Skip to content
2000
Volume 21, Issue 6
  • ISSN: 1573-4048
  • E-ISSN: 1875-6581

Abstract

Background

Quercetin (QT) is an effective plant compound in treating various diseases, including certain types of cancer. Therefore, this systematic review study was conducted to investigate the positive effects of quercetin (QT) on different breast cancer cell lines under conditions.

Objective

The purpose of this study was to explore the beneficial effects of quercetin (QT) on various breast cancer cell lines in an setting.

Methods

Using various databases, including PubMed, Scopus, Science Direct, and Google Scholar, we searched for publications from 2018 to May 2024 based on relevant terms and keywords for this systematic review. Inclusion criteria focused on English, open access, and original studies that exclusively examined the effects of QT on breast cancer cell types .

Results

From the initial search, 1308 publications were identified. However, only 46 met the inclusion criteria and were included in this systematic review.

Conclusion

In summary, quercetin (QT) shows anti-tumor effects on different breast cancer cell lines by activating the PI3K/AKT/mTOR, IGF1/IGF1R, MAPK, Transforming Growth Factor-β (TGFβ), and JAK/STAT1 pathways. Nonetheless, further extensive animal and clinical studies are essential to draw definitive conclusions.

Loading

Article metrics loading...

/content/journals/cwhr/10.2174/0115734048332611250106075111
2025-01-28
2025-10-31
Loading full text...

Full text loading...

References

  1. SopikV. International variation in breast cancer incidence and mortality in young women.Breast Cancer Res. Treat.2021186249750710.1007/s10549‑020‑06003‑8 33145697
    [Google Scholar]
  2. LiangY. ZhangH. SongX. YangQ. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Seminars in cancer biology.Elsevier2020
    [Google Scholar]
  3. NiazvandF. OrazizadehM. KhorsandiL. AbbaspourM. MansouriE. KhodadadiA. Effects of quercetin-loaded nanoparticles on MCF-7 human breast cancer cells.Medicina201955411410.3390/medicina55040114 31013662
    [Google Scholar]
  4. MokbelK. MokbelK. Chemoprevention of breast cancer with vitamins and micronutrients: A concise review.In Vivo2019334983997
    [Google Scholar]
  5. SenkusE. KyriakidesS. OhnoS. Penault-LlorcaF. PoortmansP. RutgersE. ZackrissonS. CardosoF. Primary breast cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.Ann. Oncol.201526Suppl. 5v8v3010.1093/annonc/mdv298 26314782
    [Google Scholar]
  6. KandaswamiC. LeeL-T. LeeP-P.H. HwangJ-J. KeF-C. HuangY-T. LeeM.T. The antitumor activities of flavonoids.In Vivo2005195895909 16097445
    [Google Scholar]
  7. TuS-H. ChenL-C. HoY-S. An apple a day to prevent cancer formation: Reducing cancer risk with flavonoids.Yao Wu Shi Pin Fen Xi2017251119124 28911529
    [Google Scholar]
  8. WangC-C. HoC-T. LeeS-C. WayT-D. Isolation of eugenyl β-primeveroside from Camellia sasanqua and its anticancer activity in PC3 prostate cancer cells.J Food Drug Anal2016241105111
    [Google Scholar]
  9. WenL. ZhaoY. JiangY. YuL. ZengX. YangJ. TianM. LiuH. YangB. Identification of a flavonoid C -glycoside as potent antioxidant.Free Radic. Biol. Med.20171109210110.1016/j.freeradbiomed.2017.05.027 28587909
    [Google Scholar]
  10. NikolaouK.C. TalianidisI. Hepatic cancer stem cells may arise from adult ductal progenitors.Mol. Cell. Oncol.201631e102194610.1080/23723556.2015.1021946 27308536
    [Google Scholar]
  11. KoboriM. TakahashiY. SakuraiM. AkimotoY. TsushidaT. OikeH. IppoushiK. Quercetin suppresses immune cell accumulation and improves mitochondrial gene expression in adipose tissue of diet-induced obese mice.Mol. Nutr. Food Res.201660230031210.1002/mnfr.201500595 26499876
    [Google Scholar]
  12. NooluB. GogulothuR. BhatM. In vivo inhibition of proteasome activity and tumour growth by Murraya koenigii leaf extract in breast cancer xenografts and by its active flavonoids in breast cancer cells.Anticancer. Agents Med. Chem.2016161216051614
    [Google Scholar]
  13. LiberatiA. AltmanD.G. TetzlaffJ. MulrowC. GøtzscheP.C. IoannidisJ.P. ClarkeM. DevereauxP.J. KleijnenJ. MoherD. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration.Ann. Intern. Med.20091514W10.7326/0003‑4819‑151‑4‑200908180‑00136 19622512
    [Google Scholar]
  14. ManouchehriJ.M. TurnerK.A. KalafatisM. TRAIL-induced apoptosis in TRAIL-resistant breast carcinoma through quercetin cotreatment.Breast Cancer201812117822341774985510.1177/1178223417749855 29434473
    [Google Scholar]
  15. WuQ. KroonP.A. ShaoH. NeedsP.W. YangX. Differential effects of quercetin and two of its derivatives, isorhamnetin and isorhamnetin-3-glucuronide, in inhibiting the proliferation of human breast-cancer MCF-7 cells.J. Agric. Food Chem.201866277181718910.1021/acs.jafc.8b02420 29905475
    [Google Scholar]
  16. PonrajT. VivekR. PaulpandiM. RejeethC. Nipun BabuV. VimalaK. AnandK. SivaselvamS. VasanthakumarA. PonpandianN. KannanS. Mitochondrial dysfunction-induced apoptosis in breast carcinoma cells through a pH-dependent intracellular quercetin NDDS of PVPylated-TiO 2 NPs.J. Mater. Chem. B Mater. Biol. Med.20186213555357010.1039/C8TB00769A 32254451
    [Google Scholar]
  17. CaoL. YangY. YeZ. LinB. ZengJ. LiC. LiangT. ZhouK. LiJ. Quercetin-3-methyl ether suppresses human breast cancer stem cell formation by inhibiting the Notch1 and PI3K/Akt signaling pathways.Int. J. Mol. Med.20184231625163610.3892/ijmm.2018.3741 29956731
    [Google Scholar]
  18. AghapourF. MoghadamniaA.A. NicoliniA. KaniS.N.M. BarariL. MorakabatiP. RezazadehL. KazemiS. Quercetin conjugated with silica nanoparticles inhibits tumor growth in MCF-7 breast cancer cell lines.Biochem. Biophys. Res. Commun.2018500486086510.1016/j.bbrc.2018.04.174 29698680
    [Google Scholar]
  19. LiS. YuanS. ZhaoQ. WangB. WangX. LiK. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it.Biomed. Pharmacother.201810044144710.1016/j.biopha.2018.02.055 29475141
    [Google Scholar]
  20. de Oliveira PedroR. HoffmannS. PereiraS. GoycooleaF.M. SchmittC.C. NeumannM.G. Self-assembled amphiphilic chitosan nanoparticles for quercetin delivery to breast cancer cells.Eur. J. Pharm. Biopharm.201813120321010.1016/j.ejpb.2018.08.009 30145220
    [Google Scholar]
  21. LiX. ZhouN. WangJ. LiuZ. WangX. ZhangQ. LiuQ. GaoL. WangR. Quercetin suppresses breast cancer stem cells (CD44 +/CD24 −) by inhibiting the PI3K/Akt/mTOR-signaling pathway.Life Sci.2018196566210.1016/j.lfs.2018.01.014 29355544
    [Google Scholar]
  22. JiaL. HuangS. YinX. ZanY. GuoY. HanL. Quercetin suppresses the mobility of breast cancer by suppressing glycolysis through Akt-mTOR pathway mediated autophagy induction.Life Sci.201820812313010.1016/j.lfs.2018.07.027 30025823
    [Google Scholar]
  23. WangR. YangL. LiS. YeD. YangL. LiuQ. ZhaoZ. CaiQ. TanJ. LiX. Quercetin inhibits breast cancer stem cells via downregulation of aldehyde dehydrogenase 1A1 (ALDH1A1), chemokine receptor type 4 (CXCR4), mucin 1 (MUC1), and epithelial cell adhesion molecule (EpCAM).Med. Sci. Monit.20182441242010.12659/MSM.908022 29353288
    [Google Scholar]
  24. RoyS. BanerjeeS. ChakrabortyT. Vanadium quercetin complex attenuates mammary cancer by regulating the P53, Akt/mTOR pathway and downregulates cellular proliferation correlated with increased apoptotic events.Biometals201831464767110.1007/s10534‑018‑0117‑3 29855745
    [Google Scholar]
  25. KarthickV. PandaS. KumarV.G. KumarD. ShresthaL.K. ArigaK. VasanthK. ChinnathambiS. DhasT.S. SuganyaK.S.U. Quercetin loaded PLGA microspheres induce apoptosis in breast cancer cells.Appl. Surf. Sci.201948721121710.1016/j.apsusc.2019.05.047
    [Google Scholar]
  26. SadhukhanP. KunduM. ChatterjeeS. GhoshN. MannaP. DasJ. SilP.C. Targeted delivery of quercetin via pH-responsive zinc oxide nanoparticles for breast cancer therapy.Mater. Sci. Eng. C201910012914010.1016/j.msec.2019.02.096 30948047
    [Google Scholar]
  27. KundurS. PrayagA. SelvakumarP. NguyenH. McKeeL. CruzC. SrinivasanA. ShoyeleS. LakshmikuttyammaA. Synergistic anticancer action of quercetin and curcumin against triple-negative breast cancer cell lines.J. Cell. Physiol.20192347111031111810.1002/jcp.27761 30478904
    [Google Scholar]
  28. SchröderL MarahrensP KochJ G HeideggerH VilsmeierT Phan-BrehmT Effects of green tea, matcha tea and their components epigallocatechin gallate and quercetin on MCF 7 and MDA-MB-231 breast carcinoma cells.Oncol. Rep.2019411387396
    [Google Scholar]
  29. HenidiH A Al-AbbasiF A El-MoselhyM A El-BassossyH M Al-AbdA M Despite blocking doxorubicin-induced vascular damage, quercetin ameliorates its antibreast cancer activity.Oxid. Med. Cell. Longev.20202020815764010.1155/2020/8157640
    [Google Scholar]
  30. HanikogluA. KucuksayanE. HanikogluF. OzbenT. MenounouG. SansoneA. ChatgilialogluC. Di BellaG. FerreriC. Effects of somatostatin, curcumin, and quercetin on the fatty acid profile of breast cancer cell membranes.Can. J. Physiol. Pharmacol.202098313113810.1139/cjpp‑2019‑0352 31545905
    [Google Scholar]
  31. ZhouY. ChenD. XueG. YuS. YuanC. HuangM. JiangL. Improved therapeutic efficacy of quercetin-loaded polymeric nanoparticles on triple-negative breast cancer by inhibiting uPA.RSC Advances20201057345173452610.1039/D0RA04231E 35514369
    [Google Scholar]
  32. OzkanE. Bakar-AtesF. Potentiation of the effect of lonidamine by quercetin in MCF-7 human breast cancer cells through downregulation of MMP-2/9 mRNA expression.An. Acad. Bras. Cienc.2020924e2020054810.1590/0001‑3765202020200548 33237147
    [Google Scholar]
  33. MansourizadehF. AlbertiD. BitontoV. TripepiM. SepehriH. KhoeeS. Geninatti CrichS. Efficient synergistic combination effect of quercetin with Curcumin on breast cancer cell apoptosis through their loading into Apo ferritin cavity.Colloids Surf. B Biointerfaces202019111098210.1016/j.colsurfb.2020.110982 32220813
    [Google Scholar]
  34. LiuM. FuM. YangX. JiaG. ShiX. JiJ. LiuX. ZhaiG. Paclitaxel and quercetin co-loaded functional mesoporous silica nanoparticles overcoming multidrug resistance in breast cancer.Colloids Surf. B Biointerfaces202019611128410.1016/j.colsurfb.2020.111284 32771817
    [Google Scholar]
  35. PatelG. ThakurN.S. KushwahV. PatilM.D. NileS.H. JainS. KaiG. BanerjeeU.C. Mycophenolate co-administration with quercetin via lipid-polymer hybrid nanoparticles for enhanced breast cancer management.Nanomedicine20202410214710.1016/j.nano.2019.102147 31884040
    [Google Scholar]
  36. Prieto-VilaM. ShimomuraI. KogureA. UsubaW. TakahashiR. OchiyaT. YamamotoY. Quercetin inhibits Lef1 and resensitizes docetaxel-resistant breast cancer cells.Molecules20202511257610.3390/molecules25112576 32492961
    [Google Scholar]
  37. KıygaE. ŞengelenA. AdıgüzelZ. Önay UçarE. Investigation of the role of quercetin as a heat shock protein inhibitor on apoptosis in human breast cancer cells.Mol. Biol. Rep.20204774957496710.1007/s11033‑020‑05641‑x 32638319
    [Google Scholar]
  38. XuZ. ZhaoD. ZhengX. HuangB. XiaX. PanX. Quercetin exerts bidirectional regulation effects on the efficacy of tamoxifen in estrogen receptor-positive breast cancer therapy: An in vitro study.Environ. Toxicol.202035111179119310.1002/tox.22983 32530119
    [Google Scholar]
  39. SafiA. HeidarianE. AhmadiR. Quercetin synergistically enhances the anticancer efficacy of docetaxel through induction of apoptosis and modulation of PI3K/AKT, MAPK/ERK, and JAK/STAT3 signaling pathways in MDA-MB-231 breast cancer cell line.Int. J. Mol. Cell. Med.20211011122 34268250
    [Google Scholar]
  40. RoshanazadehM. Babaahmadi RezaeiH. RashidiM. Quercetin synergistically potentiates the anti-metastatic effect of 5-fluorouracil on the MDA-MB-231 breast cancer cell line.Iran. J. Basic Med. Sci.2021247928934 34712423
    [Google Scholar]
  41. ChengH.W. ChiangC.S. HoH.Y. ChouS.H. LaiY.H. ShyuW.C. ChenS.Y. Dextran-modified Quercetin-Cu(II)/hyaluronic acid nanomedicine with natural poly(ADP-ribose) polymerase inhibitor and dual targeting for programmed synthetic lethal therapy in triple-negative breast cancer.J. Control. Release202132913614710.1016/j.jconrel.2020.11.061 33278482
    [Google Scholar]
  42. HosseinzadehR. KhorsandiK. EsfahaniH.S. HabibiM. HosseinzadehG. Preparation of cerium-curcumin and cerium-quercetin complexes and their LEDs irradiation assisted anticancer effects on MDA-MB-231 and A375 cancer cell lines.Photodiagn. Photodyn. Ther.20213410232610.1016/j.pdpdt.2021.102326 33971331
    [Google Scholar]
  43. ChenW.J. TsaiJ.H. HsuL.S. LinC.L. HongH.M. PanM.H. Quercetin blocks the aggressive phenotype of triple-negative breast cancer by inhibiting IGF1/IGF1R-mediated EMT program.Yao Wu Shi Pin Fen Xi20212919811210.38212/2224‑6614.3090 35696220
    [Google Scholar]
  44. QiuD. YanX. XiaoX. ZhangG. WangY. CaoJ. MaR. HongS. MaM. To explore immune synergistic function of quercetin in inhibiting breast cancer cells.Cancer Cell Int.202121163210.1186/s12935‑021‑02345‑5 34838003
    [Google Scholar]
  45. AskarM.A. El-NasharH.A.S. Al-AzzawiM.A. RahmanS.S.A. ElshawiO.E. Synergistic effect of quercetin magnetite nanoparticles and targeted radiotherapy in treatment of breast cancer.Breast Cancer2022161178223422108672810.1177/11782234221086728 35359610
    [Google Scholar]
  46. YükselT.N. Bozgeyi̇kE. YaylaM. The effect of quercetin and quercetin-3-d-xyloside on breast cancer proliferation and migration.Journal of Basic and Clinical Health Sciences20226256957810.30621/jbachs.1056769
    [Google Scholar]
  47. AnS. HuM. Quercetin promotes TFEB nuclear translocation and activates lysosomal degradation of ferritin to induce ferroptosis in breast cancer cells.Comput. Intell. Neurosci.20222022529921810.1155/2022/5299218
    [Google Scholar]
  48. RhmanM.A. DevnarainN. KhanR. OwiraP.M.O. Synergism potentiates oxidative antiproliferative effects of naringenin and quercetin in MCF-7 breast cancer cells.Nutrients20221416343710.3390/nu14163437 36014942
    [Google Scholar]
  49. UmarS.M. PatraS. KashyapA. DevJ.R. A.; Kumar, L.; Prasad, C.P. Quercetin impairs HuR-driven progression and migration of triple negative breast cancer (TNBC) cells.Nutr. Cancer20227441497151010.1080/01635581.2021.1952628 34278888
    [Google Scholar]
  50. YadavN. TripathiA. ParveenA. ParveenS. BanerjeeM. PLGA-quercetin nano-formulation inhibits cancer progression via mitochondrial dependent caspase-3, 7 and independent FoxO1 activation with concomitant PI3K/AKT suppression.Pharmaceutics2022147132610.3390/pharmaceutics14071326 35890222
    [Google Scholar]
  51. MekkawyA.I. ElerakyN.E. SolimanG.M. ElnaggarM.G. ElnaggarM.G. Combinatorial therapy of letrozole-and quercetin-loaded spanlastics for enhanced cytotoxicity against MCF-7 breast cancer cells.Pharmaceutics2022148172710.3390/pharmaceutics14081727 36015353
    [Google Scholar]
  52. Rani InalaM.S. PamidimukkalaK. Amalgamation of quercetin with anastrozole and capecitabine: A novel combination to treat breast and colon cancers – An in vitro study.J. Cancer Res. Ther.202319Suppl. 1S93S10510.4103/jcrt.JCRT_599_20 37147989
    [Google Scholar]
  53. PrzybylskiP. LewińskaA. RzeszutekI. BłoniarzD. MoskalA. BetlejG. DeręgowskaA. Cybularczyk-CecotkaM. SzmatołaT. LitwinienkoG. WnukM. Mutation status and glucose availability affect the response to mitochondria-targeted quercetin derivative in breast cancer cells.Cancers20231523561410.3390/cancers15235614 38067318
    [Google Scholar]
  54. TangH. KuangY. WuW. PengB. FuQ. Quercetin inhibits the metabolism of arachidonic acid by inhibiting the activity of CYP3A4, thereby inhibiting the progression of breast cancer.Mol. Med.202329112710.1186/s10020‑023‑00720‑8 37710176
    [Google Scholar]
  55. Almohammad AljabrB. ZihlifM. Abu-DahabR. ZalloumH. Effect of quercetin on doxorubicin cytotoxicity in sensitive and resistant human MCF7 breast cancer cell lines.Biomed. Rep.20242045810.3892/br.2024.1745 38414625
    [Google Scholar]
  56. BruniA. PepperA.R. PawlickR.L. Gala-LopezB. GambleA.F. KinT. SeebergerK. KorbuttG.S. BornsteinS.R. LinkermannA. ShapiroA.M.J. Ferroptosis-inducing agents compromise in vitro human islet viability and function.Cell Death Dis.20189659510.1038/s41419‑018‑0506‑0 29789532
    [Google Scholar]
  57. YoungC.D. AndersonS.M. Sugar and fat – That’s where it’s at: Metabolic changes in tumors.Breast Cancer Res.200810120210.1186/bcr1852
    [Google Scholar]
  58. López-KnowlesE. O’TooleS.A. McNeilC.M. MillarE.K.A. QiuM.R. CreaP. DalyR.J. MusgroveE.A. SutherlandR.L. PI3K pathway activation in breast cancer is associated with the basal-like phenotype and cancer-specific mortality.Int. J. Cancer201012651121113110.1002/ijc.24831 19685490
    [Google Scholar]
  59. CantleyL.C. The phosphoinositide 3-kinase pathway.Science200229655731655165710.1126/science.296.5573.1655 12040186
    [Google Scholar]
  60. LoRussoP.M. Inhibition of the PI3K/AKT/mTOR pathway in solid tumors.J. Clin. Oncol.201634313803381510.1200/JCO.2014.59.0018 27621407
    [Google Scholar]
  61. CsolleM.P. OomsL.M. PapaA. MitchellC.A. PTEN and other PtdIns (3, 4, 5) P3 lipid phosphatases in breast cancer.Int. J. Mol. Sci.20202123918910.3390/ijms21239189 33276499
    [Google Scholar]
  62. EramoM.J. MitchellC.A. Regulation of PtdIns(3,4,5) P 3/Akt signalling by inositol polyphosphate 5-phosphatases.Biochem. Soc. Trans.201644124025210.1042/BST20150214 26862211
    [Google Scholar]
  63. MolyneuxG. GeyerF.C. MagnayF.A. McCarthyA. KendrickH. NatrajanR. MacKayA. GrigoriadisA. TuttA. AshworthA. Reis-FilhoJ.S. SmalleyM.J. BRCA1 basal-like breast cancers originate from luminal epithelial progenitors and not from basal stem cells.Cell Stem Cell20107340341710.1016/j.stem.2010.07.010 20804975
    [Google Scholar]
  64. JonesR.A. CampbellC.I. WoodG.A. PetrikJ.J. MooreheadR.A. Reversibility and recurrence of IGF-IR-induced mammary tumors.Oncogene200928212152216210.1038/onc.2009.79 19377512
    [Google Scholar]
  65. ZielinskaH A BahlA HollyJ M PerksC M Epithelial-to-mesenchymal transition in breast cancer: A role for insulin-like growth factor I and insulin-like growth factor-binding protein 3?Breast Cancer (Dove Med. Press)20157919
    [Google Scholar]
  66. WernerH. The IGF1 signaling pathway: From basic concepts to therapeutic opportunities.Int. J. Mol. Sci.202324191488210.3390/ijms241914882 37834331
    [Google Scholar]
  67. MiyazonoK. Transforming growth factor-.BETA. signaling in epithelial-mesenchymal transition and progression of cancer.Proc. Jpn. Acad., Ser. B, Phys. Biol. Sci.200985831432310.2183/pjab.85.314 19838011
    [Google Scholar]
  68. WangW.J. YaoY. JiangL.L. HuT.H. MaJ.Q. RuanZ.P. TianT. GuoH. WangS.H. NanK.J. Increased LEF1 expression and decreased Notch2 expression are strong predictors of poor outcomes in colorectal cancer patients.Dis. Markers201335539540510.1155/2013/983981 24223455
    [Google Scholar]
  69. DentR. TrudeauM. PritchardK.I. HannaW.M. KahnH.K. SawkaC.A. LickleyL.A. RawlinsonE. SunP. NarodS.A. Triple-negative breast cancer: Clinical features and patterns of recurrence.Clin. Cancer Res.200713154429443410.1158/1078‑0432.CCR‑06‑3045 17671126
    [Google Scholar]
  70. KubiczkovaL. SedlarikovaL. HajekR. SevcikovaS. TGF-β – An excellent servant but a bad master.J. Transl. Med.201210118310.1186/1479‑5876‑10‑183 22943793
    [Google Scholar]
  71. IsogaiZ. OnoR.N. UshiroS. KeeneD.R. ChenY. MazzieriR. CharbonneauN.L. ReinhardtD.P. RifkinD.B. SakaiL.Y. Latent transforming growth factor β-binding protein 1 interacts with fibrillin and is a microfibril-associated protein.J. Biol. Chem.200327842750275710.1074/jbc.M209256200 12429738
    [Google Scholar]
  72. HoriguchiM. OtaM. RifkinD.B. Matrix control of transforming growth factor- Function.J. Biochem.2012152432132910.1093/jb/mvs089 22923731
    [Google Scholar]
  73. MassaguéJ. TGFβ signalling in context.Nat. Rev. Mol. Cell Biol.2012131061663010.1038/nrm3434 22992590
    [Google Scholar]
  74. NeuzilletC. Tijeras-RaballandA. CohenR. CrosJ. FaivreS. RaymondE. de GramontA. Targeting the TGFβ pathway for cancer therapy.Pharmacol. Ther.2015147223110.1016/j.pharmthera.2014.11.001 25444759
    [Google Scholar]
  75. PrincipeD.R. DollJ.A. BauerJ. JungB. MunshiH.G. BartholinL. PascheB. LeeC. GrippoP.J. TGF-β: Duality of function between tumor prevention and carcinogenesis.J. Natl. Cancer Inst.20141062djt36910.1093/jnci/djt369 24511106
    [Google Scholar]
  76. HarradineK.A. AkhurstR.J. Mutations of TGFß signaling molecules in human disease.Ann. Med.200638640341410.1080/07853890600919911 17008304
    [Google Scholar]
  77. BierieB. MosesH.L. TGFβ: The molecular Jekyll and Hyde of cancer.Nat. Rev. Cancer20066750652010.1038/nrc1926 16794634
    [Google Scholar]
  78. AndradeD. MehtaM. GriffithJ. OhS. CorbinJ. BabuA. DeS. ChenA. ZhaoY.D. HusainS. RoyS. XuL. AubeJ. JanknechtR. GorospeM. HermanT. RameshR. MunshiA. HuR reduces radiation-induced DNA damage by enhancing expression of ARID1A.Cancers20191112201410.3390/cancers11122014 31847141
    [Google Scholar]
  79. KimL.S. KimJ.H. Heat shock protein as molecular targets for breast cancer therapeutics.J. Breast Cancer201114316717410.4048/jbc.2011.14.3.167 22031796
    [Google Scholar]
/content/journals/cwhr/10.2174/0115734048332611250106075111
Loading
/content/journals/cwhr/10.2174/0115734048332611250106075111
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test