Skip to content
2000
image of PCSK9: Its Role in Lipid Metabolism and as a Novel Target for the Treatment of Metabolic Kidney Disease

Abstract

Introduction

The interplay between lipid metabolism and renal injury in the context of metabolic kidney diseases has garnered growing scientific interest. Nevertheless, the majority of existing studies have primarily concentrated on the modulation of individual lipid parameters, with relatively limited emphasis on the potential role of PCSK9 as a crucial mediator linking lipid metabolism disturbances to kidney damage.

methods

A comprehensive literature search was performed across databases such as PubMed and Web of Science, covering the period from 2003 to 2025. Search terms included “PCSK9,” “metabolic kidney disease,” and “chronic kidney disease”, which were used to identify relevant Randomized Controlled Trials (RCTs), systematic reviews, and mechanistic studies. In addition, proteomics data were obtained from the iProX database and integrated into the analysis.

Results

PCSK9 exacerbates lipid metabolism dysregulation through LDLR degradation. Its inhibitors improve lipid metabolism and reduce proteinuria, thereby exerting renoprotective effects downregulation of lipid-related proteins (., Angptl3) and inhibition of TGF-β signaling components.

Discussion

PCSK9 as a therapeutic target, extending prior research by demonstrating dual lipid-renal protective effects. However, evidence for rare metabolic kidney diseases and long-term safety data is lacking.

Conclusion

PCSK9 inhibitors show promise in metabolic kidney diseases, but large-scale trials are needed to clarify their long-term efficacy and optimal application scope.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611392964250918094721
2025-09-22
2025-11-07
Loading full text...

Full text loading...

/deliver/fulltext/cvp/10.2174/0115701611392964250918094721/BMS-CVP-2025-40.html?itemId=/content/journals/cvp/10.2174/0115701611392964250918094721&mimeType=html&fmt=ahah

References

  1. Mitrofanova A. Merscher S. Fornoni A. Kidney lipid dysmetabolism and lipid droplet accumulation in chronic kidney disease. Nat. Rev. Nephrol. 2023 19 10 629 645 10.1038/s41581‑023‑00741‑w 37500941
    [Google Scholar]
  2. Imamura M. Kadowaki T. Maeda S. Genetic studies on metabolic disorder–associated kidney diseases. Kidney Int. 2025 108 1 30 37 10.1016/j.kint.2025.01.042 40252921
    [Google Scholar]
  3. Zhu J.X. Chu F. Zhao W.M. Uncovering the mechanisms of diosmin in treating obesity-related kidney injury based on network pharmacology, molecular docking, and in vitro validation. Naunyn Schmiedebergs Arch. Pharmacol. 2025 398 2 1973 1989 10.1007/s00210‑024‑03398‑9 39222242
    [Google Scholar]
  4. Li W. Wang Y. Liu C. Yu Y. Xu L. Dong B. Comparing efficacy of chiglitazar, pioglitazone, and semaglutide in type 2 diabetes: A retrospective study. Diabetes Ther. 2025 16 5 993 1017 10.1007/s13300‑025‑01724‑9 40126828
    [Google Scholar]
  5. Kosugi T. Eriguchi M. Yoshida H. Association between chronic kidney disease and new-onset dyslipidemia: The Japan Specific Health Checkups (J-SHC) study. Atherosclerosis 2021 332 24 32 10.1016/j.atherosclerosis.2021.08.004 34375910
    [Google Scholar]
  6. Benito-Vicente A. Uribe K.B. Larrea-Sebal A. Leu22_Leu23 duplication at the signal peptide of pcsk9 promotes intracellular degradation of ldlr and autosomal dominant hypercholesterolemia. Arterioscler. Thromb. Vasc. Biol. 2022 42 7 e203 e216 10.1161/ATVBAHA.122.315499 35510551
    [Google Scholar]
  7. Zhang Y. Han L. Ning Q. Gastrodin attenuates hypercholesterolaemia through regulating the PCSK9/LDLR signalling pathway by suppressing HNF-1α and activating FoxO3a. Phytomedicine 2025 142 156778 10.1016/j.phymed.2025.156778 40279963
    [Google Scholar]
  8. Wu M. Yoon C.Y. Park J. The role of PCSK9 in glomerular lipid accumulation and renal injury in diabetic kidney disease. Diabetologia 2024 67 9 1980 1997 10.1007/s00125‑024‑06191‑8 38879617
    [Google Scholar]
  9. Feng Z. Liao X. Peng J. PCSK9 causes inflammation and cGAS/STING pathway activation in diabetic nephropathy. FASEB J. 2023 37 9 e23127 10.1096/fj.202300342RRR 37561547
    [Google Scholar]
  10. Huang Q. Zhou Z. Xu L. Zhan P. Huang G. PCSK9 inhibitor attenuates cardiac fibrosis in reperfusion injury rat by suppressing inflammatory response and TGF-β1/Smad3 pathway. Biochem. Pharmacol. 2024 230 Pt 1 116563 10.1016/j.bcp.2024.116563 39362501
    [Google Scholar]
  11. Zhang Y. Wang Z. Jia C. Blockade of Hepatocyte PCSK9 Ameliorates Hepatic Ischemia-Reperfusion Injury by Promoting Pink1-Parkin–Mediated Mitophagy. Cell. Mol. Gastroenterol. Hepatol. 2024 17 1 149 169 10.1016/j.jcmgh.2023.09.004 37717824
    [Google Scholar]
  12. Wang L. Li S. Luo H. Lu Q. Yu S. PCSK9 promotes the progression and metastasis of colon cancer cells through regulation of EMT and PI3K/AKT signaling in tumor cells and phenotypic polarization of macrophages. J. Exp. Clin. Cancer Res. 2022 41 1 303 10.1186/s13046‑022‑02477‑0 36242053
    [Google Scholar]
  13. Artunc F. Kidney-derived PCSK9—a new driver of hyperlipidemia in nephrotic syndrome? Kidney Int. 2020 98 6 1393 1395 10.1016/j.kint.2020.07.027 33276863
    [Google Scholar]
  14. Aman A. Slob E.A.W. Ward J. Sattar N. Strawbridge R.J. Investigating the association of the effect of genetically proxied PCSK9i with mood disorders using cis-pQTLs: A drug-target Mendelian randomization study. PLoS One 2024 19 9 e0310396 10.1371/journal.pone.0310396 39325747
    [Google Scholar]
  15. Chen Y.Q. Troutt J.S. Konrad R.J. PCSK9 is present in human cerebrospinal fluid and is maintained at remarkably constant concentrations throughout the course of the day. Lipids 2014 49 5 445 455 10.1007/s11745‑014‑3895‑6 24659111
    [Google Scholar]
  16. Seidah N.G. Benjannet S. Wickham L. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): Liver regeneration and neuronal differentiation. Proc. Natl. Acad. Sci. USA 2003 100 3 928 933 10.1073/pnas.0335507100 12552133
    [Google Scholar]
  17. Abifadel M. Varret M. Rabès J.P. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 2003 34 2 154 156 10.1038/ng1161 12730697
    [Google Scholar]
  18. Shapiro M.D. Tavori H. Fazio S. PCSK9: From basic science discoveries to clinical trials. Circ. Res. 2018 122 10 1420 1438 10.1161/CIRCRESAHA.118.311227 29748367
    [Google Scholar]
  19. Zhuang J. Zhu H. Cheng Z. PCSK9, a novel immune and ferroptosis related gene in abdominal aortic aneurysm neck. Sci. Rep. 2023 13 1 6054 10.1038/s41598‑023‑33287‑9 37055467
    [Google Scholar]
  20. Akioyamen L.E. Genest J. Shan S.D. Estimating the prevalence of heterozygous familial hypercholesterolaemia: A systematic review and meta-analysis. BMJ Open 2017 7 9 e016461 10.1136/bmjopen‑2017‑016461 28864697
    [Google Scholar]
  21. Benjannet S. Hamelin J. Chrétien M. Seidah N.G. Loss- and gain-of-function PCSK9 variants: cleavage specificity, dominant negative effects, and low density lipoprotein receptor (LDLR) degradation. J. Biol. Chem. 2012 287 40 33745 33755 10.1074/jbc.M112.399725 22875854
    [Google Scholar]
  22. Nawaka N. Wanmasae S. Makarasen A. Dechtrirat D. Techasakul S. Jeenduang N. Allicin and capsaicin ameliorated hypercholesterolemia by upregulating ldlr and downregulating pcsk9 expression in hepg2 cells. Int. J. Mol. Sci. 2022 23 22 14299 10.3390/ijms232214299 36430776
    [Google Scholar]
  23. Bao X. Liang Y. Chang H. Targeting proprotein convertase subtilisin/kexin type 9 (PCSK9): From bench to bedside. Signal Transduct. Target. Ther. 2024 9 1 13 10.1038/s41392‑023‑01690‑3 38185721
    [Google Scholar]
  24. Strøm T.B. Tveten K. Leren T.P. PCSK9 acts as a chaperone for the LDL receptor in the endoplasmic reticulum. Biochem. J. 2014 457 1 99 105 10.1042/BJ20130930 24144304
    [Google Scholar]
  25. Cunningham D. Danley D.E. Geoghegan K.F. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat. Struct. Mol. Biol. 2007 14 5 413 419 10.1038/nsmb1235 17435765
    [Google Scholar]
  26. Barale C. Melchionda E. Morotti A. Russo I. PCSK9 biology and its role in atherothrombosis. Int. J. Mol. Sci. 2021 22 11 5880 10.3390/ijms22115880 34070931
    [Google Scholar]
  27. Hampton E.N. Knuth M.W. Li J. Harris J.L. Lesley S.A. Spraggon G. The self-inhibited structure of full-length PCSK9 at 1.9 Å reveals structural homology with resistin within the C-terminal domain. Proc. Natl. Acad. Sci. USA 2007 104 37 14604 14609 10.1073/pnas.0703402104 17804797
    [Google Scholar]
  28. Albi E. Grösch S. Editorial for Special Issue “Lipid as a Cancer Therapeutic Target”. Int. J. Mol. Sci. 2021 22 7 3610 10.3390/ijms22073610 33807133
    [Google Scholar]
  29. Jia R. Lu J. Sun B. TGF - β/SMAD signaling pathway and protein molecules in the treatment of liver fibrosis: A natural lipid membrane protein of exosomes. Int. J. Biol. Macromol. 2024 280 Pt 1 135654 10.1016/j.ijbiomac.2024.135654 39278452
    [Google Scholar]
  30. Klymchenko A.S. Fluorescent probes for lipid membranes: From the cell surface to organelles. Acc. Chem. Res. 2023 56 1 1 12 10.1021/acs.accounts.2c00586 36533992
    [Google Scholar]
  31. Lin Z. Liu J. Kang R. Yang M. Tang D. Lipid metabolism in ferroptosis. Adv. Biol. 2021 5 8 2100396 10.1002/adbi.202100396 34015188
    [Google Scholar]
  32. Xu L. Yang Q. Zhou J. Mechanisms of abnormal lipid metabolism in the pathogenesis of disease. Int. J. Mol. Sci. 2024 25 15 8465 10.3390/ijms25158465 39126035
    [Google Scholar]
  33. Agrawal S. Zaritsky J.J. Fornoni A. Smoyer W.E. Dyslipidaemia in nephrotic syndrome: Mechanisms and treatment. Nat. Rev. Nephrol. 2018 14 1 57 70 10.1038/nrneph.2017.155 29176657
    [Google Scholar]
  34. Petrenko V. Sinturel F. Riezman H. Dibner C. Lipid metabolism around the body clocks. Prog. Lipid Res. 2023 91 101235 10.1016/j.plipres.2023.101235 37187314
    [Google Scholar]
  35. Yang L.G. March Z.M. Stephenson R.A. Narayan P.S. Apolipoprotein E in lipid metabolism and neurodegenerative disease. Trends Endocrinol. Metab. 2023 34 8 430 445 10.1016/j.tem.2023.05.002 37357100
    [Google Scholar]
  36. Yi J. Zhou Q. Huang J. Niu S. Ji G. Zheng T. Lipid metabolism disorder promotes the development of intervertebral disc degeneration. Biomed. Pharmacother. 2023 166 115401 10.1016/j.biopha.2023.115401 37651799
    [Google Scholar]
  37. Yang Y.H. Wen R. Yang N. Zhang T.N. Liu C.F. Roles of protein post-translational modifications in glucose and lipid metabolism: Mechanisms and perspectives. Mol. Med. 2023 29 1 93 10.1186/s10020‑023‑00684‑9 37415097
    [Google Scholar]
  38. Wang J. Liu F. Kong R. Han X. Association between globulin and diabetic nephropathy in type2 diabetes mellitus patients: A cross-sectional study. Front. Endocrinol. 2022 13 890273 10.3389/fendo.2022.890273 35898464
    [Google Scholar]
  39. Mori Y. Ajay A.K. Chang J.H. KIM-1 mediates fatty acid uptake by renal tubular cells to promote progressive diabetic kidney disease. Cell Metab. 2021 33 5 1042 1061.e7 10.1016/j.cmet.2021.04.004 33951465
    [Google Scholar]
  40. Beniwal A. Jain J.C. Jain A. Lipids: A major culprit in diabetic nephropathy. Curr. Diabetes Rev. 2024 20 8 60 69 38018185
    [Google Scholar]
  41. Erekat N.S. Programmed cell death in diabetic nephropathy: A review of apoptosis, autophagy, and necroptosis. Med. Sci. Monit. 2022 28 e937766 10.12659/MSM.937766 35989481
    [Google Scholar]
  42. Haas M.E. Levenson A.E. Sun X. The role of proprotein convertase subtilisin/kexin type 9 in nephrotic syndrome-associated hypercholesterolemia. Circulation 2016 134 1 61 72 10.1161/CIRCULATIONAHA.115.020912 27358438
    [Google Scholar]
  43. Morris A.W.J. PCSK9: A target for hypercholesterolaemia in nephrotic syndrome. Nat. Rev. Nephrol. 2016 12 9 510 10.1038/nrneph.2016.111 27425160
    [Google Scholar]
  44. Eid S. Sas K.M. Abcouwer S.F. New insights into the mechanisms of diabetic complications: Role of lipids and lipid metabolism. Diabetologia 2019 62 9 1539 1549 10.1007/s00125‑019‑4959‑1 31346658
    [Google Scholar]
  45. Aron-Wisnewsky J. Warmbrunn M.V. Nieuwdorp M. Clément K. Metabolism and metabolic disorders and the microbiome: the intestinal microbiota associated with obesity, lipid metabolism, and metabolic health—pathophysiology and therapeutic strategies. Gastroenterology 2021 160 2 573 599 10.1053/j.gastro.2020.10.057 33253685
    [Google Scholar]
  46. Nicholls S.J. PCSK9 inhibitors and reduction in cardiovascular events: Current evidence and future perspectives. Kardiol. Pol. 2023 81 2 115 122 10.33963/KP.a2023.0030 36739653
    [Google Scholar]
  47. Sun Y. Zhang H. Meng J. S-palmitoylation of PCSK9 induces sorafenib resistance in liver cancer by activating the PI3K/AKT pathway. Cell Rep. 2022 40 7 111194 10.1016/j.celrep.2022.111194 35977495
    [Google Scholar]
  48. Puteri M.U. Azmi N.U. Kato M. Saputri F.C. PCSK9 promotes cardiovascular diseases: Recent evidence about its association with platelet activation-induced myocardial infarction. Life 2022 12 2 190 10.3390/life12020190 35207479
    [Google Scholar]
  49. Azar Y. Ludwig T.E. Le Bon H. The singular French PCSK9-p.Ser127Arg gain-of-function variant: A significant player in cholesterol levels from a 775-year-old common ancestor. Atherosclerosis 2024 399 118596 10.1016/j.atherosclerosis.2024.118596 39500114
    [Google Scholar]
  50. Da Dalt L. Ruscica M. Bonacina F. PCSK9 deficiency reduces insulin secretion and promotes glucose intolerance: The role of the low-density lipoprotein receptor. Eur. Heart J. 2019 40 4 357 368 10.1093/eurheartj/ehy357 29982592
    [Google Scholar]
  51. Alannan M. Seidah N.G. Merched A.J. PCSK9 in liver cancers at the crossroads between lipid metabolism and immunity. Cells 2022 11 24 4132 10.3390/cells11244132 36552895
    [Google Scholar]
  52. Surdo P.L. Bottomley M.J. Calzetta A. Mechanistic implications for LDL receptor degradation from the PCSK9/LDLR structure at neutral pH. EMBO Rep. 2011 12 12 1300 1305 10.1038/embor.2011.205 22081141
    [Google Scholar]
  53. Ben-Naim L. Khalaila I. Papo N. Modifying pH-sensitive PCSK9/LDLR interactions as a strategy to enhance hepatic cell uptake of low-density lipoprotein cholesterol (LDL-C). Protein Eng. Des. Sel. 2022 35 gzab032 10.1093/protein/gzab032 35174858
    [Google Scholar]
  54. Go G-W. Mani A. Low-density lipoprotein receptor (LDLR) family orchestrates cholesterol homeostasis. Yale J. Biol. Med. 2012 85 1 19 28 22461740
    [Google Scholar]
  55. Beglova N. Jeon H. Fisher C. Blacklow S.C. Cooperation between fixed and low pH-inducible interfaces controls lipoprotein release by the LDL receptor. Mol. Cell 2004 16 2 281 292 10.1016/j.molcel.2004.09.038 15494314
    [Google Scholar]
  56. Mikaeeli S. Ben Djoudi Ouadda A. Evagelidis A. Insights into PCSK9-LDLR regulation and trafficking via the differential functions of MHC-I proteins HFE and HLA-C. Cells 2024 13 10 857 10.3390/cells13100857 38786080
    [Google Scholar]
  57. Fruchart Gaillard C. Ouadda A.B.D. Ciccone L. Molecular interactions of PCSK9 with an inhibitory nanobody, CAP1 and HLA-C: Functional regulation of LDLR levels. Mol. Metab. 2023 67 101662 10.1016/j.molmet.2022.101662 36566984
    [Google Scholar]
  58. Guo S. Xia X. Gu H. Zhang D. Proprotein Convertase Subtilisin/Kexin-Type 9 and Lipid Metabolism. Adv. Exp. Med. Biol. 2020 1276 137 156 10.1007/978‑981‑15‑6082‑8_9 32705598
    [Google Scholar]
  59. Seidah N.G. Prat A. Pirillo A. Catapano A.L. Norata G.D. Novel strategies to target proprotein convertase subtilisin kexin 9: Beyond monoclonal antibodies. Cardiovasc. Res. 2019 115 3 510 518 10.1093/cvr/cvz003 30629143
    [Google Scholar]
  60. Guo Y. Tang Z. Yan B. PCSK9 (Proprotein Convertase Subtilisin/Kexin Type 9) triggers vascular smooth muscle cell senescence and apoptosis: Implication of its direct role in degenerative vascular disease. Arterioscler. Thromb. Vasc. Biol. 2022 42 1 67 86 10.1161/ATVBAHA.121.316902 34809446
    [Google Scholar]
  61. Jang H.D. Lee S.E. Yang J. Cyclase-associated protein 1 is a binding partner of proprotein convertase subtilisin/kexin type-9 and is required for the degradation of low-density lipoprotein receptors by proprotein convertase subtilisin/kexin type-9. Eur. Heart J. 2020 41 2 239 252 10.1093/eurheartj/ehz566 31419281
    [Google Scholar]
  62. Vekic J. Zeljkovic A. Stefanovic A. Jelic-Ivanovic Z. Spasojevic-Kalimanovska V. Obesity and dyslipidemia. Metabolism 2019 92 71 81 10.1016/j.metabol.2018.11.005 30447223
    [Google Scholar]
  63. Wakino S. Hasegawa K. Itoh H. Sirtuin and metabolic kidney disease. Kidney Int. 2015 88 4 691 698 10.1038/ki.2015.157 26083654
    [Google Scholar]
  64. Xiang E. Han B. Zhang Q. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis. Stem Cell Res. Ther. 2020 11 1 336 10.1186/s13287‑020‑01852‑y 32746936
    [Google Scholar]
  65. Zhou D. Zhou T. Tang S. Network pharmacology combined with mendelian randomization analysis to identify the key targets of renin-angiotensin-aldosterone system inhibitors in the treatment of diabetic nephropathy. Front. Endocrinol. 2024 15 1354950 10.3389/fendo.2024.1354950 38332893
    [Google Scholar]
  66. Alicic R.Z. Rooney M.T. Tuttle K.R. Diabetic Kidney Disease. Clin. J. Am. Soc. Nephrol. 2017 12 12 2032 2045 10.2215/CJN.11491116 28522654
    [Google Scholar]
  67. Bikbov B. Purcell C.A. Levey A.S. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the global burden of disease study 2017. Lancet 2020 395 10225 709 733 10.1016/S0140‑6736(20)30045‑3 32061315
    [Google Scholar]
  68. Ma L. Wang S. Zhao H. Susceptibility of ApoB and PCSK9 genetic polymorphisms to diabetic kidney disease among Chinese diabetic patients. Front. Med. 2021 8 659188 10.3389/fmed.2021.659188 33889589
    [Google Scholar]
  69. Bermudez-Lopez M. Forne C. Amigo N. An in-depth analysis shows a hidden atherogenic lipoprotein profile in non-diabetic chronic kidney disease patients. Expert Opin. Ther. Targets 2019 23 7 619 630 10.1080/14728222.2019.1620206 31100024
    [Google Scholar]
  70. Tu Q.M. Jin H.M. Yang X.H. Lipid abnormality in diabetic kidney disease and potential treatment advancements. Front. Endocrinol. 2025 16 1503711 10.3389/fendo.2025.1503711 40171201
    [Google Scholar]
  71. Athyros V.G. Doumas M. Imprialos K.P. Diabetes and lipid metabolism. Hormones 2018 17 1 61 67 10.1007/s42000‑018‑0014‑8 29858856
    [Google Scholar]
  72. Herman-Edelstein M. Scherzer P. Tobar A. Levi M. Gafter U. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy. J. Lipid Res. 2014 55 3 561 572 10.1194/jlr.P040501 24371263
    [Google Scholar]
  73. Holman R.R. Clark A. Rorsman P. β-cell secretory dysfunction: A key cause of type 2 diabetes. Lancet Diabetes Endocrinol. 2020 8 5 370 10.1016/S2213‑8587(20)30119‑4 32333873
    [Google Scholar]
  74. Costet P. Cariou B. Lambert G. Hepatic PCSK9 expression is regulated by nutritional status via insulin and sterol regulatory element-binding protein 1c. J. Biol. Chem. 2006 281 10 6211 6218 10.1074/jbc.M508582200 16407292
    [Google Scholar]
  75. Hao M. Head W.S. Gunawardana S.C. Hasty A.H. Piston D.W. Direct effect of cholesterol on insulin secretion: A novel mechanism for pancreatic beta-cell dysfunction. Diabetes 2007 56 9 2328 2338 10.2337/db07‑0056 17575085
    [Google Scholar]
  76. Faraj M. LDL, LDL receptors, and PCSK9 as modulators of the risk for type 2 diabetes: A focus on white adipose tissue. J. Biomed. Res. 2020 34 4 251 259 10.7555/JBR.34.20190124 32701068
    [Google Scholar]
  77. Gurlo T. Liu R. Wang Z. Dysregulation of cholesterol homeostasis is an early signal of β-cell proteotoxicity characteristic of type 2 diabetes. Physiol. Genomics 2024 56 9 621 633 10.1152/physiolgenomics.00029.2024 38949617
    [Google Scholar]
  78. McEwen L.N. Karter A.J. Waitzfelder B.E. Predictors of mortality over 8 years in type 2 diabetic patients: Translating Research Into Action for Diabetes (TRIAD). Diabetes Care 2012 35 6 1301 1309 10.2337/dc11‑2281 22432119
    [Google Scholar]
  79. Dijk W Cariou B Efficacy and safety of proprotein convertase subtilisin/kexin 9 inhibitors in people with diabetes and dyslipidaemia Diabetes Obes Metab 2019 21 S1 39 51 10.1111/dom.1363624 3100245617
    [Google Scholar]
  80. Lu F. Li E. Yang X. The association between circulatory, local pancreatic PCSK9 and type 2 diabetes mellitus: The effects of antidiabetic drugs on PCSK9. Heliyon 2023 9 9 e19371 10.1016/j.heliyon.2023.e19371 37809924
    [Google Scholar]
  81. Schmidt R.J. Beyer T.P. Bensch W.R. Secreted proprotein convertase subtilisin/kexin type 9 reduces both hepatic and extrahepatic low-density lipoprotein receptors in vivo. Biochem. Biophys. Res. Commun. 2008 370 4 634 640 10.1016/j.bbrc.2008.04.004 18406350
    [Google Scholar]
  82. Nekaies Y. Baudin B. Kelbousi S. Sakly M. Attia N. Plasma proprotein convertase subtilisin/kexin type 9 is associated with Lp(a) in type 2 diabetic patients. J. Diabetes Complications 2015 29 8 1165 1170 10.1016/j.jdiacomp.2015.08.003 26412029
    [Google Scholar]
  83. Waiz M. Alvi S.S. Khan M.S. Association of circulatory PCSK-9 with biomarkers of redox imbalance and inflammatory cascades in the prognosis of diabetes and associated complications: A pilot study in the Indian population. Free Radic. Res. 2023 57 4 294 307 10.1080/10715762.2023.2237180 37459623
    [Google Scholar]
  84. Feng Z. Liao X. Zhang H. Peng J. Huang Z. Yi B. Increased serum PCSK9 levels are associated with renal function impairment in patients with type 2 diabetes mellitus. Ren. Fail. 2023 45 1 2215880 10.1080/0886022X.2023.2215880 37246753
    [Google Scholar]
  85. Waiz M Alvi S Ahmad S Khan M. Association of PCSK-9 with the Biomarkers of Type-2 diabetes and its complications in the Indian population: A Pilot Study Clin Lab 2024 70 02/2024 70 10.7754/Clin.Lab.2023.23060280 3834596553
    [Google Scholar]
  86. Elewa U. Fernández-Fernández B. Mahillo-Fernández I. PCSK 9 in diabetic kidney disease. Eur. J. Clin. Invest. 2016 46 9 779 786 10.1111/eci.12661 27438893
    [Google Scholar]
  87. Molina-Jijon E. Gambut S. Macé C. Avila-Casado C. Clement L.C. Secretion of the epithelial sodium channel chaperone PCSK9 from the cortical collecting duct links sodium retention with hypercholesterolemia in nephrotic syndrome. Kidney Int. 2020 98 6 1449 1460 10.1016/j.kint.2020.06.045 32750454
    [Google Scholar]
  88. Liu S. Deng X. Zhang P. Blood flow patterns regulate PCSK9 secretion via MyD88-mediated pro-inflammatory cytokines. Cardiovasc. Res. 2020 116 10 1721 1732 10.1093/cvr/cvz262 31593224
    [Google Scholar]
  89. Emmer B.T. Hesketh G.G. Kotnik E. The cargo receptor SURF4 promotes the efficient cellular secretion of PCSK9. eLife 2018 7 e38839 10.7554/eLife.38839 30251625
    [Google Scholar]
  90. Martínez-Montoro J.I. Morales E. Cornejo-Pareja I. Tinahones F.J. Fernández-García J.C. Obesity‐related glomerulopathy: Current approaches and future perspectives. Obes. Rev. 2022 23 7 e13450 10.1111/obr.13450 35362662
    [Google Scholar]
  91. Chen Y.Y. Hong H. Lei Y.T. Zou J. Yang Y.Y. He L.Y. ACE2 deficiency exacerbates obesity-related glomerulopathy through its role in regulating lipid metabolism. Cell Death Discov. 2022 8 1 401 10.1038/s41420‑022‑01191‑2 36180463
    [Google Scholar]
  92. Escasany E. Izquierdo-Lahuerta A. Medina-Gomez G. Underlying mechanisms of renal lipotoxicity in obesity. Nephron J. 2019 143 1 28 32 10.1159/000494694 30625473
    [Google Scholar]
  93. Wu D. Zhou Y. Pan Y. Vaccine against PCSK9 improved renal fibrosis by regulating fatty acid β‐oxidation. J. Am. Heart Assoc. 2020 9 1 e014358 10.1161/JAHA.119.014358 31870234
    [Google Scholar]
  94. Ning L. Zou Y. Li S. Anti-PCSK9 treatment attenuates liver fibrosis via inhibiting hypoxia-induced autophagy in hepatocytes. Inflammation 2023 46 6 2102 2119 10.1007/s10753‑023‑01865‑8 37466835
    [Google Scholar]
  95. Liang L. Chung S.I. Guon T.E. Park K.H. Lee J.H. Park J.W. Statin administration or blocking PCSK9 alleviates airway hyperresponsiveness and lung fibrosis in high-fat diet-induced obese mice. Respir. Res. 2024 25 1 213 10.1186/s12931‑024‑02842‑x 38762465
    [Google Scholar]
  96. Du X. Liu T. Shen C. Retracted article: Anti-fibrotic mechanism of SPP1 knockdown in atrial fibrosis associates with inhibited mitochondrial DNA damage and TGF-β/SREBP2/PCSK9 signaling. Cell Death Discov. 2022 8 1 246 10.1038/s41420‑022‑00895‑9 35508610
    [Google Scholar]
  97. Zheng X. Liu D. Adiponectin alleviates the symptoms of ischemic renal disease by inhibiting renal cell apoptosis. Life Sci. 2021 265 118825 10.1016/j.lfs.2020.118825 33275989
    [Google Scholar]
  98. Preston R.A. Epstein M. Ischemic renal disease. J. Hypertens. 1997 15 12 1365 1377 10.1097/00004872‑199715120‑00001 9431840
    [Google Scholar]
  99. Giugliano R.P. Pedersen T.R. Saver J.L. Stroke prevention with the PCSK9 (Proprotein Convertase Subtilisin-Kexin Type 9) inhibitor evolocumab added to statin in high-risk patients with stable atherosclerosis. Stroke 2020 51 5 1546 1554 10.1161/STROKEAHA.119.027759 32312223
    [Google Scholar]
  100. Chen J. Budoff M.J. Reilly M.P. Coronary artery calcification and risk of cardiovascular disease and death among patients with chronic kidney disease. JAMA Cardiol. 2017 2 6 635 643 10.1001/jamacardio.2017.0363 28329057
    [Google Scholar]
  101. Lupo M.G. Bressan A. Donato M. PCSK9 promotes arterial medial calcification. Atherosclerosis 2022 346 86 97 10.1016/j.atherosclerosis.2022.01.015 35135698
    [Google Scholar]
  102. Goettsch C. Hutcheson J.D. Hagita S. A single injection of gain-of-function mutant PCSK9 adeno-associated virus vector induces cardiovascular calcification in mice with no genetic modification. Atherosclerosis 2016 251 109 118 10.1016/j.atherosclerosis.2016.06.011 27318830
    [Google Scholar]
  103. Johns D.G. Campeau L.C. Banka P. Orally bioavailable macrocyclic peptide that inhibits binding of PCSK9 to the low density lipoprotein receptor. Circulation 2023 148 2 144 158 10.1161/CIRCULATIONAHA.122.063372 37125593
    [Google Scholar]
  104. Fitzgerald K. White S. Borodovsky A. A highly durable RNAi therapeutic inhibitor of PCSK9. N. Engl. J. Med. 2017 376 1 41 51 10.1056/NEJMoa1609243 27959715
    [Google Scholar]
  105. Nhoek P. Chae H.S. Masagalli J. Discovery of flavonoids from scutellaria baicalensis with inhibitory activity against pcsk 9 expression: isolation, synthesis and their biological evaluation. Molecules 2018 23 2 504 10.3390/molecules23020504 29495284
    [Google Scholar]
  106. Cameron J. Ranheim T. Kulseth M.A. Leren T.P. Berge K.E. Berberine decreases PCSK9 expression in HepG2 cells. Atherosclerosis 2008 201 2 266 273 10.1016/j.atherosclerosis.2008.02.004 18355829
    [Google Scholar]
  107. Ray K.K. Wright R.S. Kallend D. Two phase 3 trials of inclisiran in patients with elevated LDL cholesterol. N. Engl. J. Med. 2020 382 16 1507 1519 10.1056/NEJMoa1912387 32187462
    [Google Scholar]
  108. Nair J.K. Willoughby J.L.S. Chan A. Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing. J. Am. Chem. Soc. 2014 136 49 16958 16961 10.1021/ja505986a 25434769
    [Google Scholar]
  109. Padda I.S. Mahtani A.U. Patel P. Parmar M. Small Interfering RNA (siRNA) Therapy. Treasure Island, FL StatPearls Publishing 2024
    [Google Scholar]
  110. Yao Z. Liu T. Wang J. Targeted delivery systems of siRNA based on ionizable lipid nanoparticles and cationic polymer vectors. Biotechnol. Adv. 2025 81 108546 10.1016/j.biotechadv.2025.108546 40015385
    [Google Scholar]
  111. Rodgers M.T. Seidu Y.S. Israel E. Influence of 2′-modifications (o-methylation, fluorination, and stereochemical inversion) on the base pairing energies of protonated cytidine nucleoside analogue base pairs: Implications for the stabilities of i -motif structures. J. Am. Soc. Mass Spectrom. 2023 34 7 1400 1416 10.1021/jasms.3c00108 37294839
    [Google Scholar]
  112. Wang J. Tan M. Wang Y. Liu X. Lin A. Advances in modification and delivery of nucleic acid drugs. Zhejiang Da Xue Xue Bao Yi Xue Ban 2023 52 4 417 428 10.3724/zdxbyxb‑2023‑0130 37643976
    [Google Scholar]
  113. Yin M. Wang L. Liu Y. GSH-responsive GalNAc-conjugated glycopolymer for targeted survivin siRNA delivery in hepatocellular carcinoma therapy. ACS Macro Lett. 2025 14 5 589 596 10.1021/acsmacrolett.5c00121 40269699
    [Google Scholar]
  114. Gosselin N.H. Schuck V.J.A. Barriere O. Translational Population‐Pharmacodynamic Modeling of a Novel Long‐Acting siRNA Therapy, Inclisiran, for the Treatment of Hypercholesterolemia. Clin. Pharmacol. Ther. 2023 113 2 328 338 10.1002/cpt.2774 36281788
    [Google Scholar]
  115. Luo Z. Huang Z. Sun F. The clinical effects of inclisiran, a first-in-class LDL-C lowering siRNA therapy, on the LDL-C levels in Chinese patients with hypercholesterolemia. J. Clin. Lipidol. 2023 17 3 392 400 10.1016/j.jacl.2023.04.010 37164838
    [Google Scholar]
  116. Gargiulo P. Marzano F. Crisci M. Real-world efficacy and safety of inclisiran. J. Am. Coll. Cardiol. 2025 85 5 536 540 10.1016/j.jacc.2024.10.106 39665700
    [Google Scholar]
  117. Okita T. Kita S. Fukuda S. Soluble T-cadherin promotes pancreatic β-cell proliferation by upregulating Notch signaling. iScience 2022 25 11 105404 10.1016/j.isci.2022.105404 36439986
    [Google Scholar]
  118. Peyot M.L. Roubtsova A. Lussier R. Substantial PCSK9 inactivation in β-cells does not modify glucose homeostasis or insulin secretion in mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2021 1866 8 158968 10.1016/j.bbalip.2021.158968 33992809
    [Google Scholar]
  119. Ejerblad E. Fored C.M. Lindblad P. Fryzek J. McLaughlin J.K. Nyrén O. Obesity and risk for chronic renal failure. J. Am. Soc. Nephrol. 2006 17 6 1695 1702 10.1681/ASN.2005060638 16641153
    [Google Scholar]
  120. Masana L. Plana N. Andreychuk N. Ibarretxe D. Lipid lowering combination therapy: From prevention to atherosclerosis plaque treatment. Pharmacol. Res. 2023 190 106738 10.1016/j.phrs.2023.106738 36940892
    [Google Scholar]
  121. Wang X. Wen D. Chen Y. Ma L. You C. PCSK9 inhibitors for secondary prevention in patients with cardiovascular diseases: A bayesian network meta-analysis. Cardiovasc. Diabetol. 2022 21 1 107 10.1186/s12933‑022‑01542‑4 35706032
    [Google Scholar]
  122. Yang J. Ma X. Niu D. PCSK9 inhibitors suppress oxidative stress and inflammation in atherosclerotic development by promoting macrophage autophagy. Am. J. Transl. Res. 2023 15 8 5129 5144 37692938
    [Google Scholar]
  123. Yang S.H. Li S. Zhang Y. Positive correlation of plasma PCSK9 levels with HbA 1c in patients with type 2 diabetes. Diabetes Metab. Res. Rev. 2016 32 2 193 199 10.1002/dmrr.2712 26377225
    [Google Scholar]
  124. Leiter L.A. Teoh H. Kallend D. Inclisiran lowers LDL-C and PCSK9 irrespective of diabetes status: The ORION-1 Randomized Clinical Trial. Diabetes Care 2019 42 1 173 176 10.2337/dc18‑1491 30487231
    [Google Scholar]
  125. Wright R.S. Koenig W. Landmesser U. Safety and tolerability of inclisiran for treatment of hypercholesterolemia in 7 clinical trials. J. Am. Coll. Cardiol. 2023 82 24 2251 2261 10.1016/j.jacc.2023.10.007 38057066
    [Google Scholar]
  126. Kastelein J.J.P. Nissen S.E. Rader D.J. Safety and efficacy of LY3015014, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 (PCSK9): A randomized, placebo-controlled Phase 2 study. Eur. Heart J. 2016 37 17 1360 1369 10.1093/eurheartj/ehv707 26757788
    [Google Scholar]
  127. Shen T. James D.E. Krueger K.A. Population Pharmacokinetics (PK) and Pharmacodynamics (PD) Analysis of LY3015014, a Monoclonal Antibody to Protein Convertase Subtilisin/Kexin Type 9 (PCSK9) in Healthy Subjects and Hypercholesterolemia Patients. Pharm. Res. 2017 34 1 185 192 10.1007/s11095‑016‑2054‑6 27822850
    [Google Scholar]
  128. Ridker P.M. Revkin J. Amarenco P. Cardiovascular efficacy and safety of bococizumab in high-risk patients. N. Engl. J. Med. 2017 376 16 1527 1539 10.1056/NEJMoa1701488 28304242
    [Google Scholar]
  129. Wang E.Q. Kaila N. Plowchalk D. Gibiansky L. Yunis C. Sweeney K. Population PK/PD modeling of low‐density lipoprotein cholesterol response in hypercholesterolemic participants following administration of bococizumab, a potent anti‐PCSK9 monoclonal antibody. CPT Pharmacometrics Syst. Pharmacol. 2023 12 12 2013 2026 10.1002/psp4.13050 37994400
    [Google Scholar]
  130. Ridker P.M. Amarenco P. Brunell R. Evaluating bococizumab, a monoclonal antibody to PCSK9, on lipid levels and clinical events in broad patient groups with and without prior cardiovascular events: Rationale and design of the Studies of PCSK9 Inhibition and the Reduction of vascular Events (SPIRE) Lipid Lowering and SPIRE Cardiovascular Outcomes Trials. Am. Heart J. 2016 178 135 144 10.1016/j.ahj.2016.05.010 27502861
    [Google Scholar]
  131. Koren M.J. Scott R. Kim J.B. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): A randomised, double-blind, placebo-controlled, phase 2 study. Lancet 2012 380 9858 1995 2006 10.1016/S0140‑6736(12)61771‑1 23141812
    [Google Scholar]
  132. Giugliano R.P. Pedersen T.R. Park J.G. Clinical efficacy and safety of achieving very low LDL-cholesterol concentrations with the PCSK9 inhibitor evolocumab: a prespecified secondary analysis of the FOURIER trial. Lancet 2017 390 10106 1962 1971 10.1016/S0140‑6736(17)32290‑0 28859947
    [Google Scholar]
  133. Zhou J. Luo Y. Kang X. Bian F. Liu D. The root extract of scutellaria baicalensis georgi promotes β cell function and protects from apoptosis by inducing autophagy. J. Ethnopharmacol. 2022 284 114790 10.1016/j.jep.2021.114790 34737007
    [Google Scholar]
  134. Ballantyne C.M. Banka P. Mendez G. Phase 2b randomized trial of the oral PCSK9 inhibitor MK-0616. J. Am. Coll. Cardiol. 2023 81 16 1553 1564 10.1016/j.jacc.2023.02.018 36889610
    [Google Scholar]
  135. Siddiqui Z. Frishman W. New oral PCSK9 inhibitor: “MK-0616”. Cardiol. Rev. 2024 38285643
    [Google Scholar]
  136. Dong B. Li H. Singh A.B. Cao A. Liu J. Inhibition of PCSK9 transcription by berberine involves down-regulation of hepatic HNF1α protein expression through the ubiquitin-proteasome degradation pathway. J. Biol. Chem. 2015 290 7 4047 4058 10.1074/jbc.M114.597229 25540198
    [Google Scholar]
  137. Chen Y. Li K. Zhao H. Integrated lipidomics and network pharmacology analysis to reveal the mechanisms of berberine in the treatment of hyperlipidemia. J. Transl. Med. 2022 20 1 412 10.1186/s12967‑022‑03623‑0 36076294
    [Google Scholar]
  138. Fan T.Y. Yang Y.X. Zeng Q.X. Structure–activity relationship and biological evaluation of berberine derivatives as PCSK9 down-regulating agents. Bioorg. Chem. 2021 113 104994 10.1016/j.bioorg.2021.104994 34052738
    [Google Scholar]
  139. He N. Li Q. Wu C. Lowering serum lipids via PCSK9-targeting drugs: Current advances and future perspectives. Acta Pharmacol. Sin. 2017 38 3 301 311 10.1038/aps.2016.134 28112180
    [Google Scholar]
  140. Liu T. Wang J. Tong Y. Integrating network pharmacology and animal experimental validation to investigate the action mechanism of oleanolic acid in obesity. J. Transl. Med. 2024 22 1 86 10.1186/s12967‑023‑04840‑x 38246999
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611392964250918094721
Loading
/content/journals/cvp/10.2174/0115701611392964250918094721
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test