Skip to content
2000
image of The Potential of Lipid Nanoparticles in Migraine Management

Abstract

Migraine is a neurological disorder characterized by recurrent headaches often accompanied by sensitivity to light and sound, nausea, and vomiting. Current oral medications frequently demonstrate limited efficacy and potential side effects. Consequently, researchers are investigating alternative drug delivery systems, such as Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC), for enhanced migraine treatment. These lipid-based nanoparticles encapsulate drugs, offering advantages including improved solubility and stability, reduced side effects, and targeted delivery. Intranasal administration of these nanoparticles enables drugs to bypass the gastrointestinal tract, thereby facilitating faster access to the brain. This review explores the pathophysiology of migraine and provides an overview of SLN and NLC technology, including preparation methods and benefits. Furthermore, it examines current preclinical and clinical research on the application of these nanoparticles for migraine treatment, culminating in a discussion of their potential as effective therapeutic options.

Loading

Article metrics loading...

/content/journals/ddl/10.2174/0122103031386842250821065334
2025-08-27
2025-10-30
Loading full text...

Full text loading...

References

  1. Gupta J. Gaurkar S.S. Migraine: An underestimated neurological condition affecting billions. Cureus 2022 14 8 e28347 10.7759/cureus.28347 36168353
    [Google Scholar]
  2. Ashina M. Katsarava Z. Do T.P. Buse D.C. Pozo-Rosich P. Özge A. Krymchantowski A.V. Lebedeva E.R. Ravishankar K. Yu S. Sacco S. Ashina S. Younis S. Steiner T.J. Lipton R.B. Migraine: Epidemiology and systems of care. Lancet 2021 397 10283 1485 1495 10.1016/S0140‑6736(20)32160‑7 33773613
    [Google Scholar]
  3. Khan J. Asoom L.I.A. Sunni A.A. Rafique N. Latif R. Saif S.A. Almandil N.B. Almohazey D. AbdulAzeez S. Borgio J.F. Genetics, pathophysiology, diagnosis, treatment, management, and prevention of migraine. Biomed Pharmacother 2021 139 111557 10.1016/j.biopha.2021.111557 34243621
    [Google Scholar]
  4. Russo A.F. Hay D.L. CGRP physiology, pharmacology, and therapeutic targets: Migraine and beyond. Physiol Rev 2023 103 2 1565 1644 10.1152/physrev.00059.2021 36454715
    [Google Scholar]
  5. Minen M. Shome A. Halpern A. Tishler L. Brennan K.C. Loder E. Lipton R. Silbersweig D. A migraine management training program for primary care providers: An overview of a survey and pilot study findings, lessons learned, and considerations for further research. Headache 2016 56 4 725 740 10.1111/head.12803 27037903
    [Google Scholar]
  6. Kesserwani H. Migraine triggers: An overview of the pharmacology, biochemistry, atmospherics, and their effects on neural networks. Cureus 2021 13 4 e14243 10.7759/cureus.14243 33954064
    [Google Scholar]
  7. Rapoport A.M. Lin T. Device profile of the Nerivio™ for acute migraine treatment: Overview of its efficacy and safety. Expert Rev Med Devices 2019 16 12 1017 1023 10.1080/17434440.2019.1695599 31747304
    [Google Scholar]
  8. Gasparini C. Sutherland H. Griffiths L. Studies on the pathophysiology and genetic basis of migraine. Curr Genomics 2013 14 5 300 315 10.2174/13892029113149990007 24403849
    [Google Scholar]
  9. Sudershan A. Mahajan K. Singh K. Dhar M.K. Kumar P. The complexities of migraine: A debate among migraine researchers: A review. Clin Neurol Neurosurg 2022 214 107136 10.1016/j.clineuro.2022.107136 35101780
    [Google Scholar]
  10. Derry CJ Derry S Moore RA Sumatriptan (all routes of administration) for acute migraine attacks in adults—overview of Cochrane reviews. Cochrane Database of Systematic Reviews 2014 2014 5 10.1002/14651858.CD009108
    [Google Scholar]
  11. Minen M.T. Begasse De Dhaem O. Kroon Van Diest A. Powers S. Schwedt T.J. Lipton R. Silbersweig D. Migraine and its psychiatric comorbidities. J Neurol Neurosurg Psychiatry 2016 87 7 741 749 10.1136/jnnp‑2015‑312233 26733600
    [Google Scholar]
  12. Yeh P.K. An Y.C. Hung K.S. Yang F.C. Influences of genetic and environmental factors on chronic migraine: A narrative review. Curr Pain Headache Rep 2024 28 4 169 180 10.1007/s11916‑024‑01228‑4 38363449
    [Google Scholar]
  13. Goadsby P.J. Lipton R.B. Ferrari M.D. Migraine-current understanding and treatment. N Engl J Med 2002 346 4 257 270 10.1056/NEJMra010917 11807151
    [Google Scholar]
  14. Migraine. <comment xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML">Available from: <ext-link ext-link-type="uri" xlink:href="https://www.ninds.nih.gov/health-information/disorders/migraine">https://www.ninds.nih.gov/health-information/disorders/migraine</ext-link></comment> 2025
  15. Understanding the migraine patterns and their types. <comment xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="http://www.w3.org/1998/Math/MathML">Available from: <ext-link ext-link-type="uri" xlink:href="https://www.sriramakrishnahospital.com/blog/neurology/understanding-the-migraine-types/">https://www.sriramakrishnahospital.com/blog/neurology/understanding-the-migraine-types/</ext-link></comment> 2022
  16. Weatherall M.W. The diagnosis and treatment of chronic migraine. Ther Adv Chronic Dis 2015 6 3 115 123 10.1177/2040622315579627 25954496
    [Google Scholar]
  17. Furman J.M. Marcus D.A. Balaban C.D. Vestibular migraine: Clinical aspects and pathophysiology. Lancet Neurol 2013 12 7 706 715 10.1016/S1474‑4422(13)70107‑8 23769597
    [Google Scholar]
  18. Mathew P.G. Dun E.C. Luo J.J. A cyclic pain: The pathophysiology and treatment of menstrual migraine. Obstet Gynecol Surv 2013 68 2 130 140 10.1097/OGX.0b013e31827f2496 23417219
    [Google Scholar]
  19. Ibrahim M. Elkins I. Herman M. Abdominal migraines: A rare adulthood manifestation of a typical childhood disease. Cureus 2023 15 3 e36451 10.7759/cureus.36451 37090300
    [Google Scholar]
  20. Kamourieh S Rozen T Anderson JM Status migrainosus. Handbook of Clinical Neurology Elsevier 2024 199 413 439
    [Google Scholar]
  21. Minen M.T. Robbins M.S. Loder E. Nahas S. Gautreaux J. Litin S. Barch C. Cook C. Smith T. Powers S.W. Hasan S. Sbar E. Stika C.S. Stone F. Sprouse-Blum A. Addressing the crisis of diagnosis and management of migraine in primary care: A summary of the American headache society front line primary care advisory board. Headache 2020 60 5 1000 1004 10.1111/head.13797 32267961
    [Google Scholar]
  22. Tzankova V. Becker W.J. Chan T.L.H. Pharmacologic prevention of migraine. CMAJ 2023 195 5 E187 E192 10.1503/cmaj.221607 36746481
    [Google Scholar]
  23. Goadsby P.J. Sprenger T. Current practice and future directions in the prevention and acute management of migraine. Lancet Neurol 2010 9 3 285 298 10.1016/S1474‑4422(10)70005‑3 20170842
    [Google Scholar]
  24. Tfelt-Hansen P.C. Relatively slow and long-lasting antimigraine effect of dihydroergotamine is most likely due to basic pharmacological attributes of the drug: A review. Cephalalgia 2013 33 13 1122 1131 10.1177/0333102413483372 23588793
    [Google Scholar]
  25. Lipton R.B. Bigal M.E. Steiner T.J. Silberstein S.D. Olesen J. Classification of primary headaches. Neurology 2004 63 3 427 435 10.1212/01.WNL.0000133301.66364.9B 15304572
    [Google Scholar]
  26. Kellstein D.E. Lipton R.B. Geetha R. Koronkiewicz K. Evans F.T. Stewart W.F. Wilkes K. Furey S.A. Subramanian T. Cooper S.A. Evaluation of a novel solubilized formulation of ibuprofen in the treatment of migraine headache: A randomized, double-blind, placebo-controlled, dose-ranging study. Cephalalgia 2000 20 4 233 243 10.1046/j.1468‑2982.2000.00055.x 10999673
    [Google Scholar]
  27. Diener H.C. Eikermann A. Gessner U. Göbel H. Haag G. Lange R. May A. Müller-Schwefe G. Voelker M. Efficacy of 1,000 mg effervescent acetylsalicylic acid and sumatriptan in treating associated migraine symptoms. Eur Neurol 2004 52 1 50 56 10.1159/000079544 15240983
    [Google Scholar]
  28. Goadsby P.J. Dodick D.W. Leone M. Bardos J.N. Oakes T.M. Millen B.A. Zhou C. Dowsett S.A. Aurora S.K. Ahn A.H. Yang J.Y. Conley R.R. Martinez J.M. Trial of galcanezumab in prevention of episodic cluster headache. N Engl J Med 2019 381 2 132 141 10.1056/NEJMoa1813440 31291515
    [Google Scholar]
  29. Dodick D.W. Silberstein S.D. Bigal M.E. Yeung P.P. Goadsby P.J. Blankenbiller T. Grozinski-Wolff M. Yang R. Ma Y. Aycardi E. Effect of fremanezumab compared with placebo for prevention of episodic migraine: A randomized clinical trial. JAMA 2018 319 19 1999 2008 10.1001/jama.2018.4853 29800211
    [Google Scholar]
  30. Silberstein S.D. Holland S. Freitag F. Dodick D.W. Argoff C. Ashman E. Evidence-based guideline update: Pharmacologic treatment for episodic migraine prevention in adults. Neurology 2012 78 17 1337 1345 10.1212/WNL.0b013e3182535d20 22529202
    [Google Scholar]
  31. Silberstein S.D. Elkind A.H. Schreiber C. Keywood C. A randomized trial of frovatriptan for the intermittent prevention of menstrual migraine. Neurology 2004 63 2 261 269 10.1212/01.WNL.0000134620.30129.D6 15277618
    [Google Scholar]
  32. Jackson JL Shimeall W Sessums L Dezee KJ Becher D Diemer M Tricyclic antidepressants and headaches: Systematic review and meta-analysis. BMJ 2010 341 oct20 1 c5222 10.1136/bmj.c5222
    [Google Scholar]
  33. Linde K. Rossnagel K. Propranolol for migraine prophylaxis. Cochrane Database Syst Rev 2004 2 CD003225 10.1002/14651858.CD003225.pub2 15106196
    [Google Scholar]
  34. Dodick D.W. Schembri C.T. Helmuth M. Aurora S.K. Transcranial magnetic stimulation for migraine: A safety review. Headache 2010 50 7 1153 1163 10.1111/j.1526‑4610.2010.01697.x 20553334
    [Google Scholar]
  35. Musielak E. Feliczak-Guzik A. Nowak I. Synthesis and potential applications of lipid nanoparticles in medicine. Materials 2022 15 2 682 10.3390/ma15020682 35057398
    [Google Scholar]
  36. Xu L. Wang X. Liu Y. Yang G. Falconer R.J. Zhao C.X. Lipid nanoparticles for drug delivery. Adv NanoBiomed Res 2022 2 2 2100109 10.1002/anbr.202100109 35179344
    [Google Scholar]
  37. Viegas C. Patrício A.B. Prata J.M. Nadhman A. Chintamaneni P.K. Fonte P. Solid lipid nanoparticles vs. nanostructured lipid carriers: A comparative review. Pharmaceutics 2023 15 6 1593 10.3390/pharmaceutics15061593 37376042
    [Google Scholar]
  38. Shan X. Gong X. Li J. Wen J. Li Y. Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm Sin B 2022 12 7 3028 3048 10.1016/j.apsb.2022.02.025 35865096
    [Google Scholar]
  39. Pasarin D. Ghizdareanu A.I. Enascuta C.E. Matei C.B. Bilbie C. Paraschiv-Palada L. Veres P.A. Coating materials to increase the stability of liposomes. Polymers 2023 15 3 782 10.3390/polym15030782 36772080
    [Google Scholar]
  40. Alshaer W. Nsairat H. Lafi Z. Hourani O.M. Al-Kadash A. Esawi E. Alkilany A.M. Quality by design approach in liposomal formulations: Robust product development. Molecules 2022 28 1 10 10.3390/molecules28010010 36615205
    [Google Scholar]
  41. Scioli Montoto S. Muraca G. Ruiz M.E. Solid lipid nanoparticles for drug delivery: Pharmacological and biopharmaceutical aspects. Front Mol Biosci 2020 7 587997 10.3389/fmolb.2020.587997 33195435
    [Google Scholar]
  42. Müller R.H. Mäder K. Gohla S. Solid lipid nanoparticles (SLN) for controlled drug delivery - a review of the state of the art. Eur J Pharm Biopharm 2000 50 1 161 177 10.1016/S0939‑6411(00)00087‑4 10840199
    [Google Scholar]
  43. Mehnert W. Mäder K. Solid lipid nanoparticles. Adv Drug Deliv Rev 2012 64 83 101 10.1016/j.addr.2012.09.021 11311991
    [Google Scholar]
  44. Shidhaye S. Vaidya R. Sutar S. Patwardhan A. Kadam V. Solid lipid nanoparticles and nanostructured lipid carriers-innovative generations of solid lipid carriers. Curr Drug Deliv 2008 5 4 324 331 10.2174/156720108785915087 18855604
    [Google Scholar]
  45. Müller R.H. Radtke M. Wissing S.A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 2002 54 S131 S155 Suppl. 1 10.1016/S0169‑409X(02)00118‑7 12460720
    [Google Scholar]
  46. Hald Albertsen C. Kulkarni J.A. Witzigmann D. Lind M. Petersson K. Simonsen J.B. The role of lipid components in lipid nanoparticles for vaccines and gene therapy. Adv Drug Deliv Rev 2022 188 114416 10.1016/j.addr.2022.114416 35787388
    [Google Scholar]
  47. Correia A.C. Monteiro A.R. Silva R. Moreira J.N. Sousa Lobo J.M. Silva A.C. Lipid nanoparticles strategies to modify pharmacokinetics of central nervous system targeting drugs: Crossing or circumventing the blood–brain barrier (BBB) to manage neurological disorders. Adv Drug Deliv Rev 2022 189 114485 10.1016/j.addr.2022.114485 35970274
    [Google Scholar]
  48. Costa C.P. Barreiro S. Moreira J.N. Silva R. Almeida H. Sousa Lobo J.M. Silva A.C. /in vitro studies on nasal formulations of nanostructured lipid carriers (NLC) and solid lipid nanoparticles (SLN). Pharmaceuticals 2021 14 8 711 10.3390/ph14080711 34451808
    [Google Scholar]
  49. Oehlke K. Behsnilian D. Mayer-Miebach E. Weidler P.G. Greiner R. Edible solid lipid nanoparticles (SLN) as carrier system for antioxidants of different lipophilicity. PLoS One 2017 12 2 e0171662 10.1371/journal.pone.0171662 28192494
    [Google Scholar]
  50. Naseri N. Valizadeh H. Zakeri-Milani P. Solid Lipid Nanoparticles and Nanostructured Lipid Carriers: Structure, Preparation and Application. Adv Pharm Bull 2015 5 3 305 313 10.15171/apb.2015.043 26504751
    [Google Scholar]
  51. Azhar Shekoufeh Bahari L. Hamishehkar H. The impact of variables on particle size of solid lipid nanoparticles and nanostructured lipid carriers; A comparative literature review. Adv Pharm Bull 2016 6 2 143 151 10.15171/apb.2016.021 27478775
    [Google Scholar]
  52. Chauhan I. Singh L. Optimizing dermal delivery of Linezolid for treating skin and soft tissue infections: NLC-Based gel formulation using Taguchi design. Drug Deliv Lett 2024 14 10.2174/0122103031307625240904050257
    [Google Scholar]
  53. López-García R. Ganem-Rondero A. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC): Occlusive effect and penetration enhancement ability. Journal of Cosmetics, Dermatological Sciences and Applications 2015 5 2 62 72 10.4236/jcdsa.2015.52008
    [Google Scholar]
  54. Gugleva V. Andonova V. Drug delivery to the brain – lipid nanoparticles-based approach. Pharmacia 2023 70 1 113 120 10.3897/pharmacia.70.e98838
    [Google Scholar]
  55. Sabry S.A. Abd El Razek A.M. Nabil M. Khedr S.M. El-Nahas H.M. Eissa N.G. Brain-targeted delivery of Valsartan using solid lipid nanoparticles labeled with Rhodamine B; a promising technique for mitigating the negative effects of stroke. Drug Deliv 2023 30 1 2179127 10.1080/10717544.2023.2179127 36794404
    [Google Scholar]
  56. Yasir M. Zafar A. Noorulla K.M. Tura A.J. Sara U.V.S. Panjwani D. Khalid M. Haji M.J. Gobena W.G. Gebissa T. Dalecha D.D. Nose to brain delivery of donepezil through surface modified NLCs: Formulation development, optimization, and brain targeting study. J Drug Deliv Sci Technol 2022 75 103631 10.1016/j.jddst.2022.103631
    [Google Scholar]
  57. Gabal Y.M. Kamel A.O. Sammour O.A. Elshafeey A.H. Effect of surface charge on the brain delivery of nanostructured lipid carriers in situ gels via the nasal route. Int J Pharm 2014 473 1-2 442 457 10.1016/j.ijpharm.2014.07.025 25062866
    [Google Scholar]
  58. Torres J. Silva R. Farias G. Sousa Lobo J.M. Ferreira D.C. Silva A.C. Enhancing acute migraine treatment: Exploring solid lipid nanoparticles and nanostructured lipid carriers for the nose- to-brain route. Pharmaceutics 2024 16 10 1297 10.3390/pharmaceutics16101297 39458626
    [Google Scholar]
  59. Da Silva-Candal A. Brown T. Krishnan V. Lopez-Loureiro I. Ávila-Gómez P. Pusuluri A. Pérez-Díaz A. Correa-Paz C. Hervella P. Castillo J. Mitragotri S. Campos F. Shape effect in active targeting of nanoparticles to inflamed cerebral endothelium under static and flow conditions. J Control Release 2019 309 94 105 10.1016/j.jconrel.2019.07.026 31330214
    [Google Scholar]
  60. Toy R. Peiris P.M. Ghaghada K.B. Karathanasis E. Shaping cancer nanomedicine: The effect of particle shape on the in vivo journey of nanoparticles. Nanomedicine 2014 9 1 121 134 10.2217/nnm.13.191 24354814
    [Google Scholar]
  61. Jo D.H. Kim J.H. Lee T.G. Kim J.H. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomedicine 2015 11 7 1603 1611 10.1016/j.nano.2015.04.015 25989200
    [Google Scholar]
  62. Fonseca-Santos B. Silva P.B. Rigon R.B. Sato M.R. Chorilli M. Formulating SLN and NLC as innovative drug delivery systems for non-invasive routes of drug administration. Curr Med Chem 2020 27 22 3623 3656 10.2174/0929867326666190624155938 31232233
    [Google Scholar]
  63. Schäferkorting M. Mehnert W. Korting H. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev 2007 59 6 427 443 10.1016/j.addr.2007.04.006 17544165
    [Google Scholar]
  64. Iqbal M.A. Md S. Sahni J.K. Baboota S. Dang S. Ali J. Nanostructured lipid carriers system: Recent advances in drug delivery. J Drug Target 2012 20 10 813 830 10.3109/1061186X.2012.716845 22931500
    [Google Scholar]
  65. Johnsen K.B. Moos T. Revisiting nanoparticle technology for blood–brain barrier transport: Unfolding at the endothelial gate improves the fate of transferrin receptor-targeted liposomes. J Control Release 2016 222 32 46 10.1016/j.jconrel.2015.11.032 26658072
    [Google Scholar]
  66. Loureiro J.A. Gomes B. Fricker G. Coelho M.A.N. Rocha S. Pereira M.C. Cellular uptake of PLGA nanoparticles targeted with anti-amyloid and anti-transferrin receptor antibodies for Alzheimer’s disease treatment. Colloids Surf B Biointerfaces 2016 145 8 13 10.1016/j.colsurfb.2016.04.041 27131092
    [Google Scholar]
  67. Pardridge W.M. The blood-brain barrier: Bottleneck in brain drug development. NeuroRx 2005 2 1 3 14 10.1602/neurorx.2.1.3 15717053
    [Google Scholar]
  68. Simpson I.A. Carruthers A. Vannucci S.J. Supply and demand in cerebral energy metabolism: The role of nutrient transporters. J Cereb Blood Flow Metab 2007 27 11 1766 1791 10.1038/sj.jcbfm.9600521 17579656
    [Google Scholar]
  69. Löscher W. Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 2005 6 8 591 602 10.1038/nrn1728 16025095
    [Google Scholar]
  70. Kataria I. Shende P. Nose-to-brain lipid nanocarriers: An active transportation across BBB in migraine management. Chem Phys Lipids 2022 243 105177 10.1016/j.chemphyslip.2022.105177 35122739
    [Google Scholar]
  71. Mandlik S.K. Ranpise N.S. Mohanty B.S. Chaudhari P.R. A coupled bimodal SPECT-CT imaging and brain kinetics studies of zolmitriptan-encapsulated nanostructured polymeric carriers. Drug Deliv Transl Res 2018 8 3 797 805 10.1007/s13346‑017‑0474‑4 29380155
    [Google Scholar]
  72. Hansraj G.P. Singh S.K. Kumar P. Sumatriptan succinate loaded chitosan solid lipid nanoparticles for enhanced anti-migraine potential. Int J Biol Macromol 2015 81 467 476 10.1016/j.ijbiomac.2015.08.035 26299709
    [Google Scholar]
  73. Girotra P. Singh S.K. Multivariate optimization of rizatriptan benzoate-loaded solid lipid nanoparticles for brain targeting and migraine management. AAPS PharmSciTech 2017 18 2 517 528 10.1208/s12249‑016‑0532‑0 27126007
    [Google Scholar]
  74. Masjedi M. Azadi A. Heidari R. Mohammadi-Samani S. Nose-to-brain delivery of sumatriptan-loaded nanostructured lipid carriers: Preparation, optimization, characterization and pharmacokinetic evaluation. J Pharm Pharmacol 2020 72 10 1341 1351 10.1111/jphp.13316 32579251
    [Google Scholar]
  75. Barbanti P. Egeo G. Aurilia C. Fofi L. Della-Morte D. Drugs targeting nitric oxide synthase for migraine treatment. Expert Opin Investig Drugs 2014 23 8 1141 1148 10.1517/13543784.2014.918953 24818644
    [Google Scholar]
  76. Magis D. Schoenen J. Treatment of migraine: Update on new therapies. Curr Opin Neurol 2011 24 3 203 210 10.1097/WCO.0b013e3283462c3f 21464715
    [Google Scholar]
  77. El-Nabarawy N.A. Teaima M.H. Helal D.A. Assessment of spanlastic vesicles of zolmitriptan for treating migraine in rats. Drug Des Devel Ther 2019 13 3929 3937 10.2147/DDDT.S220473 31819367
    [Google Scholar]
  78. Kaube H. Katsarava Z. Przywara S. Drepper J. Ellrich J. Diener H.C. Acute migraine headache: Possible sensitization of neurons in the spinal trigeminal nucleus? Headache 2003 43 4 426 10.1046/j.1526‑4610.2003.03085_10.x
    [Google Scholar]
  79. Caputi C.A. Firetto V. Therapeutic blockade of greater occipital and supraorbital nerves in migraine patients. Headache 1997 37 3 174 179 10.1046/j.1526‑4610.1997.3703174.x 9100402
    [Google Scholar]
  80. Kamlesh M. Development and evaluation of solid lipid nanoparticles containing anti-migraine drug. World J Pharm Sci 2014 1014 1021
    [Google Scholar]
  81. Graves R.A. Ledet G.A. Nation C.A. Pramar Y.V. Bostanian L.A. Mandal T.K. Effect of squalane on mebendazole-loaded Compritol ® nanoparticles. J Biomater Sci Polym Ed 2015 26 13 868 880 10.1080/09205063.2015.1061351 26062393
    [Google Scholar]
  82. Ben Aissa M. Tipton A.F. Bertels Z. Gandhi R. Moye L.S. Novack M. Bennett B.M. Wang Y. Litosh V. Lee S.H. Gaisina I.N. Thatcher G.R.J. Pradhan A.A. Soluble guanylyl cyclase is a critical regulator of migraine-associated pain. Cephalalgia 2018 38 8 1471 1484 10.1177/0333102417737778 29022756
    [Google Scholar]
  83. Permana A.D. Tekko I.A. McCrudden M.T.C. Anjani Q.K. Ramadon D. McCarthy H.O. Donnelly R.F. Solid lipid nanoparticle-based dissolving microneedles: A promising intradermal lymph targeting drug delivery system with potential for enhanced treatment of lymphatic filariasis. J Control Release 2019 316 34 52 10.1016/j.jconrel.2019.10.004 31655132
    [Google Scholar]
  84. Tepper S. Ashina M. Reuter U. Brandes J.L. Doležil D. Silberstein S. Winner P. Leonardi D. Mikol D. Lenz R. Safety and efficacy of erenumab for preventive treatment of chronic migraine: A randomised, double-blind, placebo-controlled phase 2 trial. Lancet Neurol 2017 16 6 425 434 10.1016/S1474‑4422(17)30083‑2 28460892
    [Google Scholar]
  85. Akbarzadeh A. Rezaei-Sadabady R. Davaran S. Joo S.W. Zarghami N. Hanifehpour Y. Samiei M. Kouhi M. Nejati-Koshki K. Liposome: Classification, preparation, and applications. Nanoscale Res Lett 2013 8 1 102 10.1186/1556‑276X‑8‑102 23432972
    [Google Scholar]
  86. Gasco M.R. Solid lipid nanoparticles for drug delivery. Pharmaceutical Technology Europe 2001 13 2 32 39
    [Google Scholar]
  87. Anselmo A.C. Mitragotri S. An overview of clinical and commercial impact of drug delivery systems. J Control Release 2014 190 15 28 10.1016/j.jconrel.2014.03.053 24747160
    [Google Scholar]
/content/journals/ddl/10.2174/0122103031386842250821065334
Loading
/content/journals/ddl/10.2174/0122103031386842250821065334
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: Migraine ; CGRP ; neurological disease ; preclinical and clinical study
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test