Skip to content
2000
image of Significant Stagnancy in the Search and Use of New Antiarrhythmic Agents With Some Recent Beams of Hope

Abstract

Over the last few decades, there has been noteworthy long-lasting stagnancy in the field of antiarrhythmic drugs (AAD), with the development of novel AAD notably declining over the years. Although ablation therapy has dominated, there remains an unmet need for effective and safe antiarrhythmic therapy in those choosing a conservative approach and those failing the ablation procedure(s). Also, in patients with life-threatening ventricular arrhythmias, in the era of the implantable cardioverter defibrillator dominance, many patients require effective and safe AAD therapy to mitigate the recurrence of arrhythmias and the delivery of painful and unpleasant device shocks. The repurposing and reformulation of current drugs in circulation for novel therapeutic uses may provide new avenues for developing antiarrhythmic treatments that can assist in curtailing cardiac arrhythmia-associated morbidity and mortality, and ameliorate the quality of life for millions of patients. Stressful factors may lead to endothelial dysfunction and a surge in blood pressure, contributing to the emergence of cardiac arrhythmogenic effects, including myocardial fibrosis and remodeling of structural, ion channels, and connexin 43 channels, with consequent dysfunction. Agents influencing this latter protein may have cardioprotective and potentially antiarrhythmic effects. In this review of new antiarrhythmic agents, the advantages of sodium-glucose co-transporter inhibitors, and also those of pirfenidone, ranolazine, sotatercept, mirabegron, nintedanib, and melatonin are discussed. Some of these agents have been approved for other indications and repurposed for use in managing arrhythmias. Finding novel antiarrhythmic therapeutic approaches may be challenging for further research.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611363665250812165524
2025-08-22
2025-11-08
Loading full text...

Full text loading...

References

  1. Apte N. Kalra D.K. Pharmacotherapy in ventricular arrhythmias. Cardiology 2023 148 2 119 130 10.1159/000529670 36878200
    [Google Scholar]
  2. Saljic A. Heijman J. Dobrev D. Recent advances in antiarrhythmic drug therapy. Drugs 2023 83 13 1147 1160 10.1007/s40265‑023‑01923‑3 37540446
    [Google Scholar]
  3. Sykora M. Szeiffova Bacova B. Andelova K. Egan Benova T. Martiskova A. Kurahara L.H. Hirano K. Tribulova N. Connexin43, a promising target to reduce cardiac arrhythmia burden in pulmonary arterial hypertension. Int. J. Mol. Sci. 2024 25 6 3275 10.3390/ijms25063275 38542257
    [Google Scholar]
  4. De Santis G.A. De Ferrari T. Parisi F. Franzino M. Molinero A.E. Di Carlo A. Pistelli L. Vetta G. Parlavecchio A. Torre M. Parollo M. Mansi G. Tamborrino P.P. Canu A. Grifoni G. Segreti L. Di Cori A. Viani S.M. Zucchelli G. Ranolazine unveiled: Rediscovering an old solution in a new light. J. Clin. Med. 2024 13 17 4985 10.3390/jcm13174985 39274195
    [Google Scholar]
  5. Murai K. Vasigh A. Alexy T. Tóth K. Czopf L. The role of ranolazine in the treatment of ventricular tachycardia and atrial fibrillation: A narrative review of the clinical evidence. Biomedicines 2024 12 8 1669 10.3390/biomedicines12081669 39200134
    [Google Scholar]
  6. Zareba W. Daubert J.P. Beck C.A. Huang D.T. Alexis J.D. Brown M.W. Pyykkonen K. McNitt S. Oakes D. Feng C. Aktas M.K. Ayala-Parades F. Baranchuk A. Dubuc M. Haigney M. Mazur A. McPherson C.A. Mitchell L.B. Natale A. Piccini J.P. Raitt M. Rashtian M.Y. Schuger C. Winters S. Worley S.J. Ziv O. Moss A.J. Zareba W. Pyykkonen K. Buttaccio A. Perkins E. DeGrey D. Robertson S. Moss A.J. Brown M. Lansing R. Oberer A. Polonsky B. Ross V. Papernov A. Schleede S. Beck C. Oakes D. Feng C. McNitt S S. Hall W.J. Zareba W. Moss A. Daubert J. Beck C. Brown M. Huang D. Winters S. Schuger C. Haigney M. Piccini J. Alexis J. Chen L. Miller A. Richeson J.F. Rosero S. Huang D. Kutyifa V. Shah A. Lamas G. Cohn F. Harrell F. Jr Piña I. Poole J. Sullivan M. Lathrop D. Geller N. Boineau R. Trondell J. Cooper L. Itturiaga E. Boineau R. Gottlieb C. Greer S. Perzanowski C. McPherson C. Hedgepeth C. Assal C. Salam T. Woollett I. Tomassoni G. Ayala-Paredes F. Russo A. Punnam S. Sangrigoli R. Sloan S. Kutalek S. Piccini J. Sun A. Lustgarten D. Monir G. Haithcock D. Sorrentino R. Cannom D. Kluger J. Schuger C. Varanasi S. Rashtian M. Philippon F. Berger R. Mazzella M. Lessmeier T. Silver J. Worley S. Bernabei M. Esberg D. Dixon M. LeLorier P. Greenberg Y. Essebag V. Venkataraman G. Shinn T. Dubuc M. Winters S. Turitto G. Henrikson C. Mirro M. Raitt M. Baranchuk A. O’Neill G. Lockwood E. Vloka M. Hurwitz J. Mead R.H. Somasundarum P. Aziz E. Rashba E. Budzikowski A. Cox M. Natale A. Chung E. Ziv O. McGrew F. III Tamirisa K. Greenspon A. Estes M. Taylor S. Janardhanan R. Mitchell L.B. Burke M. Attari M. Mikaelian B. Hsu S. Conti J. Mazur A. Shorofsky S. Rosenthal L. Sakaguchi S. Wolfe D. Flaker G. Saba S. Aktas M. Mason P. Shalaby A. Musat D. Abraham R. Ellenbogen K. Fellows C. Venkataraman G. Kavesh N. Thomas G. Hemsworth D. Williamson B. RAID Trial Investigators Ranolazine in high-risk patients with implanted cardioverter-defibrillators. J. Am. Coll. Cardiol. 2018 72 6 636 645 10.1016/j.jacc.2018.04.086 30071993
    [Google Scholar]
  7. Younis A. Goldenberg I. Farooq S. Yavin H. Daubert J. Raitt M. Mazur A. Huang D.T. Mitchell B.L. Rashtian M.R. Winters S. Vloka M. Aktas M. Bernabei M.A. Beck C.A. McNitt S. Zareba W. Reduction in ventricular tachyarrhythmia burden in patients enrolled in the RAID trial. JACC Clin. Electrophysiol. 2022 8 6 754 762 10.1016/j.jacep.2022.02.018 35738852
    [Google Scholar]
  8. Antzelevitch C. Burashnikov A. Sicouri S. Belardinelli L. Electrophysiologic basis for the antiarrhythmic actions of ranolazine. Heart Rhythm 2011 8 8 1281 1290 10.1016/j.hrthm.2011.03.045 21421082
    [Google Scholar]
  9. Andrade J.G. Deyell M.W. A role for ranolazine in the treatment of ventricular arrhythmias? JACC Clin. Electrophysiol. 2022 8 6 763 765 10.1016/j.jacep.2022.04.010 35738853
    [Google Scholar]
  10. Axelsson J. Wieslander B. Jablonowski R. Klem I. Nijveldt R. Schelbert E.B. Sörensson P. Sigfridsson A. Chaudhry U. Platonov P.G. Borgquist R. Engblom H. Strauss D.G. Arheden H. Atwater B.D. Ugander M. Ejection fraction in left bundle branch block is disproportionately reduced in relation to amount of myocardial scar. J. Electrocardiol. 2018 51 6 1071 1076 10.1016/j.jelectrocard.2018.09.009 30497733
    [Google Scholar]
  11. Mendonca Costa C. Neic A. Kerfoot E. Porter B. Sieniewicz B. Gould J. Sidhu B. Chen Z. Plank G. Rinaldi C.A. Bishop M.J. Niederer S.A. Pacing in proximity to scar during cardiac resynchronization therapy increases local dispersion of repolarization and susceptibility to ventricular arrhythmogenesis. Heart Rhythm 2019 16 10 1475 1483 10.1016/j.hrthm.2019.03.027 30930329
    [Google Scholar]
  12. Manolis A.A. Manolis T.A. Melita H. Manolis A.S. Sodium-glucose cotransporter type 2 inhibitors and cardiac arrhythmias. Trends Cardiovasc. Med. 2023 33 7 418 428 10.1016/j.tcm.2022.04.003 35447305
    [Google Scholar]
  13. Duan H.Y. Barajas-Martinez H. Antzelevitch C. Hu D. The potential anti-arrhythmic effect of SGLT2 inhibitors. Cardiovasc. Diabetol. 2024 23 1 252 10.1186/s12933‑024‑02312‑0 39010053
    [Google Scholar]
  14. Liang X. Dai J. Wang F. Sodium glucose co-transporter 2 (SGLT2) inhibitors versus dipeptidyl peptidase-4 (DPP-4) inhibitors and the risk of Atrial Fibrillation in patients with type 2 diabetes mellitus: A meta-analysis. BMC Cardiovasc. Disord. 2025 25 1 59 10.1186/s12872‑024‑04442‑5 39875820
    [Google Scholar]
  15. Li H.L. Lip G.Y.H. Feng Q. Fei Y. Tse Y.K. Wu M. Ren Q. Tse H.F. Cheung B.M.Y. Yiu K.H. Sodium-glucose cotransporter 2 inhibitors (SGLT2i) and cardiac arrhythmias: A systematic review and meta-analysis. Cardiovasc. Diabetol. 2021 20 1 100 10.1186/s12933‑021‑01293‑8 33962654
    [Google Scholar]
  16. Zelniker T.A. Bonaca M.P. Furtado R.H.M. Mosenzon O. Kuder J.F. Murphy S.A. Bhatt D.L. Leiter L.A. McGuire D.K. Wilding J.P.H. Budaj A. Kiss R.G. Padilla F. Gause-Nilsson I. Langkilde A.M. Raz I. Sabatine M.S. Wiviott S.D. Effect of dapagliflozin on atrial fibrillation in patients with type 2 diabetes mellitus. Circulation 2020 141 15 1227 1234 10.1161/CIRCULATIONAHA.119.044183 31983236
    [Google Scholar]
  17. Chang S.N. Chen J.J. Huang P.S. Wu C.K. Wang Y.C. Hwang J.J. Tsai C.T. Sodium‐glucose cotransporter‐2 inhibitor prevents stroke in patients with diabetes and atrial fibrillation. J. Am. Heart Assoc. 2023 12 10 027764 10.1161/JAHA.122.027764 37183872
    [Google Scholar]
  18. Shaaban A. Scott S.S. Greenlee A.N. Binda N. Noor A. Webb A. Guo S. Purdy N. Pennza N. Habib A. Mohammad S.J. Smith S.A. Atrial fibrillation in cancer, anticancer therapies, and underlying mechanisms. J. Mol. Cell. Cardiol. 2024 194 118 132 10.1016/j.yjmcc.2024.06.005 38897563
    [Google Scholar]
  19. Zhang X. Zhang Y. Sun G. Li Z. Tan W. Fan Y. Gao W. Zhang G. Effectiveness of sodium-glucose co-transporter 2 inhibitors on atrial fibrillation recurrence after catheter ablation: A systemic review and meta-analysis. Int. J. Cardiol. 2024 413 132359 10.1016/j.ijcard.2024.132359 39004352
    [Google Scholar]
  20. Lin M. Zhang S. Zhang L. Yang C. Luo Y. Peng Y. Tan X. Wen Q. Fan X. Ou X. Redefining outcomes of ventricular arrhythmia for SGLT2 inhibitor medication in heart failure patients: A meta-analysis of randomized controlled trials. Syst. Rev. 2025 14 1 31 10.1186/s13643‑025‑02766‑7 39893467
    [Google Scholar]
  21. Maruyama M. Xiao J. Zhou Q. Vembaiyan K. Chua S.K. Rubart-von der Lohe M. Lin S.F. Back T.G. Wayne Chen S.R. Chen P.S. Carvedilol analogue inhibits triggered activities evoked by both early and delayed afterdepolarizations. Heart Rhythm 2013 10 1 101 107 10.1016/j.hrthm.2012.09.006 22982970
    [Google Scholar]
  22. Stoschitzky K. Klein W. Stark G. Stark U. Zernig G. Graziadei I. Lindner W. Different stereoselective effects of (R)- and (S)-propafenone: Clinical pharmacologic, electrophysiologic, and radioligand binding studies. Clin. Pharmacol. Ther. 1990 47 6 740 746 10.1038/clpt.1990.102 2162749
    [Google Scholar]
  23. Prado N.J. Casarotto M. Calvo J.P. Mazzei L. Ponce Zumino A.Z. García I.M. Cuello-Carrión F.D. Fornés M.W. Ferder L. Diez E.R. Manucha W. Antiarrhythmic effect linked to melatonin cardiorenal protection involves AT 1 reduction and Hsp70‐ VDR increase. J. Pineal Res. 2018 65 4 12513 10.1111/jpi.12513 29851143
    [Google Scholar]
  24. Durkina A.V. Szeiffova Bacova B. Bernikova O.G. Gonotkov M.A. Sedova K.A. Cuprova J. Vaykshnorayte M.A. Diez E.R. Prado N.J. Azarov J.E. Blockade of melatonin receptors abolishes its antiarrhythmic effect and slows ventricular conduction in rat hearts. Int. J. Mol. Sci. 2023 24 15 11931 10.3390/ijms241511931 37569306
    [Google Scholar]
  25. Szeiffova Bacova B. Viczenczova C. Andelova K. Sykora M. Chaudagar K. Barancik M. Adamcova M. Knezl V. Egan Benova T. Weismann P. Slezak J. Tribulova N. Antiarrhythmic effects of melatonin and omega-3 are linked with protection of myocardial Cx43 topology and suppression of fibrosis in catecholamine stressed normotensive and hypertensive rats. Antioxidants 2020 9 6 546 10.3390/antiox9060546 32580481
    [Google Scholar]
  26. Prado N.J. Egan Beňová T. Diez E.R. Knezl V. Lipták B. Ponce Zumino A.Z. Llamedo-Soria M. Szeiffová Bačová B. Miatello R.M. Tribulová N. Melatonin receptor activation protects against low potassium‐induced ventricular fibrillation by preserving action potentials and connexin‐43 topology in isolated rat hearts. J. Pineal Res. 2019 67 4 12605 10.1111/jpi.12605 31408542
    [Google Scholar]
  27. Benova T. Viczenczova C. Radosinska J. Bacova B. Knezl V. Dosenko V. Weismann P. Zeman M. Navarova J. Tribulova N. Melatonin attenuates hypertension-related proarrhythmic myocardial maladaptation of connexin-43 and propensity of the heart to lethal arrhythmias. Can. J. Physiol. Pharmacol. 2013 91 8 633 639 10.1139/cjpp‑2012‑0393 23889002
    [Google Scholar]
  28. Petrović D. Ilić M.D. Simonović D. Stojanović M. Stanković M. Stanišić S. Stojanović S. Arsić N. Sokolović D.T. The role of melatonin in preventing amiodarone-induced rat liver damage. Can. J. Physiol. Pharmacol. 2024 102 6 374 382 10.1139/cjpp‑2023‑0253 38079620
    [Google Scholar]
  29. Qin X. Fu Y. Fan J. Liu B. Liu P. Zhang Y. Jiang T. Zheng Q. Melatonin increases susceptibility to atrial fibrillation in obesity via Akt signaling impairment in response to lipid overload. J. Pineal Res. 2023 74 3 12851 10.1111/jpi.12851 36639364
    [Google Scholar]
  30. Baltatu O.C. Senar S. Campos L.A. Cipolla-Neto J. Cardioprotective melatonin: Translating from proof-of-concept studies to therapeutic use. Int. J. Mol. Sci. 2019 20 18 4342 10.3390/ijms20184342 31491852
    [Google Scholar]
  31. Teunissen B. Jongsma H. Bierhuizen M. Regulation of myocardial connexins during hypertrophic remodelling. Eur. Heart J. 2004 25 22 1979 1989 10.1016/j.ehj.2004.08.007 15541833
    [Google Scholar]
  32. Song Y.N. Zhang H. Zhao J.Y. Guo X.L. Connexin 43, a new therapeutic target for cardiovascular diseases. Pharmazie 2009 64 5 291 295 19530438
    [Google Scholar]
  33. Smith J.H. Green C.R. Peters N.S. Rothery S. Severs N.J. Altered patterns of gap junction distribution in ischemic heart disease. An immunohistochemical study of human myocardium using laser scanning confocal microscopy. Am. J. Pathol. 1991 139 4 801 821 1656760
    [Google Scholar]
  34. Beardslee M.A. Lerner D.L. Tadros P.N. Laing J.G. Beyer E.C. Yamada K.A. Kléber A.G. Schuessler R.B. Saffitz J.E. Dephosphorylation and intracellular redistribution of ventricular connexin43 during electrical uncoupling induced by ischemia. Circ. Res. 2000 87 8 656 662 10.1161/01.RES.87.8.656 11029400
    [Google Scholar]
  35. Kjølbye A.L. Dikshteyn M. Eloff B.C. Deschênes I. Rosenbaum D.S. Maintenance of intercellular coupling by the antiarrhythmic peptide rotigaptide suppresses arrhythmogenic discordant alternans. Am. J. Physiol. Heart Circ. Physiol. 2008 294 1 H41 H49 10.1152/ajpheart.01089.2006 17982010
    [Google Scholar]
  36. Wit A.L. Duffy H.S. Drug development for treatment of cardiac arrhythmias: Targeting the gap junctions. Am. J. Physiol. Heart Circ. Physiol. 2008 294 1 H16 H18 10.1152/ajpheart.01031.2007 17890421
    [Google Scholar]
  37. Humbert M. McLaughlin V. Gibbs J.S.R. Gomberg-Maitland M. Hoeper M.M. Preston I.R. Souza R. Waxman A. Escribano Subias P. Feldman J. Meyer G. Montani D. Olsson K.M. Manimaran S. Barnes J. Linde P.G. de Oliveira Pena J. Badesch D.B. PULSAR Trial Investigators Sotatercept for the treatment of pulmonary arterial hypertension. N. Engl. J. Med. 2021 384 13 1204 1215 10.1056/NEJMoa2024277 33789009
    [Google Scholar]
  38. Humbert M. McLaughlin V. Gibbs J.S.R. Gomberg-Maitland M. Hoeper M.M. Preston I.R. Souza R. Waxman A.B. Ghofrani H.A. Escribano Subias P. Feldman J. Meyer G. Montani D. Olsson K.M. Manimaran S. de Oliveira Pena J. Badesch D.B. Sotatercept for the treatment of pulmonary arterial hypertension: PULSAR open-label extension. Eur. Respir. J. 2023 61 1 2201347 10.1183/13993003.01347‑2022 36041750
    [Google Scholar]
  39. Pitre T. Desai K. Mah J. Zeraatkar D. Humbert M. Comparative effectiveness of sotatercept and approved add-on pulmonary arterial hypertension therapies: A systematic review and network meta-analysis. Ann. Am. Thorac. Soc. 2024 21 8 1194 1203 10.1513/AnnalsATS.202311‑942OC 38820258
    [Google Scholar]
  40. Han M. Liu Q. Ji Z. Jin L. Jin W. Gao Z. Use of pirfenidone in fibrotic interstitial lung diseases and beyond: A review. Front. Med. 2024 11 1411279 10.3389/fmed.2024.1411279 39165369
    [Google Scholar]
  41. Nguyen D.T. Ding C. Wilson E. Marcus G.M. Olgin J.E. Pirfenidone mitigates left ventricular fibrosis and dysfunction after myocardial infarction and reduces arrhythmias. Heart Rhythm 2010 7 10 1438 1445 10.1016/j.hrthm.2010.04.030 20433946
    [Google Scholar]
  42. Sayegh N. Yirerong J. Agarwal N. Addison D. Fradley M. Cortes J. Weintraub N.L. Sayed N. Raval G. Guha A. Cardiovascular toxicities associated with tyrosine kinase inhibitors. Curr. Cardiol. Rep. 2023 25 4 269 280 10.1007/s11886‑023‑01845‑2 36795308
    [Google Scholar]
  43. Potter A.S. Hulsurkar M.M. Wu L. Narasimhan B. Karimzad K. Koutroumpakis E. Palaskas N. Deswal A. Kantharia B.K. Wehrens X.H.T. Kinase inhibitors and atrial fibrillation. JACC Clin. Electrophysiol. 2023 9 4 591 602 10.1016/j.jacep.2022.11.034 37100538
    [Google Scholar]
  44. Shah R.R. Morganroth J. Update on cardiovascular safety of tyrosine kinase inhibitors: With a special focus on QT interval, left ventricular dysfunction and overall risk/benefit. Drug Saf. 2015 38 8 693 710 10.1007/s40264‑015‑0300‑1 26008987
    [Google Scholar]
  45. Inoue Y. Ogura T. Azuma A. Kondoh Y. Homma S. Muraishi K. Ikeda R. Ochiai K. Sugiyama Y. Nukiwa T. Real-world safety, tolerability and effectiveness of nintedanib in patients with idiopathic pulmonary fibrosis: Final report of post-marketing surveillance in Japan. Adv. Ther. 2025 42 2 1075 1093 10.1007/s12325‑024‑03079‑2 39714546
    [Google Scholar]
  46. García-Álvarez A. Blanco I. García-Lunar I. Jordà P. Rodriguez-Arias J.J. Fernández-Friera L. Zegri I. Nuche J. Gomez-Bueno M. Prat S. Pujadas S. Sole-Gonzalez E. Garcia-Cossio M.D. Rivas M. Torrecilla E. Pereda D. Sanchez J. García-Pavía P. Segovia-Cubero J. Delgado J.F. Mirabet S. Fuster V. Barberá J.A. Ibañez B. SPHERE-HF Investigators β3 adrenergic agonist treatment in chronic pulmonary hypertension associated with heart failure ( SPHERE‐HF ): A double blind, placebo‐controlled, randomized clinical trial. Eur. J. Heart Fail. 2023 25 3 373 385 10.1002/ejhf.2745 36404400
    [Google Scholar]
  47. Umbarkar P. Singh A.P. Tousif S. Zhang Q. Sethu P. Lal H. Repurposing Nintedanib for pathological cardiac remodeling and dysfunction. Pharmacol. Res. 2021 169 105605 10.1016/j.phrs.2021.105605 33965510
    [Google Scholar]
  48. Mira-Avendano I. Kaye M. Key learnings from the INBUILD trial in patients with progressive pulmonary fibrosis. Ther. Adv. Respir. Dis. 2024 18 17534666241266343 10.1177/17534666241266343 39113425
    [Google Scholar]
  49. Tadrous M. Elterman D. Khuu W. Mamdani M.M. Juurlink D.N. Gomes T. Publicly funded overactive bladder drug treatment patterns in Ontario over 15 years: An ecological study. Can. Urol. Assoc. J. 2017 12 3 E142 E145 10.5489/cuaj.4541 29319477
    [Google Scholar]
  50. Kelleher C. Hakimi Z. Zur R. Siddiqui E. Maman K. Aballéa S. Nazir J. Chapple C. Efficacy and tolerability of mirabegron compared with antimuscarinic monotherapy or combination therapies for overactive bladder: A systematic review and network meta-analysis. Eur. Urol. 2018 74 3 324 333 10.1016/j.eururo.2018.03.020 29699858
    [Google Scholar]
  51. Maman K. Aballea S. Nazir J. Desroziers K. Neine M.E. Siddiqui E. Odeyemi I. Hakimi Z. Comparative efficacy and safety of medical treatments for the management of overactive bladder: A systematic literature review and mixed treatment comparison. Eur. Urol. 2014 65 4 755 765 10.1016/j.eururo.2013.11.010 24275310
    [Google Scholar]
  52. Gauthier C. Leblais V. Kobzik L. Trochu J.N. Khandoudi N. Bril A. Balligand J.L. Le Marec H. The negative inotropic effect of beta3-adrenoceptor stimulation is mediated by activation of a nitric oxide synthase pathway in human ventricle. J. Clin. Invest. 1998 102 7 1377 1384 10.1172/JCI2191 9769330
    [Google Scholar]
  53. Zhou Y.X. Wang W.P. Ke J. Ou H.P. Chen L.Y. Hou A.G. Li P. Ma Y.S. Bin Jin W. Nuciferine analogs block voltage-gated sodium, calcium and potassium channels to regulate the action potential and treat arrhythmia. Biomed. Pharmacother. 2024 179 117422 10.1016/j.biopha.2024.117422 39276399
    [Google Scholar]
  54. Wegener J.W. Mitronova G.Y. ElShareif L. Quentin C. Belov V. Pochechueva T. Hasenfuss G. Ackermann L. Lehnart S.E. A dual-targeted drug inhibits cardiac ryanodine receptor Ca2+ leak but activates SERCA2a Ca2+ uptake. Life Sci. Alliance 2023 7 2 7 38012000
    [Google Scholar]
  55. Saljic A. Heijman J. Dobrev D. Emerging Antiarrhythmic Drugs for Atrial Fibrillation. Int. J. Mol. Sci. 2022 23 8 4096 10.3390/ijms23084096 35456912
    [Google Scholar]
  56. Glahn K.P.E. Bendixen D. Girard T. Hopkins P.M. Johannsen S. Rüffert H. Snoeck M.M. Urwyler A. European Malignant Hyperthermia Group Availability of dantrolene for the management of malignant hyperthermia crises: European Malignant Hyperthermia Group guidelines. Br. J. Anaesth. 2020 125 2 133 140 10.1016/j.bja.2020.04.089 32591088
    [Google Scholar]
  57. Kobayashi S. Yano M. Suetomi T. Ono M. Tateishi H. Mochizuki M. Xu X. Uchinoumi H. Okuda S. Yamamoto T. Koseki N. Kyushiki H. Ikemoto N. Matsuzaki M. Dantrolene, a therapeutic agent for malignant hyperthermia, markedly improves the function of failing cardiomyocytes by stabilizing interdomain interactions within the ryanodine receptor. J. Am. Coll. Cardiol. 2009 53 21 1993 2005 10.1016/j.jacc.2009.01.065 19460614
    [Google Scholar]
  58. Avula U.M.R. Hernandez J.J. Yamazaki M. Valdivia C.R. Chu A. Rojas-Pena A. Kaur K. Ramos-Mondragón R. Anumonwo J.M. Nattel S. Valdivia H.H. Kalifa J. Atrial infarction-induced spontaneous focal discharges and atrial fibrillation in sheep. Circ. Arrhythm. Electrophysiol. 2018 11 3 005659 10.1161/CIRCEP.117.005659 29540372
    [Google Scholar]
  59. Pabel S. Mustroph J. Stehle T. Lebek S. Dybkova N. Keyser A. Rupprecht L. Wagner S. Neef S. Maier L.S. Sossalla S. Dantrolene reduces CaMKIIδC-mediated atrial arrhythmias. Europace 2020 22 7 1111 1118 10.1093/europace/euaa079 32413138
    [Google Scholar]
  60. Hartmann N. Pabel S. Herting J. Schatter F. Renner A. Gummert J. Schotola H. Danner B.C. Maier L.S. Frey N. Hasenfuss G. Fischer T.H. Sossalla S. Antiarrhythmic effects of dantrolene in human diseased cardiomyocytes. Heart Rhythm 2017 14 3 412 419 10.1016/j.hrthm.2016.09.014 27650424
    [Google Scholar]
  61. Wehrens X.H.T. Lehnart S.E. Reiken S.R. Deng S.X. Vest J.A. Cervantes D. Coromilas J. Landry D.W. Marks A.R. Protection from cardiac arrhythmia through ryanodine receptor-stabilizing protein calstabin2. Science 2004 304 5668 292 296 10.1126/science.1094301 15073377
    [Google Scholar]
  62. Shan J. Xie W. Betzenhauser M. Reiken S. Chen B.X. Wronska A. Marks A.R. Calcium leak through ryanodine receptors leads to atrial fibrillation in 3 mouse models of catecholaminergic polymorphic ventricular tachycardia. Circ. Res. 2012 111 6 708 717 10.1161/CIRCRESAHA.112.273342 22828895
    [Google Scholar]
  63. Takenaka M. Kodama M. Murayama T. Ishigami-Yuasa M. Mori S. Ishida R. Suzuki J. Kanemaru K. Sugihara M. Iino M. Miura A. Nishio H. Morimoto S. Kagechika H. Sakurai T. Kurebayashi N. Screening for novel type 2 ryanodine receptor inhibitors by endoplasmic reticulum Ca2+ monitoring. Mol. Pharmacol. 2023 104 6 275 286 10.1124/molpharm.123.000720 37678938
    [Google Scholar]
  64. Tchouapi P.C. Anderson K.E. Hein P.N. Intravenous magnesium as an adjunct to standard of care for treatment of atrial fibrillation with rapid ventricular response. Acad. Emerg. Med. 2023 30 7 779 781 10.1111/acem.14734 37021611
    [Google Scholar]
  65. Chiladakis J.A. Stathopoulos C. Davlouros P. Manolis A.S. Intravenous magnesium sulfate versus diltiazem in paroxysmal atrial fibrillation. Int. J. Cardiol. 2001 79 2-3 287 291 10.1016/S0167‑5273(01)00450‑8 11461753
    [Google Scholar]
  66. Kobayashi S. Bannister M.L. Gangopadhyay J.P. Hamada T. Parness J. Ikemoto N. Dantrolene stabilizes domain interactions within the ryanodine receptor. J. Biol. Chem. 2005 280 8 6580 6587 10.1074/jbc.M408375200 15611117
    [Google Scholar]
  67. Zamiri N. Massé S. Ramadeen A. Kusha M. Hu X. Azam M.A. Liu J. Lai P.F.H. Vigmond E.J. Boyle P.M. Behradfar E. Al-Hesayen A. Waxman M.B. Backx P. Dorian P. Nanthakumar K. Dantrolene improves survival after ventricular fibrillation by mitigating impaired calcium handling in animal models. Circulation 2014 129 8 875 885 10.1161/CIRCULATIONAHA.113.005443 24403563
    [Google Scholar]
  68. Roden D.M. Knollmann B.C. Dantrolene. Circulation 2014 129 8 834 836 10.1161/CIRCULATIONAHA.113.007657 24403562
    [Google Scholar]
  69. Zhang Y. Qi Y. Li J.J. He W.J. Gao X.H. Zhang Y. Sun X. Tong J. Zhang J. Deng X.L. Du X.J. Xie W. Stretch-induced sarcoplasmic reticulum calcium leak is causatively associated with atrial fibrillation in pressure-overloaded hearts. Cardiovasc. Res. 2021 117 4 1091 1102 10.1093/cvr/cvaa163 32531044
    [Google Scholar]
  70. Guo D. Liu Q. Liu T. Elliott G. Gingras M. Kowey P.R. Yan G.X. Electrophysiological properties of HBI-3000: A new antiarrhythmic agent with multiple-channel blocking properties in human ventricular myocytes. J. Cardiovasc. Pharmacol. 2011 57 1 79 85 10.1097/FJC.0b013e3181ffe8b3 20980921
    [Google Scholar]
  71. Zhang L. Gu L. Qiao H. 26‐week repeated‐dose toxicity study of a novel antiarrhythmic drug sulcardine sulfate in sprague–dawley rats. J. Appl. Toxicol. 2025 45 5 866 883 10.1002/jat.4750 39821320
    [Google Scholar]
  72. Chen W. Gan L. Wang Y. Characteristics of hERG and hNav1.5 channel blockade by sulcardine sulfate, a novel anti-arrhythmic compound. Eur. J. Pharmacol. 2019 844 130 138 10.1016/j.ejphar.2018.12.009 30529471
    [Google Scholar]
  73. Steinberg C. Roston T.M. van der Werf C. Sanatani S. Chen S.R.W. Wilde A.A.M. Krahn A.D. RYR2-ryanodinopathies: From calcium overload to calcium deficiency. Europace 2023 25 6 euad156 10.1093/europace/euad156 37387319
    [Google Scholar]
  74. Priori S.G. Mazzanti A. Santiago D.J. Kukavica D. Trancuccio A. Kovacic J.C. Precision medicine in catecholaminergic polymorphic ventricular tachycardia. J. Am. Coll. Cardiol. 2021 77 20 2592 2612 10.1016/j.jacc.2020.12.073 34016269
    [Google Scholar]
  75. Priori S.G. Napolitano C. Memmi M. Colombi B. Drago F. Gasparini M. DeSimone L. Coltorti F. Bloise R. Keegan R. Cruz Filho F.E.S. Vignati G. Benatar A. DeLogu A. Clinical and molecular characterization of patients with catecholaminergic polymorphic ventricular tachycardia. Circulation 2002 106 1 69 74 10.1161/01.CIR.0000020013.73106.D8 12093772
    [Google Scholar]
  76. Siu A. Tandanu E. Ma B. Osas E.E. Liu H. Liu T. Chou O.H.I. Huang H. Tse G. Precision medicine in catecholaminergic polymorphic ventricular tachycardia: Recent advances toward personalized care. Ann. Pediatr. Cardiol. 2023 16 6 431 446 10.4103/apc.apc_96_23 38817258
    [Google Scholar]
  77. Aggarwal A. Stolear A. Alam M.M. Vardhan S. Dulgher M. Jang S.J. Zarich S.W. Catecholaminergic polymorphic ventricular tachycardia: clinical characteristics, diagnostic evaluation and therapeutic strategies. J. Clin. Med. 2024 13 6 1781 10.3390/jcm13061781 38542006
    [Google Scholar]
  78. Huynh K. Ruxolitinib is a CaMKII inhibitor that can be repurposed to prevent arrhythmias. Nat. Rev. Cardiol. 2023 20 9 580 10.1038/s41569‑023‑00910‑1 37400626
    [Google Scholar]
  79. Kukendrarajah K. Farmaki A.E. Lambiase P.D. Schilling R. Finan C. Floriaan Schmidt A. Providencia R. Advancing drug development for atrial fibrillation by prioritising findings from human genetic association studies. EBioMedicine 2024 105 105194 10.1016/j.ebiom.2024.105194 38941956
    [Google Scholar]
  80. Karakasis P. Theofilis P. Vlachakis P.K. Korantzopoulos P. Patoulias D. Antoniadis A.P. Fragakis N. Atrial fibrosis in atrial fibrillation: Mechanistic insights, diagnostic challenges, and emerging therapeutic targets. Int. J. Mol. Sci. 2024 26 1 209 10.3390/ijms26010209 39796066
    [Google Scholar]
  81. Cho Y. Shin S.H. Park M.A. Suh Y.J. Park S. Jang J.H. Kim D.Y. Kim S.H. The effect of SGLT2 inhibitor in patients with type 2 diabetes and atrial fibrillation. PLoS One 2025 20 2 0314454 10.1371/journal.pone.0314454 39919084
    [Google Scholar]
  82. Schmidt M. Christiansen C.F. Mehnert F. Rothman K.J. Sørensen H.T. Non-steroidal anti-inflammatory drug use and risk of atrial fibrillation or flutter: Population based case-control study. BMJ 2011 343 jul04 1 d3450 10.1136/bmj.d3450 21727167
    [Google Scholar]
  83. Chokesuwattanaskul R. Chiengthong K. Thongprayoon C. Lertjitbanjong P. Bathini T. Ungprasert P. Cato L.D. Mao M.A. Cheungpasitporn W. Nonsteroidal anti-inflammatory drugs and incidence of atrial fibrillation: A meta-analysis. QJM 2020 113 2 79 85 10.1093/qjmed/hcz307 32031227
    [Google Scholar]
  84. Chang C.J. Cheng C.C. Yang T.F. Chen Y.C. Lin Y.K. Chen S.A. Chen Y.J. Selective and non-selective non-steroidal anti-inflammatory drugs differentially regulate pulmonary vein and atrial arrhythmogenesis. Int. J. Cardiol. 2015 184 559 567 10.1016/j.ijcard.2015.03.066 25767017
    [Google Scholar]
  85. Bakhriansyah M. Souverein P.C. Klungel O.H. de Boer A. Blom M.T. Tan H.L. Non-steroidal anti-inflammatory drugs and the risk of out-of-hospital cardiac arrest: A case–control study. Europace 2019 21 1 99 105 10.1093/europace/euy180 30107407
    [Google Scholar]
  86. Zhao H. Chen Y. Mao M. Yang J. Chang J. A meta-analysis of colchicine in prevention of atrial fibrillation following cardiothoracic surgery or cardiac intervention. J. Cardiothorac. Surg. 2022 17 1 224 10.1186/s13019‑022‑01958‑9 36050741
    [Google Scholar]
  87. Tian X. Zhang N. Korantzopoulos P. Bazoukis G. Letsas K.P. Tse G. Liu T. Efficacy and safety of colchicine for atrial fibrillation prevention: An updated meta-analysis of randomized controlled trials. Int. J. Cardiol. 2024 406 132068 10.1016/j.ijcard.2024.132068 38648916
    [Google Scholar]
  88. Al-Sadawi M. Aslam F. Henriques M.D. Alsaiqali M. Gier C. Kim P. Almasry I. Singh A. Fan R. Rashba E. Effect of low dose colchicine on long term recurrence after atrial fibrillation ablation. Int. J. Cardiol. 2025 423 132972 10.1016/j.ijcard.2025.132972 39793763
    [Google Scholar]
  89. Casula M. Andreis A. Avondo S. Vaira M.P. Imazio M. Colchicine for cardiovascular medicine: A systematic review and meta-analysis. Future Cardiol. 2022 18 8 647 659 10.2217/fca‑2020‑0206 35787150
    [Google Scholar]
  90. Chen K.Q. Wang S.Z. Lei H.B. Liu X. Dauricine: Review of pharmacological activity. Drug Des. Devel. Ther. 2024 18 4371 4385 10.2147/DDDT.S471352 39355570
    [Google Scholar]
  91. Liu Q.N. Zhang L. Gong P.L. Yang X.Y. Zeng F.D. Inhibitory effects of dauricine on early afterdepolarizations and L-type calcium current. Can. J. Physiol. Pharmacol. 2009 87 11 954 962 10.1139/Y09‑090 19935903
    [Google Scholar]
  92. Zhao J. Lian Y. Lu C. Jing L. Yuan H. Peng S. Inhibitory effects of a bisbenzylisoquinline alkaloid dauricine on HERG potassium channels. J. Ethnopharmacol. 2012 141 2 685 691 10.1016/j.jep.2011.08.054 21920426
    [Google Scholar]
  93. Stocco F.G. Evaristo E. Silva A.C. de Antonio V.Z. Pfeiffer J. Rangachari N. Belardinelli L. Verrier R.L. Comparative pharmacokinetic and electrocardiographic effects of intratracheal and intravenous administration of flecainide in anesthetized pigs. J. Cardiovasc. Pharmacol. 2018 72 3 129 135 10.1097/FJC.0000000000000605 29923887
    [Google Scholar]
  94. Verrier R.L. Bortolotto A.L. Silva B.A. Marum A.A. Stocco F.G. Evaristo E. de Antonio V.Z. Silva A.C. Belardinelli L. Accelerated conversion of atrial fibrillation to normal sinus rhythm by pulmonary delivery of flecainide acetate in a porcine model. Heart Rhythm 2018 15 12 1882 1888 10.1016/j.hrthm.2018.06.036 29958990
    [Google Scholar]
  95. Crijns H.J.G.M. Elvan A. Al-Windy N. Tuininga Y.S. Badings E. Aksoy I. Van Gelder I.C. Madhavapeddi P. Camm A.J. Kowey P.R. Ruskin J.N. Belardinelli L. INSTANT Investigators* Open-label, multicenter study of flecainide acetate oral inhalation solution for acute conversion of recent-onset, symptomatic atrial fibrillation to sinus rhythm. Circ. Arrhythm. Electrophysiol. 2022 15 3 010204 10.1161/CIRCEP.121.010204 35196871
    [Google Scholar]
  96. Rokita A.G. Anderson M.E. New therapeutic targets in cardiology: Arrhythmias and Ca2+/calmodulin-dependent kinase II (CaMKII). Circulation 2012 126 17 2125 2139 10.1161/CIRCULATIONAHA.112.124990 23091085
    [Google Scholar]
  97. Kreusser M.M. Lehmann L.H. Keranov S. Hoting M.O. Oehl U. Kohlhaas M. Reil J.C. Neumann K. Schneider M.D. Hill J.A. Dobrev D. Maack C. Maier L.S. Gröne H.J. Katus H.A. Olson E.N. Backs J. Cardiac CaM Kinase II genes δ and γ contribute to adverse remodeling but redundantly inhibit calcineurin-induced myocardial hypertrophy. Circulation 2014 130 15 1262 1273 10.1161/CIRCULATIONAHA.114.006185 25124496
    [Google Scholar]
  98. Mustroph J. Drzymalski M. Baier M. Pabel S. Biedermann A. Memmel B. Durczok M. Neef S. Sag C.M. Floerchinger B. Rupprecht L. Schmid C. Zausig Y. Bégis G. Briand V. Ozoux M.L. Tamarelle D. Ballet V. Janiak P. Beauverger P. Maier L.S. Wagner S. The oral Ca/calmodulin‐dependent kinase II inhibitor RA608 improves contractile function and prevents arrhythmias in heart failure. ESC Heart Fail. 2020 7 5 2871 2883 10.1002/ehf2.12895 32691522
    [Google Scholar]
  99. Pellicena P. Schulman H. CaMKII inhibitors: From research tools to therapeutic agents. Front. Pharmacol. 2014 5 21 10.3389/fphar.2014.00021 24600394
    [Google Scholar]
  100. Neef S. Mann C. Zwenger A. Dybkova N. Maier L.S. Reduction of SR Ca2+ leak and arrhythmogenic cellular correlates by SMP-114, a novel CaMKII inhibitor with oral bioavailability. Basic Res. Cardiol. 2017 112 4 45 10.1007/s00395‑017‑0637‑y 28612156
    [Google Scholar]
  101. Westra J. Brouwer E. van Roosmalen I.A.M. Doornbos-van der Meer B. van Leeuwen M.A. Posthumus M.D. Kallenberg C.G.M. Expression and regulation of HIF-1alpha in macrophages under inflammatory conditions; Significant reduction of VEGF by CaMKII inhibitor. BMC Musculoskelet. Disord. 2010 11 1 61 10.1186/1471‑2474‑11‑61 20353560
    [Google Scholar]
  102. Zhang J. Liang R. Wang K. Zhang W. Zhang M. Jin L. Xie P. Zheng W. Shang H. Hu Q. Li J. Chen G. Wu F. Lan F. Wang L. Wang S.Q. Li Y. Zhang Y. Liu J. Lv F. Hu X. Xiao R.P. Lei X. Zhang Y. Novel CaMKII-δ inhibitor hesperadin exerts dual functions to ameliorate cardiac ischemia/reperfusion injury and inhibit tumor growth. Circulation 2022 145 15 1154 1168 10.1161/CIRCULATIONAHA.121.055920 35317609
    [Google Scholar]
  103. Elming H. Brendorp B. Pehrson S. Pedersen O.D. Køber L. Torp-Petersen C. A benefit–risk assessment of class III antiarrhythmic agents. Expert Opin. Drug Saf. 2004 3 6 559 577 10.1517/14740338.3.6.559 15500415
    [Google Scholar]
  104. Tisdale J.E. Chung M.K. Campbell K.B. Hammadah M. Joglar J.A. Leclerc J. Rajagopalan B. American Heart Association Clinical Pharmacology Committee of the Council on Clinical Cardiology and Council on Cardiovascular and Stroke Nursing Drug-induced arrhythmias: A scientific statement from the american heart association. Circulation 2020 142 15 e214 e233 10.1161/CIR.0000000000000905 32929996
    [Google Scholar]
  105. Busch A.E. Herzer T. Takumi T. Krippeit-Drews P. Waldegger S. Lang F. Blockade of human IsK channels expressed in Xenopus oocytes by the novel class III antiarrhythmic NE-10064. Eur. J. Pharmacol. 1994 264 1 33 37 10.1016/0014‑2999(94)90632‑7 7828640
    [Google Scholar]
  106. Ravens U. Odening K.E. Atrial fibrillation: Therapeutic potential of atrial K + channel blockers. Pharmacol. Ther. 2017 176 13 21 10.1016/j.pharmthera.2016.10.003 27742566
    [Google Scholar]
  107. Imamura T. Clinical implications of ivabradine in the contemporary era. Medicina 2024 60 2 303 10.3390/medicina60020303 38399590
    [Google Scholar]
  108. Yang J. Lv T. Zhou J. Lin H. Zhao B. Lou H. Liu H. Zhang T. Guo H. Chi J. The effect of ivabradine therapy on dilated cardiomyopathy patients with congestive heart failure: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2023 10 1149351 10.3389/fcvm.2023.1149351 37915740
    [Google Scholar]
  109. Maharaj A. Maturasingh M.B. Khangembam A. Bidhesi S.N. Rai S. Garness K.A. Khadoo N. Tutwala N. Khan N.A. Ramsarran J.J. Bhandari A. Rajbhandari P. Htet K.L. Husain M.M. Bhagwandeen S.N. Rattan K. Effect of ivabradine on heart failure: A 2024 meta-analysis. Cureus 2025 17 1 77346 10.7759/cureus.77346 39944426
    [Google Scholar]
  110. Shi Q. Wang J. Malik H. Li X. Streeter J. Sharafuddin J. Weatherford E. Stein D. Itan Y. Chen B. Hall D. Song L.S. Abel E.D. IRS2 signaling protects against stress-induced arrhythmia by maintaining Ca2+ homeostasis. Circulation 2024 150 24 1966 1983 10.1161/CIRCULATIONAHA.123.065048 39253856
    [Google Scholar]
  111. Guerra F. Shkoza M. Scappini L. Flori M. Capucci A. Role of electrical storm as a mortality and morbidity risk factor and its clinical predictors: A meta-analysis. Europace 2014 16 3 347 353 10.1093/europace/eut304 24096960
    [Google Scholar]
  112. Metaxa S. Koulouris S. Manolis A.S. Electrical storm: Clinical management. Cardiac Arrhythmias Springer-Verlag London 2014 293 304
    [Google Scholar]
  113. Manolis A.S. Cardiac resynchronization therapy in congestive heart failure: Ready for prime time? Heart Rhythm 2004 1 3 355 363 10.1016/j.hrthm.2004.03.065 15851184
    [Google Scholar]
  114. Young J.B. Abraham W.T. Smith A.L. Leon A.R. Lieberman R. Wilkoff B. Canby R.C. Schroeder J.S. Liem L.B. Hall S. Wheelan K. Multicenter InSync ICD Randomized Clinical Evaluation (MIRACLE ICD) Trial Investigators Combined cardiac resynchronization and implantable cardioversion defibrillation in advanced chronic heart failure: The MIRACLE ICD Trial. JAMA 2003 289 20 2685 2694 10.1001/jama.289.20.2685 12771115
    [Google Scholar]
  115. Gonella A. Casile C. Menardi E. Feola M. Electrical storm induced by cardiac resynchronization: Efficacy of the multipoint pacing stimulation. Diseases 2024 12 5 105 10.3390/diseases12050105 38785760
    [Google Scholar]
  116. Valderrábano M. The future of antiarrhythmic drug therapy: Will drugs be entirely replaced by procedures? Methodist DeBakey Cardiovasc. J. 2022 18 5 58 63 10.14797/mdcvj.1185 36561081
    [Google Scholar]
  117. Kawajiri K. Ihara K. Sasano T. Gene therapy to terminate tachyarrhythmias. Expert Rev. Cardiovasc. Ther. 2022 20 6 431 442 10.1080/14779072.2022.2085686 35655364
    [Google Scholar]
  118. Savelieva I. Kirchhof P. Danchin N. de Graeff P.A. Camm A.J. Regulatory pathways for development of antiarrhythmic drugs for management of atrial fibrillation/flutter. Europace 2011 13 8 1063 1076 10.1093/europace/eur181 21810865
    [Google Scholar]
  119. De Silva K. Haqqani H. Mahajan R. Qian P. Chik W. Voskoboinik A. Kistler P.M. Lee G. Jackson N. Kumar S. Catheter ablation vs antiarrhythmic drug therapy for treatment of premature ventricular complexes. JACC Clin. Electrophysiol. 2023 9 6 873 885 10.1016/j.jacep.2023.01.035 37380322
    [Google Scholar]
  120. Zafeiropoulos S. Doundoulakis I. Bekiaridou A. Farmakis I.T. Papadopoulos G.E. Coleman K.M. Giannakoulas G. Zanos S. Tsiachris D. Duru F. Saguner A.M. Mountantonakis S.E. Stavrakis S. Rhythm vs rate control strategy for atrial fibrillation. JACC Clin. Electrophysiol. 2024 10 7 1395 1405 10.1016/j.jacep.2024.03.006 38727662
    [Google Scholar]
  121. Manolis A.S. Rhythm or rate control management of atrial fibrillation: An overrated dilemma. Hellenic J. Cardiol. 2015 56 6 495 500 26685293
    [Google Scholar]
  122. Vaughan Williams E.M. Classification of antidysrhythmic drugs. Pharmacol. Ther. [B] 1975 1 1 115 138 10.1016/0306‑039X(75)90019‑7 772700
    [Google Scholar]
  123. Dukes I.D. Vaughan Williams E.M. Effects of selective alpha 1‐, alpha 2‐, beta 1‐and beta 2‐adrenoceptor stimulation on potentials and contractions in the rabbit heart. J. Physiol. 1984 355 1 523 546 10.1113/jphysiol.1984.sp015436 6149314
    [Google Scholar]
  124. Task Force of the Working Group on Arrhythmias of the European Society of Cardiology The Sicilian gambit. A new approach to the classification of antiarrhythmic drugs based on their actions on arrhythmogenic mechanisms. Circulation 1991 84 4 1831 1851 10.1161/01.CIR.84.4.1831 1717173
    [Google Scholar]
  125. Lei M. Wu L. Terrar D.A. Huang C.L.H. Modernized classification of cardiac antiarrhythmic drugs. Circulation 2018 138 17 1879 1896 10.1161/CIRCULATIONAHA.118.035455 30354657
    [Google Scholar]
  126. Wiedmann F. Schmidt C. Novel drug therapies for atrial fibrillation. Nat. Rev. Cardiol. 2024 21 5 275 276 10.1038/s41569‑024‑01004‑2 38418746
    [Google Scholar]
  127. Teles D. Fine B.M. Using induced pluripotent stem cells for drug discovery in arrhythmias. Expert Opin. Drug Discov. 2024 19 7 827 840 10.1080/17460441.2024.2360420 38825838
    [Google Scholar]
  128. Kowey P.R. Naccarelli G.V. Antiarrhythmic drug therapy: Where do we go from here? Circulation 2024 149 11 801 803 10.1161/CIRCULATIONAHA.123.066989 38466788
    [Google Scholar]
  129. Manolis A.S. Tordjman T. Mack K.D. Estes N.A. III Atypical pulmonary and neurologic complications of amiodarone in the same patient. Report of a case and review of the literature. Arch. Intern. Med. 1987 147 10 1805 1809 10.1001/archinte.1987.00370100119019 3310943
    [Google Scholar]
  130. Ling-Vannerus T. Skrubbeltrang C. Schjørring O.L. Møller M.H. Rasmussen B.S. Acute amiodarone‐induced pulmonary toxicity in adult ICU patients with new‐onset atrial fibrillation—A systematic review. Acta Anaesthesiol. Scand. 2025 69 1 14535 10.1111/aas.14535 39417403
    [Google Scholar]
  131. Mondéjar-Parreño G. Sánchez-Pérez P. Cruz F.M. Jalife J. Promising tools for future drug discovery and development in antiarrhythmic therapy. Pharmacol. Rev. 2025 77 1 100013 10.1124/pharmrev.124.001297 39952687
    [Google Scholar]
  132. Nánási P.P. Pueyo E. Virág L. Editorial: Perspectives of antiarrhythmic drug therapy: Disappointing past, current efforts, and faint hopes. Front. Pharmacol. 2020 11 1116 10.3389/fphar.2020.01116 32792952
    [Google Scholar]
  133. Dinov B. Darma A. Nedios S. Hindricks G. Management of patients with electrical storm: An educational review. Eur. Heart J. Acute Cardiovasc. Care 2023 12 1 69 73 10.1093/ehjacc/zuac160 36574428
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611363665250812165524
Loading
/content/journals/cvp/10.2174/0115701611363665250812165524
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test