Skip to content
2000
image of Hellenic Postprandial Lipemia Study (HPLS): A Prospective Cohort Trial on the Effect of Statins on Postprandial Hypertriglyceridemia

Abstract

Introduction/Objective

Both fasting and postprandial hypertriglyceridemia are associated with atherosclerotic cardiovascular disease (ASCVD). The Hellenic Postprandial Lipemia Study (HPLS, NCT02163044) is the largest prospective cohort trial assessing the effects of statin therapy on postprandial lipemia.

Methods

Individuals at high or very high risk for ASCVD were evaluated, and their characteristics were recorded at baseline (Visit 1). At Visit 2 (2-4 weeks after Visit 1) and Visit 3 (3-4 months after Visit 2), serum triglyceride (TG) levels were measured after a 12-hour fast (fTG) as well as 4 hours after the ingestion of a commercially available oral fat tolerance test meal (pTG). After Visit 2, all individuals were treated with a statin.

Results and Discussion

Among 900 participants, 699 completed all 3 visits, and of these, 209 (29.9%) had an abnormal pTG response. The mean (standard deviation, SD) total- and low-density lipoprotein cholesterol concentrations were 225 (50) and 148 (46) mg/dL at Visit 1, 231 (42) and 156 (40) mg/dL at Visit 2, and 171 (28) and 101 (27) mg/dL at Visit 3. At Visit 2, the mean fTG level was 127 (45) mg/dL and pTG was 188 (73) mg/dL with a mean difference of 58 mg/dL (<0.001). At Visit 3, the mean fTG concentration was 110 (40) mg/dL, while pTG was 140 (54) mg/dL (mean difference: 29 mg/dL; <0.001). Fasting glucose levels had no impact on pTG response in statin-treated individuals with abnormal postprandial lipemia.

Conclusion

Nearly 30% of individuals at high-/very high-risk for ASCVD had postprandial hypertriglyceridemia. Statin treatment normalized abnormal postprandial lipemia in 75.6% of participants, and decreased pTG concentration even in those with normal fTG levels.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611390916251104053059
2026-01-21
2026-02-06
Loading full text...

Full text loading...

References

  1. Masuda D. Yamashita S. Postprandial hyperlipidemia and remnant lipoproteins. J. Atheroscler. Thromb. 2017 24 2 95 109 10.5551/jat.RV16003 27829582
    [Google Scholar]
  2. Borén J. Matikainen N. Adiels M. Taskinen M.R. Postprandial hypertriglyceridemia as a coronary risk factor. Clin. Chim. Acta 2014 431 131 142 10.1016/j.cca.2014.01.015 24508990
    [Google Scholar]
  3. Mach F. Baigent C. Catapano A.L. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: Lipid modification to reduce cardiovascular risk. Eur. Heart J. 2020 41 1 111 188 10.1093/eurheartj/ehz455 31504418
    [Google Scholar]
  4. Kolovou G.D. Mikhailidis D.P. Kovar J. Assessment and clinical relevance of non-fasting and postprandial triglycerides: An expert panel statement. Curr. Vasc. Pharmacol. 2011 9 3 258 270 10.2174/157016111795495549 21314632
    [Google Scholar]
  5. Kolovou G.D. Watts G.F. Mikhailidis D.P. Postprandial hypertriglyceridaemia revisited in the era of non-fasting lipid profiles: Executive summary of a 2019 expert panel statement. Curr. Vasc. Pharmacol. 2019 17 5 538 540 10.2174/1570161117999190517115432 31418346
    [Google Scholar]
  6. Kolovou G. Anagnostopoulou K. Daskalopoulou S. Mikhailidis D. Cokkinos D. Clinical relevance of postprandial lipaemia. Curr. Med. Chem. 2005 12 17 1931 1945 10.2174/0929867054546609 16101498
    [Google Scholar]
  7. Kato T. Inagaki K. Sawai Y. Kanayama H. Katada N. Itoh M. Comparison of efficacy of pitavastatin and colestimide in Japanese patients with diabetes mellitus complicated by hyperlipidemia and metabolic syndrome. Exp. Clin. Endocrinol. Diabetes 2011 119 9 554 558 10.1055/s‑0031‑1273770 21472664
    [Google Scholar]
  8. Reyes-Soffer G. Ngai C.I. Lovato L. Effect of combination therapy with fenofibrate and simvastatin on postprandial lipemia in the ACCORD lipid trial. Diabetes Care 2013 36 2 422 428 10.2337/dc11‑2556 23033246
    [Google Scholar]
  9. Lee S.H. Park S. Kang S.M. Jang Y. Chung N. Choi D. Effect of atorvastatin monotherapy and low-dose atorvastatin/ezetimibe combination on fasting and postprandial triglycerides in combined hyperlipedemia. J. Cardiovasc. Pharmacol. Ther. 2012 17 1 65 71 10.1177/1074248411399762 21386036
    [Google Scholar]
  10. Skoczyńska A. Kreczyńska B. Poręba R. Postprandial lipemia in diabetic men during hypolipemic therapy. Polish Arch Int Med 2009 119 7-8 461 468 10.20452/pamw.739 19776686
    [Google Scholar]
  11. Hajer G.R. Dallinga-Thie G.M. van Vark - van der Zee LC, Visseren FLJ. The effect of statin alone or in combination with ezetimibe on postprandial lipoprotein composition in obese metabolic syndrome patients. Atherosclerosis 2009 202 1 216 224 10.1016/j.atherosclerosis.2008.04.035 18533158
    [Google Scholar]
  12. Liu L. Zhao S.P. Hu M. Li J.X. Fluvastatin blunts the effect of a high-fat meal on plasma triglyceride and high-sensitivity C-reactive protein concentrations in patients at high risk for cardiovascular events. Coron. Artery Dis. 2007 18 6 489 493 10.1097/MCA.0b013e328258fe41 17700222
    [Google Scholar]
  13. Schaefer E.J. McNamara J.R. Tayler T. Comparisons of effects of statins (atorvastatin, fluvastatin, lovastatin, pravastatin, and simvastatin) on fasting and postprandial lipoproteins in patients with coronary heart disease versus control subjects. Am. J. Cardiol. 2004 93 1 31 39 10.1016/j.amjcard.2003.09.008 14697462
    [Google Scholar]
  14. Ceriello A. Quagliaro L. Piconi L. Effect of postprandial hypertriglyceridemia and hyperglycemia on circulating adhesion molecules and oxidative stress generation and the possible role of simvastatin treatment. Diabetes 2004 53 3 701 710 10.2337/diabetes.53.3.701 14988255
    [Google Scholar]
  15. Westphal S. Wiens L. Güttler K. Dierkes J. Luley C. Chylomicron remnants of various sizes are lowered more effectively by fenofibrate than by atorvastatin in patients with combined hyperlipidemia. Atherosclerosis 2003 171 2 369 377 10.1016/j.atherosclerosis.2003.08.030 14644409
    [Google Scholar]
  16. Costa A. Casamitjana R. Casals E. Effects of atorvastatin on glucose homeostasis, postprandial triglyceride response and C‐reactive protein in subjects with impaired fasting glucose. Diabet. Med. 2003 20 9 743 745 10.1046/j.1464‑5491.2003.00993.x 12925055
    [Google Scholar]
  17. Verseyden C. Meijssen S. van Dijk H. Jansen H. Cabezas M.C. Effects of atorvastatin on fasting and postprandial complement component 3 response in familial combined hyperlipidemia. J. Lipid Res. 2003 44 11 2100 2108 10.1194/jlr.M300201‑JLR200 12923226
    [Google Scholar]
  18. Parhofer K.G. Laubach E. Barrett P.H.R. Effect of atorvastatin on postprandial lipoprotein metabolism in hypertriglyceridemic patients. J. Lipid Res. 2003 44 6 1192 1198 10.1194/jlr.M300011‑JLR200 12671031
    [Google Scholar]
  19. Schaefer E.J. McNamara J.R. Tayler T. Effects of atorvastatin on fasting and postprandial lipoprotein subclasses in coronary heart disease patients versus control subjects. Am. J. Cardiol. 2002 90 7 689 696 10.1016/S0002‑9149(02)02591‑2 12356379
    [Google Scholar]
  20. Boquist S. Karpe F. Danell-Toverud K. Hamsten A. Effects of atorvastatin on postprandial plasma lipoproteins in postinfarction patients with combined hyperlipidaemia. Atherosclerosis 2002 162 1 163 170 10.1016/S0021‑9150(01)00689‑X 11947910
    [Google Scholar]
  21. Vansant G. Mertens A. Muls E. The effect of atorvastatin on postprandial lipaemia in overweight or obese women homozygous for apo E3. Acta Cardiol. 2001 56 3 149 154 10.2143/AC.56.3.2005634 11471927
    [Google Scholar]
  22. Nordøy A. Hansen J.B. Brox J. Svensson B. Effects of atorvastatin and omega-3 fatty acids on LDL subfractions and postprandial hyperlipemia in patients with combined hyperlipemia. Nutr. Metab. Cardiovasc. Dis. 2001 11 1 7 16 11383326
    [Google Scholar]
  23. Battula S.B. Fitzsimons O. Moreno S. Postprandial apolipoprotein B48– and B100–containing lipoproteins in type 2 diabetes: Do statins have a specific effect on triglyceride metabolism? Metabolism 2000 49 8 1049 1054 10.1053/meta.2000.7744 10954025
    [Google Scholar]
  24. Lamendola C. Abbasi F. Chu J.W. Comparative effects of rosuvastatin and gemfibrozil on glucose, insulin, and lipid metabolism in insulin-resistant, nondiabetic patients with combined dyslipidemia. Am. J. Cardiol. 2005 95 2 189 193 10.1016/j.amjcard.2004.09.005 15642550
    [Google Scholar]
  25. van Oostrom A.J.H.H.M. Plokker H.W.M. van Asbeck B.S. Effects of rosuvastatin on postprandial leukocytes in mildly hyperlipidemic patients with premature coronary sclerosis. Atherosclerosis 2006 185 2 331 339 10.1016/j.atherosclerosis.2005.06.045 16098531
    [Google Scholar]
  26. Kolovou G. Giannakopoulou V. Kalogeropoulos P. Hellenic Postprandial Lipemia Study (HPLS): Rationale and design of a prospective, open-label trial to determinate the prevalence of abnormal postprandial lipemia as well as its interaction with statins in patients at high- and very high-risk for cardiovascular disease. Contemp. Clin. Trials 2019 82 101 105 10.1016/j.cct.2019.05.011 31150799
    [Google Scholar]
  27. Gavra P. Melidonis A. Iraklianou S. Alterations in plasma triglyceride concentrations following two oral meals with different fat content in patients with type 2 diabetes mellitus. Curr. Vasc. Pharmacol. 2018 16 4 385 392 10.2174/1570161115666170529084621 28552072
    [Google Scholar]
  28. Tentolouris N. Kanellos P.T. Siami E. Assessment of the validity and reproducibility of a novel standardized test meal for the study of postprandial triacylglycerol concentrations. Lipids 2017 52 8 675 686 10.1007/s11745‑017‑4275‑9 28653085
    [Google Scholar]
  29. Kalogeropoulos P. Bilianou H. Kolovou V. Manolis A. Kolovou G.D. Hellenic postprandial lipemia study (HPLS): Results from the pre-treatment postprandial lipemia. Eur. J. Intern. Med. 2021 88 123 124 10.1016/j.ejim.2021.02.018 33712361
    [Google Scholar]
  30. Cannon C.P. Blazing M.A. Giugliano R.P. Ezetimibe added to statin therapy after acute coronary syndromes. N. Engl. J. Med. 2015 372 25 2387 2397 10.1056/NEJMoa1410489 26039521
    [Google Scholar]
  31. Sabatine M.S. Giugliano R.P. Keech A.C. Evolocumab and clinical outcomes in patients with cardiovascular disease. N. Engl. J. Med. 2017 376 18 1713 1722 10.1056/NEJMoa1615664 28304224
    [Google Scholar]
  32. Chapman M.J. Ginsberg H.N. Amarenco P. Triglyceride-rich lipoproteins and high-density lipoprotein cholesterol in patients at high risk of cardiovascular disease: Evidence and guidance for management. Eur. Heart J. 2011 32 11 1345 1361 10.1093/eurheartj/ehr112 21531743
    [Google Scholar]
  33. Nordestgaard B.G. Varbo A. Triglycerides and cardiovascular disease. Lancet 2014 384 9943 626 635 10.1016/S0140‑6736(14)61177‑6 25131982
    [Google Scholar]
  34. Mattes R.D. Brief oral stimulation, but especially oral fat exposure, elevates serum triglycerides in humans. Am. J. Physiol. Gastrointest. Liver Physiol. 2009 296 2 G365 G371 10.1152/ajpgi.90591.2008 19074638
    [Google Scholar]
  35. Schneeman B.O. Kotite L. Todd K.M. Havel R.J. Relationships between the responses of triglyceride-rich lipoproteins in blood plasma containing apolipoproteins B-48 and B-100 to a fat-containing meal in normolipidemic humans. Proc. Natl. Acad. Sci. USA 1993 90 5 2069 2073 10.1073/pnas.90.5.2069 8446630
    [Google Scholar]
  36. Gomez-Delgado F. Raya-Cruz M. Katsiki N. Delgado-Lista J. Perez-Martinez P. Residual cardiovascular risk: When should we treat it? Eur. J. Intern. Med. 2024 120 17 24 10.1016/j.ejim.2023.10.013 37845117
    [Google Scholar]
  37. Klempfner R. Erez A. Sagit B.Z. Elevated triglyceride level is independently associated with increased all-cause mortality in patients with established coronary heart disease: Twenty-two-year follow-up of the bezafibrate infarction prevention study and registry. Circ. Cardiovasc. Qual. Outcomes 2016 9 2 100 108 10.1161/CIRCOUTCOMES.115.002104 26957517
    [Google Scholar]
  38. Mora S. Wenger N.K. DeMicco D.A. Determinants of residual risk in secondary prevention patients treated with high- versus low-dose statin therapy: The Treating to New Targets (TNT) study. Circulation 2012 125 16 1979 1987 10.1161/CIRCULATIONAHA.111.088591 22461416
    [Google Scholar]
  39. Vallejo-Vaz A.J. Fayyad R. Boekholdt S.M. Triglyceride-rich lipoprotein cholesterol and risk of cardiovascular events among patients receiving statin therapy in the treating to new targets (TNT) trial. Circulation 2018 138 770 781 10.1161/CIRCULATIONAHA.117.032318 29618599
    [Google Scholar]
  40. Faergeman O. Holme I. Fayyad R. Plasma triglycerides and cardiovascular events in the Treating to New Targets and Incremental Decrease in End-Points through Aggressive Lipid Lowering trials of statins in patients with coronary artery disease. Am. J. Cardiol. 2009 104 4 459 463 10.1016/j.amjcard.2009.04.008 19660594
    [Google Scholar]
  41. Mora S. Caulfield M.P. Wohlgemuth J. Atherogenic lipoprotein subfractions determined by ion mobility and first cardiovascular events after random allocation to high-intensity statin or placebo: The justification for the use of statins in prevention: An intervention trial evaluating rosuvastatin (JUPITER) trial. Circulation 2015 132 23 2220 2229 10.1161/CIRCULATIONAHA.115.016857 26408274
    [Google Scholar]
  42. Lawler P.R. Akinkuolie A.O. Chu A.Y. Atherogenic lipoprotein determinants of cardiovascular disease and residual risk among individuals with low-density lipoprotein cholesterol. J. Am. Heart Assoc. 2017 6 7 005549 10.1161/JAHA.117.005549 28733430
    [Google Scholar]
  43. Kolovou G. Anagnostopoulou K. Salpea K. Daskalopoulou S. Mikhailidis D. The effect of statins on postprandial lipemia. Curr. Drug Targets 2007 8 4 551 560 10.2174/138945007780362809 17430126
    [Google Scholar]
  44. Kolovou G.D. Vasiliadis I. Anagnostopoulou K. Cokkinos D.V. Simvastatin: Two decades in a circle. Cardiovasc. Ther. 2008 26 2 166 178 10.1111/j.1527‑3466.2008.00047.x 18485137
    [Google Scholar]
  45. McLaughlin T. Abbasi F. Lamendola C. Leary E. Reaven G.M. Comparison in patients with type 2 diabetes of fibric acid versus hepatic hydroxymethyl glutaryl-coenzyme a reductase inhibitor treatment of combined dyslipidemia. Metabolism 2002 51 10 1355 1359 10.1053/meta.2002.34713 12370858
    [Google Scholar]
  46. Alvarez-Jimenez L. Moreno-Cabañas A. Ramirez-Jimenez M. Morales-Palomo F. Ortega J.F. Mora-Rodriguez R. Effectiveness of statins vs. exercise on reducing postprandial hypertriglyceridemia in dyslipidemic population: A systematic review and network meta-analysis. J. Sport Health Sci. 2022 11 5 567 577 10.1016/j.jshs.2021.07.006 34298253
    [Google Scholar]
  47. Wijk J. Halkes C.J. De Jaegere P.P. Plokker H.W. Erkelens D.W. Cabezas M.C. Normalization of daytime triglyceridemia by simvastatin in fasting normotriglyceridemic patients with premature coronary sclerosis. Atherosclerosis 2003 171 1 109 116 10.1016/j.atherosclerosis.2003.07.006 14642412
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611390916251104053059
Loading
/content/journals/cvp/10.2174/0115701611390916251104053059
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test