Skip to content
2000
image of Advances in Drug-Eluting Angioplasty Balloon Coatings, Clinical Implications and Future Directions: A Mini Review

Abstract

Drug-eluting angioplasty balloons are a highly effective treatment for neointimal hyperplasia post-balloon angioplasty and in-stent restenosis. Current drug-eluting angioplasty balloons have restenosis rates approximating 20%, and both paclitaxel, the current drug coating of choice, and sirolimus, an alternative coating being evaluated in early clinical studies, delay re-endothelialisation, potentially predisposing to thrombosis. There remains a paucity of efficacious alternatives to these coatings. Research into alternative drug-eluting balloon coatings is the source of intense investigation in attempts to improve on efficacy and safety of this highly effective therapeutic intervention. We discuss recent clinical developments with regard to sirolimus drug-coated balloons, demonstrating efficacy in early studies in relation to coronary, peripheral arterial, and renal access applications. However, limited comparator studies with paclitaxel currently exist. In addition, we explore novel drug-eluting angioplasty balloon coatings currently under evaluation in the preclinical space, together with associated molecular mechanisms of action. Further evaluation of these potential alternative coatings is required, and an algorithm to support the rational evaluation of novel coatings and their subsequent clinical development has been provided.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611369472250526044344
2025-05-27
2025-09-25
Loading full text...

Full text loading...

References

  1. Zhou Y. Wang T. He H. Li Q. Wan Z. Lu P. Shu C. Comparative effectiveness of endovascular treatment modalities for de novo femoropopliteal lesions at long-term follow-up: A network meta-analysis of randomized controlled trials. Int. J. Cardiol. 2024 404 131977 38508322
    [Google Scholar]
  2. Korjian S. McCarthy K.J. Larnard E.A. Cutlip D.E. McEntegart M.B. Kirtane A.J. Yeh R.W. Drug-coated balloons in the management of coronary artery disease. Circ. Cardiovasc. Interv. 2024 17 5 e013302 10.1161/CIRCINTERVENTIONS.123.013302 38771909
    [Google Scholar]
  3. Purushottam B. Tuma J.L. Krishnan P. Commentary: Leave nothing behind: No stent, no restenosis, no mortality. J. Endovasc. Ther. 2020 27 5 706 713 32716677
    [Google Scholar]
  4. Lazar F.L. Onea H.L. Olinic D.M. Cortese B. A 2024 scientific update on the clinical performance of drug-coated balloons. AsiaIntervention 2024 10 1 15 25 38425817
    [Google Scholar]
  5. Déglise S. Bechelli C. Allagnat F. Vascular smooth muscle cells in intimal hyperplasia, an update. Front. Physiol. 2023 13 1081881 36685215
    [Google Scholar]
  6. Scheller B. Hehrlein C. Bocksch W. Rutsch W. Haghi D. Dietz U. Böhm M. Speck U. Treatment of coronary in-stent restenosis with a paclitaxel-coated balloon catheter. N. Engl. J. Med. 2006 355 20 2113 2124 17101615
    [Google Scholar]
  7. Axel D.I. Kunert W. Göggelmann C. Oberhoff M. Herdeg C. Küttner A. Wild D.H. Brehm B.R. Riessen R. Köveker G. Karsch K.R. Paclitaxel inhibits arterial smooth muscle cell proliferation and migration in vitro and in vivo using local drug delivery. Circulation 1997 96 2 636 645 9244237
    [Google Scholar]
  8. Rowinsky E.K. Donehower R.C. Paclitaxel (taxol). N. Engl. J. Med. 1995 332 15 1004 1014 7885406
    [Google Scholar]
  9. Granada J.F. Stenoien M. Buszman P.P. Tellez A. Langanki D. Kaluza G.L. Leon M.B. Gray W. Jaff M.R. Schwartz R.S. Mechanisms of tissue uptake and retention of paclitaxel-coated balloons: impact on neointimal proliferation and healing. Open Heart 2014 1 1 e000117 25332821
    [Google Scholar]
  10. Caradu C. Lakhlifi E. Colacchio E.C. Midy D. Bérard X. Poirier M. Ducasse E. Systematic review and updated meta-analysis of the use of drug-coated balloon angioplasty versus plain old balloon angioplasty for femoropopliteal arterial disease. J. Vasc. Surg. 2019 70 3 981 995.e10 31126769
    [Google Scholar]
  11. Cassese S. Xu B. Habara S. Rittger H. Byrne R.A. Waliszewski M. Pérez-Vizcayno M.J. Gao R. Kastrati A. Alfonso F. Incidence and predictors of reCurrent restenosis after drug-coated balloon Angioplasty for Restenosis of a drUg-eluting Stent: The ICARUS Cooperation. Rev. Esp. Cardiol. (Engl. Ed.) 2018 71 8 620 627 28916429
    [Google Scholar]
  12. Katsanos K. Spiliopoulos S. Kitrou P. Krokidis M. Karnabatidis D. Risk of death following application of paclitaxel-coated balloons and stents in the femoropopliteal artery of the leg: A systematic review and meta-analysis of randomized controlled trials. J. Am. Heart Assoc. 2018 7 24 e011245 30561254
    [Google Scholar]
  13. Thomas S.D. McDonald R.R. Varcoe R.L. Vasculitis resulting from a superficial femoral artery angioplasty with a paclitaxel-eluting balloon. J. Vasc. Surg. 2014 59 2 520 523 23642919
    [Google Scholar]
  14. Boitet A. Grassin-Delyle S. Louedec L. Dupont S. Lamy E. Coggia M. Michel J.B. Coscas R. An experimental study of paclitaxel embolisation during drug coated balloon angioplasty. Eur. J. Vasc. Endovasc. Surg. 2019 57 4 578 586 30871939
    [Google Scholar]
  15. Diamantopoulos A. Gupta Y. Zayed H. Katsanos K. Paclitaxel-coated balloons and aneurysm formation in peripheral vessels. J. Vasc. Surg. 2015 62 5 1320 1322 24801552
    [Google Scholar]
  16. Parikh S.A. Schneider P.A. Mullin C.M. Rogers T. Gray W.A. Mortality in randomised controlled trials using paclitaxel-coated devices for femoropopliteal interventional procedures: an updated patient-level meta-analysis. Lancet 2023 402 10415 1848 1856 10.1016/S0140‑6736(23)02189‑X 37890499
    [Google Scholar]
  17. Marx S.O. Marks A.R. Bench to bedside. Circulation 2001 104 8 852 855 10.1161/01.CIR.104.8.852 11514367
    [Google Scholar]
  18. Hayashi S. Yamamoto A. You F. Yamashita K. Ikegame Y. Tawada M. Yoshimori T. Shimizu S. Nakashima S. The stent-eluting drugs sirolimus and paclitaxel suppress healing of the endothelium by induction of autophagy. Am. J. Pathol. 2009 175 5 2226 2234 10.2353/ajpath.2009.090152 19815708
    [Google Scholar]
  19. Barilli A. Visigalli R. Sala R. Gazzola G.C. Parolari A. Tremoli E. Bonomini S. Simon A. Closs E.I. Dall’Asta V. Bussolati O. In human endothelial cells rapamycin causes mTORC2 inhibition and impairs cell viability and function. Cardiovasc. Res. 2008 78 3 563 571 10.1093/cvr/cvn024 18250144
    [Google Scholar]
  20. Carter A. Aggarwal M. Kopia G.A. Tio F. Tsao P.S. Kolata R. Yeung A.C. Llanos G. Dooley J. Falotico R. Long-term effects of polymer-based, slow-release, sirolimus-eluting stents in a porcine coronary model. Cardiovasc. Res. 2004 63 4 617 624 10.1016/j.cardiores.2004.04.029 15306217
    [Google Scholar]
  21. Clever Y.P. Peters D. Calisse J. Bettink S. Berg M.C. Sperling C. Stoever M. Cremers B. Kelsch B. Böhm M. Speck U. Scheller B. Novel sirolimus-coated balloon catheter: in vivo evaluation in a porcine coronary model. Circ. Cardiovasc. Interv. 2016 9 4 e003543 10.1161/CIRCINTERVENTIONS.115.003543 27069105
    [Google Scholar]
  22. Ali R.M. Abdul Kader M.A.S.K. Wan Ahmad W.A. Ong T.K. Liew H.B. Omar A.F. Mahmood Zuhdi A.S. Nuruddin A.A. Schnorr B. Scheller B. Treatment of coronary drug-eluting stent restenosis by a sirolimus- or paclitaxel-coated balloon. JACC Cardiovasc. Interv. 2019 12 6 558 566 10.1016/j.jcin.2018.11.040 30898253
    [Google Scholar]
  23. Scheller B. Mangner N. Abdul Kader M.A.S.K. Wan Ahmad W.A. Jeger R. Wöhrle J. Ong T.K. Liew H.B. Gori T. Mahfoud F. Nuruddin A.A. Woitek F. Abidin I.Z. Schwenke C. Schnorr B. Mohd Ali R. Scheller B. Rastoul B. Hollinger N. Scheller B. Mahfoud F. Ewen S. Böhm M. Vukadinovic D. Kulenthiran S. Schwarz V. Clever Y.P. Mangner N. Woitek F. Linke A. Höllriegel R. Winzer E. Jellinghaus S. Hommel J. Abdul Kader M.A.S. Wan Ahmad W.A. Abidin I.Z. Ismail M.D. Mahmood Zuhdi A.S. Syed Mansor S.M. Jeger R. Kaiser C. Fahrni G. Gilgen N. Harder-Allgöwer A. Baumgartner M. Wöhrle J. Sinisa M. Smirnova O. Kiam Ong T. Yip Fong A.Y. Khiew N.Z. Said A.B. Cham Y.L. Oon Y.Y. Koh K.T. Voon C.Y. Mohd Amin N.H. Johan W. Liew H.B. Fui Jien M.W. Shu Theng M.C. Gori T. Nuruddin A.A. Omar A.F. Azmi S. Kandasamy B. Mohamed Yusoff A.K. Selamat S. Schwenke C. Schnorr B. Kutschera M. Mohd Ali R. Mathana Sundram T.K. Combined analysis of two parallel randomized trials of sirolimus-coated and paclitaxel-coated balloons in coronary in-stent restenosis lesions. Circ. Cardiovasc. Interv. 2022 15 9 e012305 10.1161/CIRCINTERVENTIONS.122.012305 36126132
    [Google Scholar]
  24. Ahmad W.A.W. Nuruddin A.A. Abdul Kader M.A.S.K. Ong T.K. Liew H.B. Ali R.M. Mahmood Zuhdi A.S. Ismail M.D. Yusof A.K.M. Schwenke C. Kutschera M. Scheller B. Treatment of coronary de novo lesions by a sirolimus- or paclitaxel-coated balloon. JACC Cardiovasc. Interv. 2022 15 7 770 779 10.1016/j.jcin.2022.01.012 35305906
    [Google Scholar]
  25. Serruys P.W. Tobe A. Ninomiya K. Garg S. Finn A.V. Scheller B. Cortese B. Colombo A. Reimers B. Basavarajaiah S. Sharif F. Fezzi S. Gao C. Tao L. Onuma Y. Is the axiom of balloon angioplasty, “the more you gain the more you lose,” still true in the era of DCB with paclitaxel? Cardiovasc. Revasc. Med. 2024 69 70 78 10.1016/j.carrev.2024.04.001
    [Google Scholar]
  26. Ninomiya K. Serruys P.W. Colombo A. Reimers B. Basavarajaiah S. Sharif F. Testa L. Di Mario C. Nerla R. Ding D. Huang J. Kotoku N. Kageyama S. Kageyama M. Sevestre E. Fezzi S. Dijkstra J. O’Leary N. Morel M.A. Garg S. Cortese B. Onuma Y. A prospective randomized trial comparing sirolimus-coated balloon with paclitaxel-coated balloon in de novo small vessels. JACC Cardiovasc. Interv. 2023 16 23 2884 2896 10.1016/j.jcin.2023.09.026 37877914
    [Google Scholar]
  27. Sciahbasi A. Salvi N. Heang T.M. Perez I.S. Geraci S. Vaccaro G. Benincasa S. Nuruddin A.A. Ocaranza R. Giannini F. Greco A. Cortese B. Long term clinical outcome of sirolimus drug coated balloons in large coronary vessels. Catheter. Cardiovasc. Interv. 2024 103 4 532 538 10.1002/ccd.30996 38415895
    [Google Scholar]
  28. Widder J.D. Cortese B. Levesque S. Berliner D. Eccleshall S. Graf K. Doutrelant L. Ahmed J. Bressollette E. Zavalloni D. Piraino D. Roguin A. Scheller B. Stella P.R. Bauersachs J. Coronary artery treatment with a urea-based paclitaxel-coated balloon: The European-wide FALCON all-comers DCB Registry (FALCON Registry). EuroIntervention 2019 15 4 e382 e388 10.4244/EIJ‑D‑18‑00261 29992902
    [Google Scholar]
  29. Wańha W. Bil J. Januszek R. Gilis-Malinowska N. Figatowski T. Milewski M. Pawlik A. Staszczak B. Wybraniec M. Tomasiewicz B. Kübler P. Kuliczkowski W. Walczak T. Hrymniak B. Desperak P. Mielczarek M. Ciecwierz D. Niezgoda P. Wolny R. Chudzik M. Kuźma Ł. Kralisz P. Kedhi E. D’Ascenzo F. Hudziak D. Kowalówka A. Smolka G. Reczuch K. Gruchała M. Kubica J. Gil R.J. Dobrzycki S. Dudek D. Bartuś S. Gąsior M. Ochała A. Witkowski A. Jaguszewski M. Wojakowski W. Long-term outcomes following drug-eluting balloons versus thin-strut drug-eluting stents for treatment of in-stent restenosis (DEB-Dragon-Registry). Circ. Cardiovasc. Interv. 2021 14 9 e010868 10.1161/CIRCINTERVENTIONS.121.010868 34474584
    [Google Scholar]
  30. Wańha W. Iwańczyk S. Januszek R. Wolny R. Tomasiewicz B. Kuliczkowski W. Reczuch K. Pawlus P. Pawłowski T.Z. Kuźma Ł. Kubler P. Niezgoda P. Kubica J. Gil R.J. Pawłowski T.F. Gąsior M. Jaguszewski M. Wybraniec M. Witkowski A. Kowalewski M. D’Ascenzo F. Greco A. Bartuś S. Lesiak M. Grygier M. Wojakowski W. Cortese B. Long-term outcomes following sirolimus-coated balloon or drug-eluting stents for treatment of in-stent restenosis. Circ. Cardiovasc. Interv. 2024 17 9 e014064 10.1161/CIRCINTERVENTIONS.124.014064 39051094
    [Google Scholar]
  31. Zeller T. Brechtel K. Meyer D.R. Noory E. Beschorner U. Albrecht T. Six-month outcomes from the first-in-human, single-arm selution sustained-limus-release drug-eluting balloon trial in femoropopliteal lesions. J. Endovasc. Ther. 2020 27 5 683 690 10.1177/1526602820941811 32666871
    [Google Scholar]
  32. Werk M. Langner S. Reinkensmeier B. Boettcher H.F. Tepe G. Dietz U. Hosten N. Hamm B. Speck U. Ricke J. Inhibition of restenosis in femoropopliteal arteries: Paclitaxel-coated versus uncoated balloon: Femoral paclitaxel randomized pilot trial. Circulation 2008 118 13 1358 1365 10.1161/CIRCULATIONAHA.107.735985 18779447
    [Google Scholar]
  33. Scheinert D. Duda S. Zeller T. Krankenberg H. Ricke J. Bosiers M. Tepe G. Naisbitt S. Rosenfield K. The LEVANT I (Lutonix paclitaxel-coated balloon for the prevention of femoropopliteal restenosis) trial for femoropopliteal revascularization: First-in-human randomized trial of low-dose drug-coated balloon versus uncoated balloon angioplasty. JACC Cardiovasc. Interv. 2014 7 1 10 19 10.1016/j.jcin.2013.05.022 24456716
    [Google Scholar]
  34. Scheinert D. Schulte K.L. Zeller T. Lammer J. Tepe G. Paclitaxel-releasing balloon in femoropopliteal lesions using a BTHC excipient: Twelve-month results from the BIOLUX P-I randomized trial. J. Endovasc. Ther. 2015 22 1 14 21 10.1177/1526602814564383 25775674
    [Google Scholar]
  35. Tang T.Y. Yap C. Soon S.X.Y. Chan S.L. Lee Q.S. Yap H.Y. Tay H.T.L. Chong T.T. World’s first experience treating TASC II C and D tibial occlusive disease using the selution slr sirolimus-eluting balloon: Six-month results from the prestige study. J. Endovasc. Ther. 2021 28 4 555 566 33843364
    [Google Scholar]
  36. Choke E. Tang T.Y. Peh E. Damodharan K. Cheng S.C. Tay J.S. Finn A.V. Magictouch PTA sirolimus coated balloon for femoropopliteal and below the knee disease: Results from xtosi pilot study up to 12 months. J. Endovasc. Ther. 2022 29 5 780 789 34911383
    [Google Scholar]
  37. Choke E.T.C. Peh E.Y.L. Tang T.Y. Cheng S.C. Tay J.S. Aw D.K.L. Vijaykumar K. Magictouch PTA sirolimus-coated balloon for femoropopliteal and below-the-knee disease: 3-year outcomes of the XTOSI trial. Ann. Vasc. Surg. 2024 106 8 15 10.1016/j.avsg.2023.12.096 38579912
    [Google Scholar]
  38. Tay W.L. Chong T.T. Chan S.L. Yap H.Y. Tay K.H. Ong M.E.H. Choke E.C. Tang T.Y. Two-year clinical outcomes following lower limb endovascular revascularisation for chronic limb-threatening ischaemia at a tertiary Asian vascular centre in Singapore. Singapore Med. J. 2022 63 2 79 85 10.11622/smedj.2020104 32668837
    [Google Scholar]
  39. Baubeta Fridh E. Andersson M. Thuresson M. Sigvant B. Kragsterman B. Johansson S. Hasvold P. Falkenberg M. Nordanstig J. Amputation rates, mortality, and pre-operative comorbidities in patients revascularised for intermittent claudication or critical limb ischaemia: A population based study. Eur. J. Vasc. Endovasc. Surg. 2017 54 4 480 486 28797662
    [Google Scholar]
  40. Taneva G.T. Pitoulias G.A. Abu Bakr N. Kazemtash M. Muñoz Castellanos J. Donas K.P. Assessment of Sirolimus- vs. paCLitaxEl-coated balloon angioPlasty In atherosclerotic femoropopliteal lesiOnS (ASCLEPIOS Study): preliminary results. J. Cardiovasc. Surg. (Torino) 2022 63 1 8 12 10.23736/S0021‑9509.21.12169‑X 35179337
    [Google Scholar]
  41. Teichgräber U. Ingwersen M. Platzer S. Lehmann T. Zeller T. Aschenbach R. Scheinert D. Head-to-head comparison of sirolimus- versus paclitaxel-coated balloon angioplasty in the femoropopliteal artery: Study protocol for the randomized controlled SIRONA trial. Trials 2021 22 1 665 10.1186/s13063‑021‑05631‑9 34583746
    [Google Scholar]
  42. Lookstein R.A. Haruguchi H. Ouriel K. Weinberg I. Lei L. Cihlar S. Holden A. IN.PACT AV Access Investigators Drug-coated balloons for dysfunctional dialysis arteriovenous fistulas. N. Engl. J. Med. 2020 383 8 733 742 10.1056/NEJMoa1914617 32813949
    [Google Scholar]
  43. Tang T.Y. Soon S.X.Y. Yap C.J.Q. Chan S.L. Tan R.Y. Pang S.C. Lee S.Q.W. Yap H.Y. Choke E.T.C. Tan C.S. Chong T.T. Early (6 months) results of a pilot prospective study to investigate the efficacy and safety of sirolimus coated balloon angioplasty for dysfunctional arterio-venous fistulas: MAgicTouch Intervention Leap for Dialysis Access (MATILDA) Trial. PLoS One 2020 15 10 e0241321 10.1371/journal.pone.0241321 33108398
    [Google Scholar]
  44. Tang T.Y. Soon S.X.Y. Yap C.J.Q. Chan S.L. Choke E.T.C. Chong T.T. Utility of sirolimus coated balloons for salvaging dysfunctional arteriovenous fistulae: One year results from the MATILDA trial. Eur. J. Vasc. Endovasc. Surg. 2021 62 2 316 317 10.1016/j.ejvs.2021.04.014 34099380
    [Google Scholar]
  45. Tan RY Tng ARK Tan CW Sirolimus-coated balloon angioplasty in maintaining the patency of thrombosed arteriovenous graft: 1-year results of a prospective study. J Vasc Access 25 1 274 10.1177/11297298221104310
    [Google Scholar]
  46. Tang TY Chong TT Yap CJQ Intervention with selution slr agent balloon for endovascular latent limus therapy for failing av fistulas (ISABELLA) trial: Protocol for a pilot clinical study and pre-clinical results. J Vasc Access 2023 24 289 299.
    [Google Scholar]
  47. Tang TY Soon SX Yap CJ Endovascular salvage of failing arterio-venous fistulas utilising sirolimus eluting balloons: Six months results from the ISABELLA trial. J Vasc Access. 2023 24 5 1008 10.1177/11297298221104310
    [Google Scholar]
  48. Knowlton A.A. Lee A.R. Estrogen and the cardiovascular system. Pharmacol. Ther. 2012 135 1 54 70 10.1177/11297298211067059 22484805
    [Google Scholar]
  49. Zheng S. Chen X. Hong S. Long L. Xu Y. Simoncini T. Fu X. 17 β -Estradiol inhibits vascular smooth muscle cell migration via up-regulation of striatin protein. Gynecol. Endocrinol. 2015 31 8 618 624 10.3109/09513590.2015.1021325 26220767
    [Google Scholar]
  50. Yurdagul A. Jr Kleinedler J.J. McInnis M.C. Khandelwal A.R. Spence A.L. Orr A.W. Dugas T.R. Resveratrol promotes endothelial cell wound healing under laminar shear stress through an estrogen receptor-α-dependent pathway. Am. J. Physiol. Heart Circ. Physiol. 2014 306 6 H797 H806 10.1152/ajpheart.00892.2013 24464753
    [Google Scholar]
  51. Dugas T.R. Brewer G. Longwell M. Fradella T. Braun J. Astete C.E. Jennings M.H. Sabliov C.M. Nanoentrapped polyphenol coating for sustained drug release from a balloon catheter. J. Biomed. Mater. Res. B Appl. Biomater. 2019 107 3 646 651 10.1002/jbm.b.34157 30091513
    [Google Scholar]
  52. Kleinedler J.J. Foley J.D. Orchard E.A. Dugas T.R. Novel nanocomposite stent coating releasing resveratrol and quercetin reduces neointimal hyperplasia and promotes re-endothelialization. J. Control. Release 2012 159 1 27 33 10.1016/j.jconrel.2012.01.008 22269665
    [Google Scholar]
  53. Craciun I. Astete C.E. Boldor D. Jennings M.H. Gorman J.D. Sabliov C.M. Dugas T.R. Nanoparticle coatings for controlled release of quercetin from an angioplasty balloon. PLoS One 2022 17 8 e0268307 10.1371/journal.pone.0268307 36001584
    [Google Scholar]
  54. Kamann S Haase T Stolzenburg N Lochel M Peters D Schnorr J Resveratrol-coated balloon catheters in porcine coronary and peripheral arteries. Int J Mol Sci. 2019 20 9 2285 10.3390/ijms20092285
    [Google Scholar]
  55. Pritchard C.C. Cheng H.H. Tewari M. MicroRNA profiling: Approaches and considerations. Nat. Rev. Genet. 2012 13 5 358 369 10.1038/nrg3198 22510765
    [Google Scholar]
  56. Fu J.Y. Lai Y.X. Zheng S.S. Wang J. Wang Y.X. Ren K.F. Yu L. Fu G.S. Ji J. Mir-22-incorporated polyelectrolyte coating prevents intima hyperplasia after balloon-induced vascular injury. Biomater. Sci. 2022 10 13 3612 3623 35642971
    [Google Scholar]
  57. Yang F. Chen Q. He S. Yang M. Maguire E.M. An W. Afzal T.A. Luong L.A. Zhang L. Xiao Q. Mir-22 is a novel mediator of vascular smooth muscle cell phenotypic modulation and neointima formation. Circulation 2018 137 17 1824 1841 10.1161/CIRCULATIONAHA.117.027799 29246895
    [Google Scholar]
  58. Lai Y. Fu J. Wu S. Li R. Hu J. Wang Y. Martins M.C.L. Ren K. Ji J. Fu G. A pDNA/rapamycin nanocomposite coating on interventional balloons for inhibiting neointimal hyperplasia. J. Mater. Chem. B Mater. Biol. Med. 2023 11 22 4882 4889 10.1039/D3TB00344B 37222145
    [Google Scholar]
  59. Shibuya M. Vascular endothelial growth factor (VEGF) and its receptor (VEGFR) signaling in angiogenesis: A crucial target for anti- and pro-angiogenic therapies. Genes Cancer 2011 2 12 1097 1105 10.1177/1947601911423031 22866201
    [Google Scholar]
  60. Haase T. Speck U. Bienek S. Löchel M. Brunacci N. Gemeinhardt O. Schütt D. Bettink S. Kelsch B. Scheller B. Schnorr B. Drug-coated balloons: Drugs beyond paclitaxel? Front. Biosci. (Landmark Ed.) 2022 27 10 283 10.31083/j.fbl2710283 36336862
    [Google Scholar]
  61. Emadi A. Gore S.D. Arsenic trioxide: An old drug rediscovered. Blood Rev. 2010 24 4-5 191 199 10.1016/j.blre.2010.04.001 20471733
    [Google Scholar]
  62. Ingawale D.K. Mandlik S.K. New insights into the novel anti-inflammatory mode of action of glucocorticoids. Immunopharmacol. Immunotoxicol. 2020 42 2 59 73 10.1080/08923973.2020.1728765 32070175
    [Google Scholar]
  63. Tamura D. Arao T. Tanaka K. Kaneda H. Matsumoto K. Kudo K. Aomatsu K. Fujita Y. Watanabe T. Saijo N. Kotani Y. Nishimura Y. Nishio K. Bortezomib potentially inhibits cellular growth of vascular endothelial cells through suppression of G2/M transition. Cancer Sci. 2010 101 6 1403 1408 10.1111/j.1349‑7006.2010.01544.x 20367638
    [Google Scholar]
  64. Kim K.S. Kim S.Y. Choi J.H. Joo S.J. Kim D.W. Cho M.C. Bortezomib reduces neointimal hyperplasia in a rat carotid artery injury model. Korean Circ. J. 2013 43 9 592 599 10.4070/kcj.2013.43.9.592 24174959
    [Google Scholar]
  65. Yang B. Gao P. Wu X. Yu J. Li Y. Meng R. Li Y. Yan J. Jin X. Epigallocatechin-3-gallate attenuates neointimal hyperplasia in a rat model of carotid artery injury by inhibition of high mobility group box 1 expression. Exp. Ther. Med. 2017 14 3 1975 1982 10.3892/etm.2017.4774 28962112
    [Google Scholar]
  66. Narvi E. Jaakkola K. Winsel S. Oetken-Lindholm C. Halonen P. Kallio L. Kallio M.J. Altered TUBB3 expression contributes to the epothilone response of mitotic cells. Br. J. Cancer 2013 108 1 82 90 10.1038/bjc.2012.553 23321512
    [Google Scholar]
  67. Prota A.E. Bargsten K. Zurwerra D. Field J.J. Díaz J.F. Altmann K.H. Steinmetz M.O. Molecular mechanism of action of microtubule-stabilizing anticancer agents. Science 2013 339 6119 587 590 23287720
    [Google Scholar]
  68. Cronstein B.N. Aune T.M. Methotrexate and its mechanisms of action in inflammatory arthritis. Nat. Rev. Rheumatol. 2020 16 3 145 154 10.1038/s41584‑020‑0373‑9 32066940
    [Google Scholar]
  69. Sun S. Zhang Q. Wang Q. Wu Q. Xu G. Chang P. Hu H. Bai F. Local delivery of thalidomide to inhibit neointima formation in rat model with artery injury. Pathol. Res. Pract. 2018 214 9 1303 1308 10.1016/j.prp.2018.02.019 30029933
    [Google Scholar]
  70. Seo H.J. Rhim W.K. Baek S.W. Kim J.Y. Kim D.S. Han D.K. Endogenous stimulus-responsive nitric oxide releasing bioactive liposome for a multilayered drug-eluting balloon. Biomater. Sci. 2023 11 3 916 930 10.1039/D2BM01673G 36533852
    [Google Scholar]
  71. Lei J. Vodovotz Y. Tzeng E. Billiar T.R. Nitric oxide, a protective molecule in the cardiovascular system. Nitric Oxide 2013 35 175 185 10.1016/j.niox.2013.09.004 24095696
    [Google Scholar]
  72. Lee H.I. Rhim W.K. Kang E.Y. Choi B. Kim J.H. Han D.K. A multilayer functionalized drug-eluting balloon for treatment of coronary artery disease. Pharmaceutics 2021 13 5 614 10.3390/pharmaceutics13050614 33922861
    [Google Scholar]
  73. Findeisen H.M. Gizard F. Zhao Y. Qing H. Heywood E.B. Jones K.L. Cohn D. Bruemmer D. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition. Arterioscler. Thromb. Vasc. Biol. 2011 31 4 851 860 10.1161/ATVBAHA.110.221952 21233448
    [Google Scholar]
  74. Dear A.E. Liu H.B. Mayes P.A. Perlmutter P. Conformational analogues of Oxamflatin as histone deacetylase inhibitors. Org. Biomol. Chem. 2006 4 20 3778 3784 10.1039/b608213k 17024284
    [Google Scholar]
  75. Rahmatzadeh M. Liu H.B. Krishna S.M. Gaspari T.A. Welungoda I. Widdop R.E. Dear A.E. A novel agent with histone deacetylase inhibitory activity attenuates neointimal hyperplasia. Cardiovasc. Drugs Ther. 2014 28 5 395 406 10.1007/s10557‑014‑6540‑y 25005755
    [Google Scholar]
  76. Liu H. Byrne M. Perlmutter P. Walker A. Sama G.R. Subbiah J. Ozcelik B. Widdop R.E. Gaspari T.A. Byron K. Chen Y.C. Kaye D.M. Dear A.E. A novel epigenetic drug-eluting balloon angioplasty device: Evaluation in a large animal model of neointimal hyperplasia. Cardiovasc. Drugs Ther. 2019 33 6 687 692 10.1007/s10557‑019‑06921‑w 31885055
    [Google Scholar]
  77. Sama G.R. Liu H. Mountford S. Thompson P. Robinson A. Dear A.E. Synthesis and biological evaluation of a novel photo-activated histone deacetylase inhibitor. Bioorg. Med. Chem. Lett. 2020 30 16 127291 10.1016/j.bmcl.2020.127291 32631513
    [Google Scholar]
  78. Liu H. Sama G.R. Robinson A. Mountford S. E Thompson P. Rodda A. Forsythe J. Mornane P.J. Pasic P. Thissen H. Byrne M. Kaye D.M. Dear A.E. Design, development, in vitro and preliminary in vivo evaluation of a novel photo-angioplasty device: Lumi-solve. Cardiovasc. Eng. Technol. 2021 12 4 466 473 10.1007/s13239‑021‑00525‑y 33709249
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611369472250526044344
Loading
/content/journals/cvp/10.2174/0115701611369472250526044344
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test