac. J. Trop. Biomed. 2013 3 10 776 779 10.1016/S2221‑1691(13)60154‑9 24075341
    [Google Scholar]
  74. Tashakori-Sabzevar F. Razavi B.M. Imenshahidi M. Daneshmandi M. Fatehi H. Entezari Sarkarizi Y. Mohajeri S.A. Evaluation of mechanism for antihypertensive and vasorelaxant effects of hexanic and hydroalcoholic extracts of celery seed in normotensive and hypertensive rats. Rev. Bras. Farmacogn. 2016 26 5 619 626 10.1016/j.bjp.2016.05.012
    [Google Scholar]
  75. Popović M. Kaurinović B. Trivić S. Mimica-Dukić N. Bursać M. Effect of celery (Apium graveolens) extracts on some biochemical parameters of oxidative Stress in mice treated with carbon tetrachloride. Phytother. Res. 2006 20 7 531 537 10.1002/ptr.1871 16685681
    [Google Scholar]
  76. Kolarovic J. Popovic M. Mikov M. Mitic R. Gvozdenovic L. Protective effects of celery juice in treatments with Doxorubicin. Molecules 2009 14 4 1627 1638 10.3390/molecules14041627 19396021
    [Google Scholar]
  77. Ali B.H. Blunden G. Pharmacological and toxicological properties of Nigella Sativa. Phytother. Res. 2003 17 4 299 305 10.1002/ptr.1309 12722128
    [Google Scholar]
  78. Qidwai W. Hamza H.B. Qureshi R. Gilani A. Effectiveness, safety, and tolerability of powdered Nigella Sativa (kalonji) seed in capsules on serum lipid levels, blood sugar, blood pressure, and body weight in adults: Results of a randomized, double-blind controlled trial. J. Altern. Complement. Med. 2009 15 6 639 644 10.1089/acm.2008.0367 19500003
    [Google Scholar]
  79. Fallah Huseini H. Amini M. Mohtashami R. Ghamarchehre M.E. Sadeqhi Z. Kianbakht S. Fallah Huseini A. Blood pressure lowering effect of Nigella Sativa seed oil in healthy volunteers: A randomized, double-blind, placebo-controlled clinical trial. Phytother. Res. 2013 27 12 1849 1853 10.1002/ptr.4944 23436437
    [Google Scholar]
  80. Najmi A. Nasiruddin M. Khan R. Haque S.F. Indigenous herbal product Nigella Sativa proved effective as an antihypertensive in metabolic syndrome. Asian J. Pharm. Clin. Res. 2013 6 61 64
    [Google Scholar]
  81. Sahebkar A. Soranna D. Liu X. Thomopoulos C. Simental-Mendia L.E. Derosa G. Maffioli P. Parati G. A systematic review and meta-analysis of randomized controlled trials investigating the effects of supplementation with Nigella Sativa (black seed) on blood pressure. J. Hypertens. 2016 34 11 2127 2135 10.1097/HJH.0000000000001049 27512971
    [Google Scholar]
  82. Rizka A. Setiati S. Lydia A. Dewiasty E. Effect of Nigella Sativa seed extract for hypertension in elderly: A double-blind, randomized controlled trial. Acta Med. Indones. 2017 49 4 307 313 29348380
    [Google Scholar]
  83. Shoaei-Hagh P. Kamelan Kafi F. Najafi S. Zamanzadeh M. Heidari Bakavoli A. Ramezani J. Soltanian S. Asili J. Hosseinzadeh H. Eslami S. Taherzadeh Z. A randomized, double‐blind, placebo‐controlled, clinical trial to evaluate the benefits of Nigella Sativa seeds oil in reducing cardiovascular risks in hypertensive patients. Phytother. Res. 2021 35 8 4388 4400 10.1002/ptr.7140 33957004
    [Google Scholar]
  84. Siddiqui A.H. Khan N. Naseer S. Malkera A. Khan S.A. Ahsan I. Israr M. Anti-hypertensive effect of Nigella Sativa seeds in patients with hypertension. Pak. J. Med. Health Sci. 2022 16 2 86 89 10.53350/pjmhs2216286
    [Google Scholar]
  85. Maideen N.M.P. Balasubramanian R. Ramanathan S. Nigella Sativa (Black Seeds), a potential herb for the pharmacotherapeutic management of hypertension: A review. Curr. Cardiol. Rev. 2021 17 4 e230421187786 10.2174/1573403X16666201110125906 33172379
    [Google Scholar]
  86. Zaoui A. Cherrah Y. Lacaille-Dubois M.A. Settaf A. Amarouch H. Hassar M. Diuretic and hypotensive effects of Nigella Sativa in the spontaneously hypertensive rat. Therapie 2000 55 3 379 382 10967716
    [Google Scholar]
  87. Nader M.A. El-Agamy D.S. Suddek G.M. Protective effects of propolis and thymoquinone on development of atherosclerosis in cholesterol-fed rabbits. Arch. Pharm. Res. 2010 33 4 637 643 10.1007/s12272‑010‑0420‑1 20422375
    [Google Scholar]
  88. Ebru U. Burak U. Yusuf S. Reyhan B. Arif K. Faruk T.H. Emin M. Aydın K. Lhan Atilla İ. Semsettin S. Kemal E. Cardioprotective effects of Nigella Sativa oil on cyclosporine A-induced cardiotoxicity in rats. Basic Clin. Pharmacol. Toxicol. 2008 103 6 574 580 10.1111/j.1742‑7843.2008.00313.x 18801029
    [Google Scholar]
  89. Abbas A.T. Abdel-Aziz M.M. Zalata K.R. Abd Al-Galel, Tel-D. Effect of dexamethasone and Nigella Sativa on peripheral blood eosinophil count, IgG1 and IgG2a, cytokine profiles and lung inflammation in murine model of allergic asthma. Egypt. J. Immunol. 2005 12 1 95 102 16734144
    [Google Scholar]
  90. James P.A. Oparil S. Carter B.L. Cushman W.C. Dennison-Himmelfarb C. Handler J. Lackland D.T. LeFevre M.L. MacKenzie T.D. Ogedegbe O. Smith S.C. Svetkey L.P. Taler S.J. Townsend R.R. Wright J.T. Narva A.S. Ortiz E. 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA 2014 311 5 507 520 10.1001/jama.2013.284427 24352797
    [Google Scholar]
  91. Rodriguez-Leyva D. Weighell W. Edel A.L. LaVallee R. Dibrov E. Pinneker R. Maddaford T.G. Ramjiawan B. Aliani M. Guzman R. Potent antihypertensive action of dietary flaxseed in hypertensive patients. Hypertension 2013 62 6 1081 1089 10.1161/HYPERTENSIONAHA.113.02094 24126178
    [Google Scholar]
  92. Mahmudiono T. Jasim S.A. Karim Y.S. Bokov D.O. Abdelbasset W.K. Akhmedov K.S. Yasin G. Thangavelu L. Mustafa Y.F. Shoukat S. Najm M.A.A. Amraei M. The effect of flaxseed oil consumtion on blood pressure among patients with metabolic syndrome and related disorders: A systematic review and meta‐analysis of randomized clinical trials. Phytother. Res. 2022 36 10 3766 3773 10.1002/ptr.7566 35859037
    [Google Scholar]
  93. Caligiuri S.P. Aukema H.M. Ravandi A. Guzman R. Dibrov E. Pierce G.N. Flaxseed consumption reduces blood pressure in patients with hypertension by altering circulating oxylipins via an α-linolenic acid-induced inhibition of soluble epoxide hydrolase. Hypertension 2014 64 1 53 59 10.1161/HYPERTENSIONAHA.114.03179 24777981
    [Google Scholar]
  94. Caligiuri S.P. Rodriguez-Leyva D. Aukema H.M. Ravandi A. Weighell W. Guzman R. Pierce G.N. Dietary flaxseed reduces central aortic blood pressure without cardiac involvement but through changes in plasma oxylipins. Hypertension 2016 68 4 1031 1038 10.1161/HYPERTENSIONAHA.116.07834 27528063
    [Google Scholar]
  95. Toulabi T. Yarahmadi M. Goudarzi F. Ebrahimzadeh F. Momenizadeh A. Yarahmadi S. Effects of flaxseed on blood pressure, body mass index, and total cholesterol in hypertensive patients: A randomized clinical trial. Explore (NY) 2022 18 4 438 445 10.1016/j.explore.2021.05.003 34119421
    [Google Scholar]
  96. Kafeshani M. Entezari M.H. Karimian J. Pourmasoumi M. Maracy M.R. Amini M.R. Hadi A. A comparative study of the effect of green tea and sour tea on blood pressure and lipid profile in healthy adult men. ARYA Atheroscler. 2017 13 3 109 116 29147120
    [Google Scholar]
  97. Maeda-Yamamoto M. Nishimura M. Kitaichi N. Nesumi A. Monobe M. Nomura S. Horie Y. Tachibana H. Nishihira J. A randomized, placebo-controlled study on the safety and efficacy of daily ingestion of green tea (Camellia sinensis L.) cv. “Yabukita” and “Sunrouge” on eyestrain and blood pressure in healthy adults. Nutrients 2018 10 5 569 10.3390/nu10050569 29734777
    [Google Scholar]
  98. Li D. Wang R. Huang J. Cai Q. Yang C.S. Wan X. Xie Z. Effects and mechanisms of tea regulating blood pressure: Evidences and promises. Nutrients 2019 11 5 1115 10.3390/nu11051115 31109113
    [Google Scholar]
  99. Kuriyama S. Shimazu T. Ohmori K. Kikuchi N. Nakaya N. Nishino Y. Tsubono Y. Tsuji I. Green tea consumption and mortality due to cardiovascular disease, cancer, and all causes in Japan: The Ohsaki study. JAMA 2006 296 10 1255 1265 10.1001/jama.296.10.1255 16968850
    [Google Scholar]
  100. Wallace T. Slavin M. Frankenfeld C. Systematic review of anthocyanins and markers of cardiovascular disease. Nutrients 2016 8 1 32 10.3390/nu8010032 26761031
    [Google Scholar]
  101. Hu J. Webster D. Cao J. Shao A. The safety of green tea and green tea extract consumption in adults: Results of a systematic review. Regul. Toxicol. Pharmacol. 2018 95 412 433 10.1016/j.yrtph.2018.03.019 29580974
    [Google Scholar]
  102. Kurita I. Maeda-Yamamoto M. Tachibana H. Kamei M. Antihypertensive effect of Benifuuki tea containing O-methylated EGCG. J. Agric. Food Chem. 2010 58 3 1903 1908 10.1021/jf904335g 20078079
    [Google Scholar]
  103. Chen X.Q. Hu T. Han Y. Huang W. Yuan H.B. Zhang Y.T. Du Y. Jiang Y.W. Preventive effects of catechins on cardiovascular disease. Molecules 2016 21 12 1759 10.3390/molecules21121759 28009849
    [Google Scholar]
  104. Redford K.E. Rognant S. Jepps T.A. Abbott G.W. KCNQ5 potassium channel activation underlies vasodilation by tea. Cell. Physiol. Biochem. 2021 55 S3 46 64 10.33594/000000337 33667331
    [Google Scholar]
  105. Rendic S. Guengerich F.P. Survey of human oxidoreductases and cytochrome p450 enzymes involved in the metabolism of xenobiotic and natural chemicals. Chem. Res. Toxicol. 2015 28 1 38 42 10.1021/tx500444e 25485457
    [Google Scholar]
  106. Zhao M. Ma J. Li M. Zhang Y. Jiang B. Zhao X. Huai C. Shen L. Zhang N. He L. Qin S. Cytochrome P450 enzymes and drug metabolism in humans. Int. J. Mol. Sci. 2021 22 23 12808 10.3390/ijms222312808 34884615
    [Google Scholar]
  107. Lund M. Petersen T.S. Dalhoff K.P. Clinical implications of P-Glycoprotein modulation in drug–drug interactions. Drugs 2017 77 8 859 883 10.1007/s40265‑017‑0729‑x 28382570
    [Google Scholar]
  108. Tsai P.J. McIntosh J. Pearce P. Camden B. Jordan B.R. Anthocyanin and antioxidant capacity in Roselle (Hibiscus Sabdariffa L.) extract. Food Res. Int. 2002 35 4 351 356 10.1016/S0963‑9969(01)00129‑6
    [Google Scholar]
  109. Pimentel-Moral S. Borrás I. Lozano-Sánchez J. Arráez-Román D. Martinez-Ferez A. Segura Carretero A. Supercritical CO2 extraction of bioactive compounds from Hibiscus sabdariffa. J. Supercrit. Fluids 2018 147 213 221 10.1016/j.supflu.2018.11.005
    [Google Scholar]
  110. Johnson S.S. Oyelola F.T. Ari T. Juho H. In vitro inhibitory activities of the extract of Hibiscus sabdariffa L. (family malvaceae) on selected cytochrome p450 isoforms. Afr. J. Tradit. Complement. Altern. Med. 2013 10 3 533 540 10.4314/ajtcam.v10i3.22 24146485
    [Google Scholar]
  111. Showande J.S. Igbinoba S.I. Kajula M. Hokkanen J. Tolonen A. Adegbolagun O.M. Fakeye T.O. In vitro modulation of cytochrome P450 isozymes and pharmacokinetics of caffeine by extracts of Hibiscus sabdariffa Linn calyx. J. Basic Clin. Physiol. Pharmacol. 2019 30 3 20180206 10.1515/jbcpp‑2018‑0206 30951501
    [Google Scholar]
  112. Ndu O.O. Nworu C.S. Ehiemere C.O. Ndukwe N.C. Ochiogu I.S. Herb-drug interaction between the extract of Hibiscus sabdariffa L. and hydrochlorothiazide in experimental animals. J. Med. Food 2011 14 6 640 644 10.1089/jmf.2010.0117 21480802
    [Google Scholar]
  113. Zisaki A. Miskovic L. Hatzimanikatis V. Antihypertensive drugs metabolism: an update to pharmacokinetic profiles and computational approaches. Curr. Pharm. Des. 2014 21 6 806 822 10.2174/1381612820666141024151119 25341854
    [Google Scholar]
  114. Yin J. Wagner D.J. Prasad B. Isoherranen N. Thummel K.E. Wang J. Renal secretion of hydrochlorothiazide involves organic anion transporter 1/3, organic cation transporter 2, and multidrug and toxin extrusion protein 2-K. Am. J. Physiol. Renal Physiol. 2019 317 4 F805 F814 10.1152/ajprenal.00141.2019 31322418
    [Google Scholar]
  115. Showande S.J. Adegbolagun O.M. Igbinoba S.I. Fakeye T.O. In vivo pharmacodynamic and pharmacokinetic interactions of Hibiscus sabdariffa calyces extracts with simvastatin. J. Clin. Pharm. Ther. 2017 42 6 695 703 10.1111/jcpt.12629 28925046
    [Google Scholar]
  116. Nurfaradilla S.A. Saputri F.C. Harahap Y. Pharmacokinetic herb‐drug interaction between Hibiscus sabdariffa calyces aqueous extract and captopril in rats. Evid. Based Complement. Alternat. Med. 2020 2020 1 5013898 10.1155/2020/5013898 32655663
    [Google Scholar]
  117. Mahmoud B.M. Ali H.M. Homeida M.M. Bennett J.L. Significant reduction in chloroquine bioavailablity following coadministration with the Sudanese beverages Aradaib, Karkadi and Lemon. J. Antimicrob. Chemother. 1994 33 5 1005 1009 10.1093/jac/33.5.1005 8089046
    [Google Scholar]
  118. Kolawole J.A. Maduenyi A. Effect of zobo drink (Hibiscus sabdariffa water extract) on the pharmacokinetics of acetaminophen in human volunteers. Eur. J. Drug Metab. Pharmacokinet. 2004 29 1 25 29 10.1007/BF03190570 15151167
    [Google Scholar]
  119. Fakeye T.O. Adegoke A.O. Omoyeni O.C. Famakinde A.A. Effects of water extract of Hibiscus sabdariffa, Linn (Malvaceae) ‘Roselle’ on excretion of a diclofenac formulation. Phytother. Res. 2007 21 1 96 98 10.1002/ptr.2019 17094172
    [Google Scholar]
  120. Vrzal R. Anthocyanidins but not anthocyanins inhibit P‐glycoprotein‐mediated calcein extrusion – possible implication for orally administered drugs. Fundam. Clin. Pharmacol. 2016 30 3 248 252 10.1111/fcp.12183 26821071
    [Google Scholar]
  121. Amarakoon S. Jayasekara D. A review on garlic (Allium sativum L.) as a functional food. J. Pharmacogn. Phytochem. 2017 6 1777 1780
    [Google Scholar]
  122. El-Saber Batiha G. Magdy Beshbishy A. Wasef G. L.; Elewa, Y.H.A.; A Al-Sagan, A.; Abd El-Hack, M.E.; Taha, A.E.; M Abd-Elhakim, Y.; Prasad Devkota, H. Chemical constituents and pharmacological activities of garlic (Allium sativum L.): A Review. Nutrients 2020 12 3 872 10.3390/nu12030872 32213941
    [Google Scholar]
  123. Bazaraliyeva A. Moldashov D. Turgumbayeva A. Kartbayeva E. Kalykova A. Sarsenova L. Issayeva R. Chemical and biological properties of bio-active compounds from garlic (Allium sativum). Pharmacia 2022 69 4 955 964 10.3897/pharmacia.93.e93604
    [Google Scholar]
  124. Chan W.J.J. McLachlan A.J. Luca E.J. Harnett J.E. Garlic (Allium sativum L.) in the management of hypertension and dyslipidemia: A systematic review. J. Herb. Med. 2020 19 100292 10.1016/j.hermed.2019.100292
    [Google Scholar]
  125. Gurley B.J. Gardner S.F. Hubbard M.A. Williams D.K. Gentry W.B. Cui Y. Ang C.Y.W. Clinical assessment of effects of botanical supplementation on cytochrome P450 phenotypes in the elderly: St John’s wort, garlic oil, Panax ginseng and Ginkgo biloba. Drugs Aging 2005 22 6 525 539 10.2165/00002512‑200522060‑00006 15974642
    [Google Scholar]
  126. Surana A.R. Agrawal S.P. Kumbhare M.R. Gaikwad S.B. Current perspectives in herbal and conventional drug interactions based on clinical manifestations. Future J. Pharm. Sci. 2021 7 1 103 10.1186/s43094‑021‑00256‑w
    [Google Scholar]
  127. Mohammed Abdul M.I. Jiang X. Williams K.M. Day R.O. Roufogalis B.D. Liauw W.S. Xu H. McLachlan A.J. Pharmacodynamic interaction of warfarin with cranberry but not with garlic in healthy subjects. Br. J. Pharmacol. 2008 154 8 1691 1700 10.1038/bjp.2008.210 18516070
    [Google Scholar]
  128. Hajda J. Rentsch K.M. Gubler C. Steinert H. Stieger B. Fattinger K. Garlic extract induces intestinal P-glycoprotein, but exhibits no effect on intestinal and hepatic CYP3A4 in humans. Eur. J. Pharm. Sci. 2010 41 5 729 735 10.1016/j.ejps.2010.09.016
    [Google Scholar]
  129. Gallicano K. Foster B. Choudhri S. Effect of short‐term administration of garlic supplements on single‐dose ritonavir pharmacokinetics in healthy volunteers. Br. J. Clin. Pharmacol. 2003 55 2 199 202 10.1046/j.1365‑2125.2003.01736.x 12580992
    [Google Scholar]
  130. Kennedy D.A. Seely D. Clinically based evidence of drug–herb interactions: A systematic review. Expert Opin. Drug Saf. 2010 9 1 79 124 10.1517/14740330903405593 20021292
    [Google Scholar]
  131. Reddy A.G. Reddy G.D. Rao G.S. Kumar M.V. Pharmacokinetic interaction of garlic and atorvastatin in dyslipidemic rats. Indian J. Pharmacol. 2012 44 2 246 252 10.4103/0253‑7613.93860 22529485
    [Google Scholar]
  132. Asdaq S.M.B. Inamdar M.N. The potential for interaction of hydrochlorothiazide with garlic in rats. Chem. Biol. Interact. 2009 181 3 472 479 10.1016/j.cbi.2009.07.022 19660444
    [Google Scholar]
  133. Fasinu P.S. Gurley B.J. Walker L.A. Clinically relevant pharmacokinetic herb-drug interactions in antiretroviral therapy. Curr. Drug Metab. 2015 17 1 52 64 10.2174/1389200216666151103115053 26526838
    [Google Scholar]
  134. Cho H-J. Yoon I-S. Kim S-B. Cho S-S. Modulation of hepatic cytochrome p450 enzymes by curcumin and its pharmacokinetic consequences in sprague-dawley rats. 2015
    [Google Scholar]
  135. Dhamija P. Malhotra S. Pandhi P. Effect of oral administration of crude aqueous extract of garlic on pharmacokinetic parameters of isoniazid and rifampicin in rabbits. Pharmacology 2006 77 2 100 104 10.1159/000093285 16699292
    [Google Scholar]
  136. Wang P. Pradhan K. Zhong X. Ma X. Isoniazid metabolism and hepatotoxicity. Acta Pharm. Sin. B 2016 6 5 384 392 10.1016/j.apsb.2016.07.014 27709007
    [Google Scholar]
  137. Piscitelli S.C. Burstein A.H. Welden N. Gallicano K.D. Falloon J. The effect of garlic supplements on the pharmacokinetics of saquinavir. Clin. Infect. Dis. 2002 34 2 234 238 10.1086/324351 11740713
    [Google Scholar]
  138. Storch C.H. Theile D. Lindenmaier H. Haefeli W.E. Weiss J. Comparison of the inhibitory activity of anti-HIV drugs on P-glycoprotein. Biochem. Pharmacol. 2007 73 10 1573 1581 10.1016/j.bcp.2007.01.027 17328866
    [Google Scholar]
  139. Bordes C. Leguelinel-Blache G. Lavigne J.P. Mauboussin J.M. Laureillard D. Faure H. Rouanet I. Sotto A. Loubet P. Interactions between antiretroviral therapy and complementary and alternative medicine: A narrative review. Clin. Microbiol. Infect. 2020 26 9 1161 1170 10.1016/j.cmi.2020.04.019 32360208
    [Google Scholar]
  140. a Kooti W. Ali Akbari S. Asadi-Samani M. Ghadery H. Ashtary-Larky D. A review on medicinal plant of Apium graveolens. Advanced Herbal Medicine 2015 1 48 59
    [Google Scholar]
  141. b Ivanov D.I. Ivanova N.N. Artyushkina E.P. Mineral composition of root celery as a functional food product, depending on weather conditions. Bulletin of Altai State Agrarian Uni. 2016 1 135 23 27
    [Google Scholar]
  142. Jakovljevic V. Raskovic A. Popovic M. Sabo J. The effect of celery and parsley juices on pharmacodynamic activity of drugs involving cytochrome P450 in their metabolism. Eur. J. Drug Metab. Pharmacokinet. 2002 27 3 153 156 10.1007/BF03190450 12365194
    [Google Scholar]
  143. Nguyen S. Huang H. Foster B.C. Tam T.W. Xing T. Smith M.L. Arnason J.T. Akhtar H. Antimicrobial and P450 inhibitory properties of common functional foods. J. Pharm. Pharm. Sci. 2014 17 2 254 265 10.18433/J3P599 24934554
    [Google Scholar]
  144. Deng X. Pu Q. Wang E. Yu C. Celery extract inhibits mouse CYP2A5 and human CYP2A6 activities via different mechanisms. Oncol. Lett. 2016 12 6 5309 5314 10.3892/ol.2016.5317 28101244
    [Google Scholar]
  145. Von Weymarn L.B. Murphy S.E. CYP2A13-catalysed coumarin metabolism: Comparison with CYP2A5 and CYP2A6. Xenobiotica 2003 33 1 73 81 10.1080/0049825021000022302 12519695
    [Google Scholar]
  146. He X.Y. Shen J. Hu W.Y. Ding X. Lu A.Y.H. Hong J.Y. Identification of Val117 and Arg372 as critical amino acid residues for the activity difference between human CYP2A6 and CYP2A13 in coumarin 7-hydroxylation. Arch. Biochem. Biophys. 2004 427 2 143 153 10.1016/j.abb.2004.03.016 15196988
    [Google Scholar]
  147. Siska S. Mun’im A. Bahtiar A. Suyatna F. Effect of Apium graveolens extract administration on the pharmacokinetics of captopril in the plasma of rats. Sci. Pharm. 2018 86 1 6 10.3390/scipharm86010006 29462958
    [Google Scholar]
  148. Gharby S. Hicham H. Guillaume D. Roudani A. Boulbaroud S. Ibrahimi M. Ahmad M. Sultana S. Ben Hadda T. Chafchaouni-Moussaoui I. Chemical investigation of Nigella Sativa seed oil produced in Morocco. J. Saudi Soc. Agric. Sci. 2015 14 2 172 177
    [Google Scholar]
  149. Fatima A.S. Nada E-D. Karim R. Iman El G. Phytochemical analysis of Nigella Sativa utilizing GC-MS exploring its antimicrobial effects against multidrug-resistant bacteria. Pharmacogn. J. 2018 10 1
    [Google Scholar]
  150. Al-Jenoobi F. Al-Thukair A. Abbas F. Ansari M. Alkharfy K. Al-Mohizea A. Al-Suwayeh S. Jamil S. Effect of black seed on dextromethorphan O- and N-demethylation in human liver microsomes and healthy human subjects. Drug Metab. Lett. 2010 4 1 51 55 10.2174/187231210790980435 20201775
    [Google Scholar]
  151. Korashy H.M. Al-Jenoobi F.I. Raish M. Ahad A. Al-Mohizea A.M. Alam M.A. Alkharfy K.M. Al-Suwayeh S.A. Impact of herbal medicines like Nigella Sativa, Trigonella foenum-graecum, and Ferula asafoetida, on Cytochrome P450 2C11 gene expression in rat liver. Drug Res. (Stuttg.) 2015 65 7 366 372 25099385
    [Google Scholar]
  152. Damanhouri Z.A. 2015
  153. Albassam A.A. Ahad A. Alsultan A. Al-Jenoobi F.I. Inhibition of cytochrome P450 enzymes by thymoquinone in human liver microsomes. Saudi Pharm. J. 2018 26 5 673 677 10.1016/j.jsps.2018.02.024 29989011
    [Google Scholar]
  154. Ahad A. Raish M. Bin Jardan Y.A. Alam M.A. Al-Mohizea A.M. Al-Jenoobi F.I. Potential pharmacodynamic and pharmacokinetic interactions of Nigella Sativa and Trigonella Foenum-graecum with losartan in L-NAME induced hypertensive rats. Saudi J. Biol. Sci. 2020 27 10 2544 2550 10.1016/j.sjbs.2020.05.009 32994710
    [Google Scholar]
  155. Abutaima R. Al-ebini Y. Alkofahi A. Alshishani A. Thiab S. Alagammai K.C. Khalid M. In vivo assessment of black seed oil single dose on prednisolone pharmacokinetics. J. Pharm. Pharmacol. 2024 76 1 57 63 10.1093/jpp/rgad110 37978932
    [Google Scholar]
  156. Truksa M. MacKenzie S.L. Qiu X. Molecular analysis of flax 2S storage protein conlinin and seed specific activity of its promoter. Plant Physiol. Biochem. 2003 41 2 141 147 10.1016/S0981‑9428(02)00022‑0
    [Google Scholar]
  157. Kauser S. Hussain A. Ashraf S. Fatima G. Ambreen; Javaria, S.; Abideen, Z.U.; Kabir, K.; Yaqub, S.; Akram, S.; Shehzad, A.; Korma, S.A. Flaxseed (Linum usitatissimum): Phytochemistry, pharmacological characteristics and functional food applications. Food Chem. Adv. 2024 4 100573 10.1016/j.focha.2023.100573
    [Google Scholar]
  158. Chhillar H. Chopra P. Ashfaq M.A. Lignans from linseed (Linum usitatissimum L.) and its allied species: Retrospect, introspect and prospect. Crit. Rev. Food Sci. Nutr. 2021 61 16 2719 2741 10.1080/10408398.2020.1784840 32619358
    [Google Scholar]
  159. Billinsky J. Maloney K. Krol E. Alcorn J. A comparison between lignans from creosote bush and flaxseed and their potential to inhibit cytochrome p450 enzyme activity. 2012
    [Google Scholar]
  160. Bjornsson T.D. Callaghan J.T. Einolf H.J. Fischer V. Gan L. Grimm S. Kao J. King S.P. Miwa G. Ni L. Kumar G. McLeod J. Obach R.S. Roberts S. Roe A. Shah A. Snikeris F. Sullivan J.T. Tweedie D. Vega J.M. Walsh J. Wrighton S.A. The conduct of in vitro and in vivo drug-drug interaction studies: A pharmaceutical research and Manufacturers of America (PhRMA) perspective. Drug Metab. Dispos. 2003 31 7 815 832 10.1124/dmd.31.7.815 12814957
    [Google Scholar]
  161. Kuhn M.A. Herbal remedies: Drug-herb interactions. Crit. Care Nurse 2002 22 2 22 32 10.4037/ccn2002.22.2.22 11961942
    [Google Scholar]
  162. Zhao T. Li C. Wang S. Song X. Green tea (Camellia sinensis): A review of its phytochemistry, pharmacology, and toxicology. Molecules 2022 27 12 3909 10.3390/molecules27123909 35745040
    [Google Scholar]
  163. Jiang H.Y. Jiang Y. Determination of 5 phenolic acids in tea by high-performance liquid chromatography. Sci. Technol. Food Ind. 2004 25 122 124
    [Google Scholar]
  164. Albassam A. Markowitz J. An appraisal of drug-drug interactions with green tea (Camellia sinensis). Planta Med. 2017 83 6 496 508 10.1055/s‑0043‑100934 28118673
    [Google Scholar]
  165. Enko J. Gliszczyńska-Świgło A. Influence of the interactions between tea (Camellia sinensis) extracts and ascorbic acid on their antioxidant activity: Analysis with interaction indexes and isobolograms. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2015 32 8 1234 1242 10.1080/19440049.2015.1049218 26035225
    [Google Scholar]
  166. Muto S. Fujita K. Yamazaki Y. Kamataki T. Inhibition by green tea catechins of metabolic activation of procarcinogens by human cytochrome P450. Mutat. Res. 2001 479 1-2 197 206 10.1016/S0027‑5107(01)00204‑4 11470492
    [Google Scholar]
  167. Mirkov S. Komoroski B.J. Ramírez J. Graber A.Y. Ratain M.J. Strom S.C. Innocenti F. Effects of green tea compounds on irinotecan metabolism. Drug Metab. Dispos. 2007 35 2 228 233 10.1124/dmd.106.012047 17108060
    [Google Scholar]
  168. Misaka S. Kawabe K. Onoue S. Werba J.P. Giroli M. Tamaki S. Kan T. Kimura J. Watanabe H. Yamada S. Effects of green tea catechins on cytochrome P450 2B6, 2C8, 2C19, 2D6 and 3A activities in human liver and intestinal microsomes. Drug Metab. Pharmacokinet. 2013 28 3 244 249 10.2133/dmpk.DMPK‑12‑RG‑101 23268924
    [Google Scholar]
  169. Netsch M. Gutmann H. Schmidlin C. Aydogan C. Drewe J. Induction of CYP1A by green tea extract in human intestinal cell lines. Planta Med. 2006 72 6 514 520 10.1055/s‑2006‑931537 16773535
    [Google Scholar]
  170. Markowitz J. Zhu H.J. Limitations of in vitro assessments of the drug interaction potential of botanical supplements. Planta Med. 2012 78 13 1421 1427 10.1055/s‑0032‑1315025 22814819
    [Google Scholar]
  171. Chow H.H.S. Hakim I.A. Vining D.R. Crowell J.A. Cordova C.A. Chew W.M. Xu M.J. Hsu C.H. Ranger-Moore J. Alberts D.S. Effects of repeated green tea catechin administration on human cytochrome P450 activity. Cancer Epidemiol. Biomarkers Prev. 2006 15 12 2473 2476 10.1158/1055‑9965.EPI‑06‑0365 17164372
    [Google Scholar]
  172. Werba J.P. Giroli M. Cavalca V. Nava M.C. Tremoli E. Dal Bo L. The effect of green tea on simvastatin tolerability. Ann. Intern. Med. 2008 149 4 286 287 10.7326/0003‑4819‑149‑4‑200808190‑00019 18711168
    [Google Scholar]
  173. Nishikawa M. Ariyoshi N. Kotani A. Ishii I. Nakamura H. Nakasa H. Ida M. Nakamura H. Kimura N. Kimura M. Hasegawa A. Kusu F. Ohmori S. Nakazawa K. Kitada M. Effects of continuous ingestion of green tea or grape seed extracts on the pharmacokinetics of midazolam. Drug Metab. Pharmacokinet. 2004 19 4 280 289 10.2133/dmpk.19.280 15499196
    [Google Scholar]
  174. Han X. Zhang H. Hao H. Li H. Guo X. Zhang D. Effect Of epigallocatechin-3-gallate on the pharmacokinetics of amlodipine in rats. Xenobiotica 2019 49 8 970 974 10.1080/00498254.2018.1519732 30182817
    [Google Scholar]
  175. Paul D. Surendran S. Chandrakala P. Satheeshkumar N. An assessment of the impact of green tea extract on palbociclib pharmacokinetics using a validated UHPLC–QTOF–MS method. Biomed. Chromatogr. 2019 33 4 e4469 10.1002/bmc.4469 30549069
    [Google Scholar]
  176. Zeng W. Lao S. Guo Y. Wu Y. Huang M. Tomlinson B. Zhong G. The influence of EGCG on the pharmacokinetics and pharmacodynamics of bisoprolol and a new method for simultaneous determination of EGCG and bisoprolol in rat plasma. Front. Nutr. 2022 9 907986 10.3389/fnut.2022.907986 35711541
    [Google Scholar]
  177. Kiss T. Timár Z. Szabó A. Lukács A. Velky V. Oszlánczi G. Horváth E. Takács I. Zupkó I. Csupor D. Effect of green tea on the gastrointestinal absorption of amoxicillin in rats. BMC Pharmacol. Toxicol. 2019 20 1 54 10.1186/s40360‑019‑0332‑8 31470904
    [Google Scholar]
  178. Shan Y. Zhang M. Wang T. Huang Q. Yin D. Xiang Z. Wang X. Sheng J. Oxidative tea polyphenols greatly inhibit the absorption of atenolol. Front. Pharmacol. 2016 7 192 10.3389/fphar.2016.00192 27445825
    [Google Scholar]
  179. Meyboodi M. Mohammadpour A. Emami S.A. Karbasforooshan H. Drug interactions of green tea. J. Pharma Care 2021 8 1 5 10.18502/jpc.v8i4.5243
    [Google Scholar]
  180. Ohata T. Ikeda H. Inenaga M. Mizobe T. Yukawa M. Fujisawa M. Aki H. Drug-tea polyphenol interaction (II) complexation of piperazine derivatives with green tea polyphenol. Thermochim. Acta 2017 653 1 7 10.1016/j.tca.2017.03.023
    [Google Scholar]
  181. Misaka S. Knop J. Singer K. Hoier E. Keiser M. Müller F. Glaeser H. König J. Fromm M.F. The nonmetabolized β-blocker nadolol is a substrate of OCT1, OCT2, MATE1, MATE2-K, and P-glycoprotein, but not of OATP1B1 and OATP1B3. Mol. Pharm. 2016 13 2 512 519 10.1021/acs.molpharmaceut.5b00733 26702643
    [Google Scholar]
  182. Misaka S. Yatabe J. Müller F. Takano K. Kawabe K. Glaeser H. Yatabe M.S. Onoue S. Werba J.P. Watanabe H. Yamada S. Fromm M.F. Kimura J. Green tea ingestion greatly reduces plasma concentrations of nadolol in healthy subjects. Clin. Pharmacol. Ther. 2014 95 4 432 438 10.1038/clpt.2013.241 24419562
    [Google Scholar]
  183. Misaka S. Abe O. Ono T. Ono Y. Ogata H. Miura I. Shikama Y. Fromm M.F. Yabe H. Shimomura K. Effects of single green tea ingestion on pharmacokinetics of nadolol in healthy volunteers. Br. J. Clin. Pharmacol. 2020 86 11 2314 2318 10.1111/bcp.14315 32320490
    [Google Scholar]
  184. Alemdaroglu N.C. Dietz U. Wolffram S. Spahn-Langguth H. Langguth P. Influence of green and black tea on folic acid pharmacokinetics in healthy volunteers: Potential risk of diminished folic acid bioavailability. Biopharm. Drug Dispos. 2008 29 6 335 348 10.1002/bdd.617 18551467
    [Google Scholar]
  185. Zhao R. Diop-Bove N. Visentin M. Goldman I.D. Mechanisms of membrane transport of folates into cells and across epithelia. Annu. Rev. Nutr. 2011 31 1 177 201 10.1146/annurev‑nutr‑072610‑145133 21568705
    [Google Scholar]
  186. Werba J. Misaka S. Giroli M. Yamada S. Cavalca V. Kawabe K. Squellerio I. Laguzzi F. Onoue S. Veglia F. Myasoedova V. Takeuchi K. Adachi E. Inui N. Tremoli E. Watanabe H. Overview of green tea interaction with cardiovascular drugs. Curr. Pharm. Des. 2015 21 9 1213 1219 10.2174/1381612820666141013135045 25312732
    [Google Scholar]
  187. Kim T.E. Ha N. Kim Y. Kim H. Lee J.W. Jeon J.Y. Kim M.G. Effect of epigallocatechin-3-gallate, major ingredient of green tea, on the pharmacokinetics of rosuvastatin in healthy volunteers. Drug Des. Devel. Ther. 2017 11 1409 1416 10.2147/DDDT.S130050 28533679
    [Google Scholar]
  188. Chung J.H. Choi D.H. Choi J.S. Effects of oral epigallocatechin gallate on the oral pharmacokinetics of verapamil in rats. Biopharm. Drug Dispos. 2009 30 2 90 93 10.1002/bdd.644 19226653
    [Google Scholar]
  189. Choi J.S. Burm J.P. Effects of oral epigallocatechin gallate on the pharmacokinetics of nicardipine in rats. Arch. Pharm. Res. 2009 32 12 1721 1725 10.1007/s12272‑009‑2209‑7 20162400
    [Google Scholar]
/content/journals/dmb/10.2174/0118723128380660250717140750
Loading
/content/journals/dmb/10.2174/0118723128380660250717140750
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test