Skip to content
2000
Volume 23, Issue 5
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Background

Cardiac microvessels are significantly reduced in diabetic patients, which is accompanied by a significant increase in the incidence of diabetic cardiac complications and increased mortality. This study aimed to investigate the role and possible mechanism of sirtuin 1 (Sirt1) in microvascular endothelial cell injury in diabetic hearts.

Methods

Type 2 diabetes mouse models and cardiac microvascular endothelial cell (CMEC) cell models were established. Cardiac microvessel density (MVD) was detected using Platelet-Endothelial Cell Adhesion Molecule 1 (CD31) immunohistochemistry. Mitochondrial reactive oxygen species (ROS) was detected with MitoSOX and morphology was observed with mitochondrial staining. CMECs angiogenesis was evaluated scratch and angiogenesis assays. We measured cell viability with a Cell Counting Kit (CCK)-8 assay and cell injury with lactate dehydrogenase (LDH) release assay. We assessed apoptosis using TUNEL staining, Caspase-3 activity, and Western blot.

Results

The decrease in Sirt1 protein expression was accompanied by a decrease in cardiac microvessel density in type 2 diabetic mice. After 48 h of treating the CMECs with high-glucose and palmitic acid, it was discovered that the expression of Sirt1 and dynamin-related protein 1 (Drp1) Ser637 phosphorylated protein decreased, while the expression of Cleaved Caspase-3 protein increased. Also, the angiogenesis ability of endothelial cells was decreased, while mitochondrial ROS and mitochondrial division were increased, which culminated in aggravated endothelial cell injury and increased endothelial cell apoptosis. Increased Sirt1 protein expression and function at the gene and drug levels alleviated excessive mitochondrial division, reduced apoptosis, and improved the function of CMECs by increasing the phosphorylation of Drp1 Ser637.

Conclusion

Under diabetic conditions, the Sirt1/Drp1 pathway reduces injury to CMECs by inhibiting excessive mitochondrial division.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611370387250122050842
2025-02-06
2025-11-14
Loading full text...

Full text loading...

References

  1. WuK. WangY. LiuR. WangH. RuiT. The role of mammalian Sirtuin 6 in cardiovascular diseases and diabetes mellitus.Front. Physiol.202314120713310.3389/fphys.2023.1207133 37497437
    [Google Scholar]
  2. ZhangY. WangY. XuJ. Melatonin attenuates myocardial ischemia-reperfusion injury via improving mitochondrial fusion/mitophagy and activating the AMPK-OPA1 signaling pathways.J. Pineal Res.2019662e1254210.1111/jpi.12542 30516280
    [Google Scholar]
  3. YuanS. XuF. LiX. Plasma proteins and onset of type 2 diabetes and diabetic complications: Proteome-wide Mendelian randomization and colocalization analyses.Cell Rep. Med.20234910117410.1016/j.xcrm.2023.101174 37652020
    [Google Scholar]
  4. WuY. XiongT. TanX. ChenL. Frailty and risk of microvascular complications in patients with type 2 diabetes: A population-based cohort study.BMC Med.202220147310.1186/s12916‑022‑02675‑9 36482467
    [Google Scholar]
  5. LiY. LiuY. LiuS. Diabetic vascular diseases: Molecular mechanisms and therapeutic strategies.Signal Transduct. Target. Ther.20238115210.1038/s41392‑023‑01400‑z 37037849
    [Google Scholar]
  6. LiaoZ. ChenY. DuanC. Cardiac telocytes inhibit cardiac microvascular endothelial cell apoptosis through exosomal miRNA-21-5p-targeted cdip1 silencing to improve angiogenesis following myocardial infarction.Theranostics202111126829110.7150/thno.47021 33391474
    [Google Scholar]
  7. JiM. ChengJ. ZhangD. Oxycodone protects cardiac microvascular endothelial cells against ischemia/reperfusion injury by binding to Sigma-1 Receptor.Bioengineered20221349628964410.1080/21655979.2022.2057632 35412431
    [Google Scholar]
  8. HouJ. WangX. LiY. Positive regulation of endothelial Tom70 by metformin as a new mechanism against cardiac microvascular injury in diabetes.Mitochondrion20226515016010.1016/j.mito.2022.06.005 35779798
    [Google Scholar]
  9. ShiX. LiuC. ChenJ. Endothelial MICU1 alleviates diabetic cardiomyopathy by attenuating nitrative stress-mediated cardiac microvascular injury.Cardiovasc. Diabetol.202322121610.1186/s12933‑023‑01941‑1 37592255
    [Google Scholar]
  10. ZhongG. YangY. FengD. Melatonin protects injured spinal cord neurons from apoptosis by inhibiting mitochondrial damage via the SIRT1/Drp1 signaling pathway.Neuroscience2023534546510.1016/j.neuroscience.2023.10.010 37865165
    [Google Scholar]
  11. JiangT. QinT. GaoP. SIRT1 attenuates blood-spinal cord barrier disruption after spinal cord injury by deacetylating p66Shc.Redox Biol.20236010261510.1016/j.redox.2023.102615 36716673
    [Google Scholar]
  12. LianL. LeZ. WangZ. SIRT1 inhibits high glucose-induced TXNIP/NLRP3 inflammasome activation and cataract formation.Invest. Ophthalmol. Vis. Sci.20236431610.1167/iovs.64.3.16 36881408
    [Google Scholar]
  13. UngurianuA. ZanfirescuA. MarginăD. Regulation of gene expression through food-curcumin as a sirtuin activity modulator.Plants20221113174110.3390/plants11131741 35807694
    [Google Scholar]
  14. JiangY. KrantzS. QinX. Caveolin-1 controls mitochondrial damage and ROS production by regulating fission - fusion dynamics and mitophagy.Redox Biol.20225210230410.1016/j.redox.2022.102304 35413643
    [Google Scholar]
  15. ZhangB. ZhangY. ZuoZ. Paraquat-induced neurogenesis abnormalities via Drp1-mediated mitochondrial fission.Ecotoxicol. Environ. Saf.202325711493910.1016/j.ecoenv.2023.114939 37087969
    [Google Scholar]
  16. XieJ. CuiY. ChenX. VDAC1 regulates mitophagy in NLRP3 inflammasome activation in retinal capillary endothelial cells under high-glucose conditions.Exp. Eye Res.202120910864010.1016/j.exer.2021.108640 34058229
    [Google Scholar]
  17. ZhouH. WangS. ZhuP. HuS. ChenY. RenJ. Empagliflozin rescues diabetic myocardial microvascular injury via AMPK-mediated inhibition of mitochondrial fission.Redox Biol.20181533534610.1016/j.redox.2017.12.019 29306791
    [Google Scholar]
  18. ChenM. ZhangQ. WangS. ZhengF. Inhibition of diabetes-induced Drp1 deSUMOylation prevents retinal vascular lesions associated with diabetic retinopathy.Exp. Eye Res.202322610933410.1016/j.exer.2022.109334 36435207
    [Google Scholar]
  19. DingM. FengN. TangD. Melatonin prevents Drp1-mediated mitochondrial fission in diabetic hearts through SIRT1-PGC1α pathway.J. Pineal Res.2018652e1249110.1111/jpi.12491 29575122
    [Google Scholar]
  20. ZhuX. DengZ. CaoY. Resveratrol prevents Drp1-mediated mitochondrial fission in the diabetic kidney through the PDE4D/PKA pathway.Phytother. Res.202337125916593110.1002/ptr.8004 37767771
    [Google Scholar]
  21. TangJ. ChenY. LiJ. 14, 15-EEt alleviates neurological impairment through maintaining mitochondrial dynamics equilibrium via AMPK/SIRT1/FoxO1 signal pathways in mice with cerebral ischemia reperfusion.CNS Neurosci. Ther.20232992583259610.1111/cns.14198 37017405
    [Google Scholar]
  22. ChenW. ZhaoH. LiY. Mitochondrial dynamics in health and disease: Mechanisms and potential targets.Signal Transduct. Target. Ther.20238133310.1038/s41392‑023‑01547‑9 37669960
    [Google Scholar]
  23. ZerihunM. SukumaranS. QvitN. The Drp1-mediated mitochondrial fission protein interactome as an emerging core player in mitochondrial dynamics and cardiovascular disease therapy.Int. J. Mol. Sci.2023246578510.3390/ijms24065785 36982862
    [Google Scholar]
  24. DingM. ShiR. FuF. Paeonol protects against doxorubicin-induced cardiotoxicity by promoting Mfn2-mediated mitochondrial fusion through activating the PKCε-Stat3 pathway.J. Adv. Res.20234715116210.1016/j.jare.2022.07.002 35842187
    [Google Scholar]
  25. LarrueC. MoucheS. LinS. Mitochondrial fusion is a therapeutic vulnerability of acute myeloid leukemia.Leukemia202337476577510.1038/s41375‑023‑01835‑x 36739349
    [Google Scholar]
  26. ChangX. LiY. CaiC. Mitochondrial quality control mechanisms as molecular targets in diabetic heart.Metabolism202213715531310.1016/j.metabol.2022.155313 36126721
    [Google Scholar]
  27. SunQ. JiaH. ChengS. WangY. WangJ. Metformin alleviates epirubicin-induced endothelial impairment by restoring mitochondrial homeostasis.Int. J. Mol. Sci.202224134310.3390/ijms24010343 36613786
    [Google Scholar]
  28. RenL. HanF. XuanL. Clusterin ameliorates endothelial dysfunction in diabetes by suppressing mitochondrial fragmentation.Free Radic. Biol. Med.201914535737310.1016/j.freeradbiomed.2019.10.008 31614179
    [Google Scholar]
  29. WangM. LiY. LiS. LvJ. Endothelial dysfunction and diabetic cardiomyopathy.Front. Endocrinol. (Lausanne)20221385194110.3389/fendo.2022.851941 35464057
    [Google Scholar]
  30. Vásquez-TrincadoC. García-CarvajalI. PennanenC. Mitochondrial dynamics, mitophagy and cardiovascular disease.J. Physiol.2016594350952510.1113/JP271301 26537557
    [Google Scholar]
  31. SawadaN. JiangA. TakizawaF. Endothelial PGC-1α mediates vascular dysfunction in diabetes.Cell Metab.201419224625810.1016/j.cmet.2013.12.014 24506866
    [Google Scholar]
  32. YangK. VelagapudiS. AkhmedovA. Chronic SIRT1 supplementation in diabetic mice improves endothelial function by suppressing oxidative stress.Cardiovasc. Res.2023119122190220110.1093/cvr/cvad102 37401647
    [Google Scholar]
  33. LiuY. TanY. CaoG. Bergenin alleviates myocardial ischemia-reperfusion injury via SIRT1 signaling.Biomed. Pharmacother.202315811410010.1016/j.biopha.2022.114100 36538860
    [Google Scholar]
  34. TangY.J. ZhangZ. YanT. Irisin attenuates type 1 diabetic cardiomyopathy by anti-ferroptosis via SIRT1-mediated deacetylation of p53.Cardiovasc. Diabetol.202423111610.1186/s12933‑024‑02183‑5 38566123
    [Google Scholar]
  35. BuS. XiongA. YangZ. Bilobalide induces apoptosis in 3T3-L1 mature adipocytes through ROS-mediated mitochondria pathway.Molecules20232817641010.3390/molecules28176410 37687239
    [Google Scholar]
  36. AliZ. KhanI. IqbalM.S. Toxicological effects of copper on bioaccumulation and mRNA expression of antioxidant, immune, and apoptosis-related genes in Chinese striped-necked turtle (Mauremys sinensis).Front. Physiol.202314129625910.3389/fphys.2023.1296259 38028770
    [Google Scholar]
  37. HanJ.H. TweedellR.E. KannegantiT.D. Evaluation of caspase activation to assess innate immune cell death.J. Vis. Exp.202310.3791/64308 36744800
    [Google Scholar]
  38. ZhangH. ShenY. KimI.M. WeintraubN.L. TangY. The impaired bioenergetics of diabetic cardiac microvascular endothelial cells.Front. Endocrinol. (Lausanne)20211264285710.3389/fendo.2021.642857 34054724
    [Google Scholar]
  39. LinX. HuangS. GaoS. LiuJ. TangJ. YuM. Integrin β5 subunit regulates hyperglycemia-induced vascular endothelial cell apoptosis through FoxO1-mediated macroautophagy.Chin. Med. J. (Engl.)2024137556557610.1097/CM9.0000000000002769 37500497
    [Google Scholar]
  40. ZhaoH. DaiY. LiY. LiJ. LiH. TNFSF15 inhibits progression of diabetic retinopathy by blocking pyroptosis via interacting with GSDME.Cell Death Dis.202415211810.1038/s41419‑024‑06499‑8 38331883
    [Google Scholar]
  41. VringerE. TaitS.W.G. Mitochondria and cell death-associated inflammation.Cell Death Differ.202330230431210.1038/s41418‑022‑01094‑w 36447047
    [Google Scholar]
  42. LiQ. ChenY. ZhaoX. Ginsenoside 24-OH-PD from red ginseng inhibits acute T-lymphocytic leukaemia by activating the mitochondrial pathway.PLoS One2023185e028596610.1371/journal.pone.0285966 37205671
    [Google Scholar]
  43. ChangX. NiuS. ShangM. ROS-Drp1-mediated mitochondria fission contributes to hippocampal HT22 cell apoptosis induced by silver nanoparticles.Redox Biol.20236310273910.1016/j.redox.2023.102739 37187014
    [Google Scholar]
  44. TangH. LiK. ZhangS. Inhibitory effect of paeonol on apoptosis, oxidative stress, and inflammatory response in human umbilical vein endothelial cells induced by high glucose and palmitic acid induced through regulating SIRT1/FOXO3a/NF-κB pathway.J. Interferon Cytokine Res.202141311112410.1089/jir.2019.0236 33750217
    [Google Scholar]
  45. TaoA. XuX. KvietysP. KaoR. MartinC. RuiT. Experimental diabetes mellitus exacerbates ischemia/reperfusion-induced myocardial injury by promoting mitochondrial fission: Role of down-regulation of myocardial Sirt1 and subsequent Akt/Drp1 interaction.Int. J. Biochem. Cell Biol.20181059410310.1016/j.biocel.2018.10.011 30381241
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611370387250122050842
Loading
/content/journals/cvp/10.2174/0115701611370387250122050842
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test