Skip to content
2000
Volume 23, Issue 4
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Abdominal Aortic Aneurysm (AAA) is a life-threatening vascular disease. Despite advancements in understanding the pathogenesis of AAA, significant knowledge gaps persist. Recent evidence increasingly implicates mitochondrial dysfunction as a contributing factor that exacerbates AAA, inducing further expansion of aneurysm, rupture, and subsequent death. This review summarizes the latest research findings and theories associated with AAA pathogenesis, with a particular focus on mitochondrial dysfunction in AAA, including mitochondrial quality control, mitochondrial membrane potential, mitochondrial morphology, oxidation and antioxidation, normal functioning of the respiratory chain, mitochondrial mutations, and the regulation of other mitochondrial signaling pathways. Moreover, we highlight potential medical interventions based on regulating mitochondrial function for AAA treatment.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611312293241220101556
2025-02-10
2025-10-08
Loading full text...

Full text loading...

References

  1. SchanzerA. OderichG.S. Management of abdominal aortic aneurysms.N. Engl. J. Med.2021385181690169810.1056/NEJMcp2108504 34706173
    [Google Scholar]
  2. ChaikofE.L. BrewsterD.C. DalmanR.L. The care of patients with an abdominal aortic aneurysm: The society for vascular surgery practice guidelines.J. Vasc. Surg.2009504S2S4910.1016/j.jvs.2009.07.002 19786250
    [Google Scholar]
  3. KentK.C. ZwolakR.M. EgorovaN.N. Analysis of risk factors for abdominal aortic aneurysm in a cohort of more than 3 million individuals.J. Vasc. Surg.201052353954810.1016/j.jvs.2010.05.090 20630687
    [Google Scholar]
  4. SummersK.L. KerutE.K. SheahanC.M. SheahanM.G.III Evaluating the prevalence of abdominal aortic aneurysms in the United States through a national screening database.J. Vasc. Surg.2021731616810.1016/j.jvs.2020.03.046 32330595
    [Google Scholar]
  5. SakalihasanN. LimetR. DefaweO.D. Abdominal aortic aneurysm.Lancet200536594701577158910.1016/S0140‑6736(05)66459‑8 15866312
    [Google Scholar]
  6. GolledgeJ. MoxonJ.V. SinghT.P. BownM.J. ManiK. WanhainenA. Lack of an effective drug therapy for abdominal aortic aneurysm.J. Intern. Med.2020288162210.1111/joim.12958 31278799
    [Google Scholar]
  7. MollF.L. PowellJ.T. FraedrichG. Management of abdominal aortic aneurysms clinical practice guidelines of the european society for vascular surgery.Eur. J. Vasc. Endovasc. Surg.201141S1S5810.1016/j.ejvs.2010.09.011 21215940
    [Google Scholar]
  8. FilardoG. PowellJ.T. MartinezM.A. BallardD.J. Surgery for small asymptomatic abdominal aortic aneurysms.Cochrane Database Syst. Rev.201520152CD00183510.1002/14651858.CD001835.pub4
    [Google Scholar]
  9. UlugP. PowellJ.T. MartinezM.A.M. BallardD.J. FilardoG. Surgery for small asymptomatic abdominal aortic aneurysms.Cochrane Libr.202020207CD00183510.1002/14651858.CD001835.pub5 32609382
    [Google Scholar]
  10. WangY. LiuZ. RenJ. XiangM.X. Pharmacological therapy of abdominal aortic aneurysm: An update.Curr. Vasc. Pharmacol.201816211412410.2174/1570161115666170413145705 28412911
    [Google Scholar]
  11. WangX. LiS. LiuL. Role of the aryl hydrocarbon receptor signaling pathway in promoting mitochondrial biogenesis against oxidative damage in human melanocytes.J. Dermatol. Sci.2019961334110.1016/j.jdermsci.2019.09.001 31543430
    [Google Scholar]
  12. XueM. LiG. LiD. Up-regulated MCPIP1 in abdominal aortic aneurysm is associated with vascular smooth muscle cell apoptosis and MMPs production.Biosci. Rep.20193911BSR2019125210.1042/BSR20191252 31651935
    [Google Scholar]
  13. ZhuH. QuX. ZhangC. YuY. Interleukin-10 promotes proliferation of vascular smooth muscle cells by inhibiting inflammation in rabbit abdominal aortic aneurysm.Int. J. Clin. Exp. Pathol.201912412601271 31933940
    [Google Scholar]
  14. SunY. ZhongL. HeX. LncRNA H19 promotes vascular inflammation and abdominal aortic aneurysm formation by functioning as a competing endogenous RNA.J. Mol. Cell. Cardiol.2019131668110.1016/j.yjmcc.2019.04.004 30991034
    [Google Scholar]
  15. DingY. LiX. ZhouM. Factor Xa inhibitor rivaroxaban suppresses experimental abdominal aortic aneurysm progression via attenuating aortic inflammation.Vascul. Pharmacol.2021136106818 33227452
    [Google Scholar]
  16. LiuX-Y. WenT. WuZ-F. Understanding the potential function of perivascular adipose tissue in abdominal aortic aneurysms: Current research status and future expectation.Curr. Med. Chem.2023304045544568 36476437
    [Google Scholar]
  17. OkrzejaJ. KarwowskaA. BłachnioZ.A. The role of obesity, inflammation and sphingolipids in the development of an abdominal aortic aneurysm.Nutrients20221412243810.3390/nu14122438 35745168
    [Google Scholar]
  18. HemsinliD. Dexmedetomidine attenuates pneumocyte apoptosis and inflammation induced by aortic ischemia-reperfusion injury.Clin. Exp. Hypert.2022447595600
    [Google Scholar]
  19. MorganS. LeeL.H. HaluA. JessicaS. Identifying novel mechanisms of abdominal aortic aneurysm via unbiased proteomics and systems biology.Front. Cardiovasc. Med.20229889994
    [Google Scholar]
  20. NakayamaK. FuruyamaT. MatsubaraY. Gut dysbiosis and bacterial translocation in the aneurysmal wall and blood in patients with abdominal aortic aneurysm.PLoS One20221712e027899510.1371/journal.pone.0278995 36516156
    [Google Scholar]
  21. CaiD. SunC. MurashitaT. QueX. ChenS.Y. ADAR1 Non-editing function in macrophage activation and abdominal aortic aneurysm.Circ. Res.20231324e78e9310.1161/CIRCRESAHA.122.321722 36688311
    [Google Scholar]
  22. MetzL.M. FeigeT. BiasiD.L. Platelet pannexin-1 channels modulate neutrophil activation and migration but not the progression of abdominal aortic aneurysm.Front. Mol. Biosci.202310111110810.3389/fmolb.2023.1111108 36950521
    [Google Scholar]
  23. ZhaoY. HuangS. LiuJ. Mitophagy contributes to the pathogenesis of inflammatory diseases.Inflammation20184151590160010.1007/s10753‑018‑0835‑2 29959626
    [Google Scholar]
  24. NaikE. DixitV.M. Mitochondrial reactive oxygen species drive proinflammatory cytokine production.J. Exp. Med.2011208341742010.1084/jem.20110367 21357740
    [Google Scholar]
  25. MittalM. SiddiquiM.R. TranK. ReddyS.P. MalikA.B. Reactive oxygen species in inflammation and tissue injury.Antioxid. Redox Signal.20142071126116710.1089/ars.2012.5149 23991888
    [Google Scholar]
  26. MaS. ChenJ. FengJ. Melatonin ameliorates the progression of atherosclerosis via mitophagy activation and NLRP3 inflammasome inhibition.Oxid. Med. Cell. Longev.201820181928645810.1155/2018/9286458 30254716
    [Google Scholar]
  27. ZhouR. YazdiA.S. MenuP. TschoppJ. A role for mitochondria in NLRP3 inflammasome activation.Nature2011469732922122510.1038/nature09663 21124315
    [Google Scholar]
  28. LuH. DuW. RenL. Vascular smooth muscle cells in aortic aneurysm: From genetics to mechanisms.J. Am. Heart Assoc.20211024e02360110.1161/JAHA.121.023601
    [Google Scholar]
  29. ShiX. MaW. PanY. MiR-126-5p promotes contractile switching of aortic smooth muscle cells by targeting VEPH1 and alleviates ang II-induced abdominal aortic aneurysm in mice.Laborat Invest2020100121564157410.1038/s41374‑020‑0454‑z
    [Google Scholar]
  30. ZhangZ. ZouG. ChenX. Knockdown of lncRNA PVT1 inhibits vascular smooth muscle cell apoptosis and extracellular matrix disruption in a murine abdominal aortic aneurysm model.Mol. Cells2019423218227 30726659
    [Google Scholar]
  31. BogunovicN. Impaired smooth muscle cell contractility as a novel concept of abdominal aortic aneurysm pathophysiology.Sci. Rep.20199683710.1038/s41598‑019‑43322‑3
    [Google Scholar]
  32. WangW. ShenM. Apelin protects against abdominal aortic aneurysm and the therapeutic role of neutral endopeptidase resistant apelin analogs.Proceed Nat. Acad. Sci.2019116261300613015
    [Google Scholar]
  33. HeX. WangS. LiM. Long noncoding RNA GAS5 induces abdominal aortic aneurysm formation by promoting smooth muscle apoptosis.Theranostics20199195558557610.7150/thno.34463 31534503
    [Google Scholar]
  34. ChaiH. TaoZ. QiY. IKK Epsilon deficiency attenuates angiotensin II-induced abdominal aortic aneurysm formation in mice by inhibiting inflammation, oxidative stress, and apoptosis.Oxid. Med. Cell. Longev.2020202011610.1155/2020/3602824 32064021
    [Google Scholar]
  35. GuoY. TangZ. YanB. PCSK9 (proprotein convertase subtilisin/kexin type 9) triggers vascular smooth muscle cell senescence and apoptosis: Implication of its direct role in degenerative vascular disease.Arterioscl. Thrombos. Vascul. Biol.20224216786
    [Google Scholar]
  36. WangM. PanW. XuY. ZhangJ. WanJ. JiangH. Microglia-mediated neuroinflammation: A potential target for the treatment of cardiovascular diseases.J. Inflamm. Res.2022153083309410.2147/JIR.S350109 35642214
    [Google Scholar]
  37. LuoZ. XuW. MaS. Moderate autophagy inhibits vascular smooth muscle cell senescence to stabilize progressed atherosclerotic plaque via the mTORC1/ULK1/ATG13 signal pathway.Oxid. Med. Cell. Longev.201720171301819010.1155/2017/3018190 28713484
    [Google Scholar]
  38. SalabeiJ.K. HillB.G. Implications of autophagy for vascular smooth muscle cell function and plasticity.Free Radic. Biol. Med.20136569370310.1016/j.freeradbiomed.2013.08.003 23938401
    [Google Scholar]
  39. ParedesF. WilliamsH.C. QuintanaR.A. MartinS.A. Mitochondrial protein Poldip2 (Polymerase Delta Interacting Protein 2) controls vascular smooth muscle differentiated phenotype by O-linked GlcNAc (N-Acetylglucosamine) Transferase-dependent inhibition of a ubiquitin proteasome system.Circ. Res.20201261415610.1161/CIRCRESAHA.119.315932 31656131
    [Google Scholar]
  40. ShihH.T. Aldehyde dehydrogenase 2 protects against abdominal aortic aneurysm formation by reducing reactive oxygen species, vascular inflammation, and apoptosis of vascular smooth muscle cells.FASEB J.202034794989511
    [Google Scholar]
  41. LinH. YouB. LinX. Silencing of long non-coding RNA Sox2ot inhibits oxidative stress and inflammation of vascular smooth muscle cells in abdominal aortic aneurysm via microRNA-145-mediated Egr1 inhibition.Aging202012131268410.18632/aging.103077
    [Google Scholar]
  42. JeongS.J. ChoM.J. KoN.Y. Deficiency of peroxiredoxin 2 exacerbates angiotensin II-induced abdominal aortic aneurysm.Exp. Mol. Med.20205291587160110.1038/s12276‑020‑00498‑3
    [Google Scholar]
  43. InfantesS.D. NusM. MadroñalN.M. FitéJ. PérezB. Oxidative stress and inflammatory markers in abdominal aortic aneurysm.Antioxidants2021104602
    [Google Scholar]
  44. LiJ.M. ShahA.M. Mechanism of endothelial cell NADPH oxidase activation by angiotensin II. Role of the p47phox subunit.J. Biol. Chem.200327814120941210010.1074/jbc.M209793200 12560337
    [Google Scholar]
  45. HolmesD.R. WesterW. ThompsonR.W. ReillyJ.M. Prostaglandin E2 synthesis and cyclooxygenase expression in abdominal aortic aneurysms.J. Vasc. Surg.199725581081510.1016/S0741‑5214(97)70210‑6 9152308
    [Google Scholar]
  46. AyalaA. MuñozM.F. ArgüellesS. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal.Oxid. Med. Cell. Longev.2014201413110.1155/2014/360438 24999379
    [Google Scholar]
  47. HadiT. BoytardL. SilvestroM. Macrophage-derived netrin-1 promotes abdominal aortic aneurysm formation by activating MMP3 in vascular smooth muscle cells.Nat. Commun.201891502210.1038/s41467‑018‑07495‑1
    [Google Scholar]
  48. RamellaM. BertozziG. FusaroL. Effect of cyclic stretch on vascular endothelial cells and abdominal aortic aneurysm (AAA): Role in the inflammatory response.Int. J. Mol. Sci.201920228710.3390/ijms20020287 30642067
    [Google Scholar]
  49. OrtegaR. SGLT-2 (Sodium-Glucose Cotransporter 2) inhibition reduces ang II (Angiotensin II)-induced dissecting abdominal aortic aneurysm in ApoE (Apolipoprotein E) knockout mice.Arterioscler. Thromb. Vasc. Biol.201939816141628
    [Google Scholar]
  50. AnnaZ. Female mice exhibit abdominal aortic aneurysm protection in an established rupture model.J. Surg. Res.2019247387396
    [Google Scholar]
  51. LuoW. WangY. ZhangL. Critical role of cytosolic DNA and its sensing adaptor STING in aortic degeneration, dissection, and rupture.Circulation201914114266
    [Google Scholar]
  52. WortmannM. XiaoX. WabnitzG. AIM2 levels and DNA-triggered inflammasome response are increased in peripheral leukocytes of patients with abdominal aortic aneurysm.Inf. Res.20196833734510.1007/s00011‑019‑01212‑4
    [Google Scholar]
  53. NieH. QiuJ. WenS. ZhouW. Combining bioinformatics techniques to study the key immune-related genes in abdominal aortic aneurysm.Front. Genet.20201157921510.3389/fgene.2020.579215 33362847
    [Google Scholar]
  54. KimE.N. YuJ. LimJ.S. CRP immunodeposition and proteomic analysis in abdominal aortic aneurysm.PLoS One2021168e0245361
    [Google Scholar]
  55. ShanmugamK. Rare triple presentation of tuberculous mycotic aortic aneurysm.Int J Cardiovascul Thor Surg202172303310.11648/j.ijcts.20210702.14
    [Google Scholar]
  56. ZhouH. WangL. LiuS. WangW. The role of phosphoinositide 3-kinases in immune-inflammatory responses: Potential therapeutic targets for abdominal aortic aneurysm.Cell Cycle202221222339236410.1080/15384101.2022.2094577 35792922
    [Google Scholar]
  57. SuvoravaT. BrackF. KaczurJ. Deficiency in hyaluronan synthase 3 attenuates ruptures in A murine model of abdominal aortic aneurysms by reduced aortic monocyte infiltration.bioRxiv20222022-12
    [Google Scholar]
  58. GongW. TianY. LiL. T cells in abdominal aortic aneurysm: Immunomodulation and clinical application.Front. Immunol.202314124013210.3389/fimmu.2023.1240132 37662948
    [Google Scholar]
  59. RodríguezC. IgG anti-high density lipoprotein antibodies are elevated in abdominal aortic aneurysm and associated with lipid profile and clinical features.J. Clin. Med.20199167
    [Google Scholar]
  60. SanzL.L. BernalS. CastillaJ.L. The presence of activating IgG Fc receptors in macrophages aggravates the development of experimental abdominal aortic aneurysm.Clin Res Atheroscl202335418519410.1016/j.artere.2023.07.003
    [Google Scholar]
  61. SkrebūnasA. LengvenisG. BuilytėI.U. Is abdominal aortic aneurysm behavior after endovascular repair associated with aneurysm wall density on computed tomography angiography?Medicina201955840610.3390/medicina55080406 31349723
    [Google Scholar]
  62. BlassovaT. TonarZ. TomasekP. Inflammatory cell infiltrates, hypoxia, vascularization, pentraxin 3 and osteoprotegerin in abdominal aortic aneurysms - A quantitative histological study.PLoS One20191411e022481810.1371/journal.pone.0224818 31703088
    [Google Scholar]
  63. WangL. WuH. XiongL. Quercetin downregulates cyclooxygenase-2 expression and HIF-1 α/VEGF signaling-related angiogenesis in a mouse model of abdominal aortic aneurysm.BioMed Res. Int.2020202011110.1155/2020/9485398
    [Google Scholar]
  64. AlmijalliM. Does the intraluminal thrombus provoke the rupture of the abdominal aortic aneurysm wall?Appl. Sci.20211121994110.3390/app11219941
    [Google Scholar]
  65. KugoH. SukketsiriW. TanakaH. FujishimaR. MoriyamaT. ZaimaN. Time-dependent pathological changes in hypoperfusion-induced abdominal aortic aneurysm.Biology202110214910.3390/biology10020149 33672844
    [Google Scholar]
  66. BuschA. PauliJ. WinskiG. Lenvatinib halts aortic aneurysm growth by restoring smooth muscle cell contractility.JCI Insight2021615e14036410.1172/jci.insight.140364 34185710
    [Google Scholar]
  67. GuoJ. Treatment with the prolyl hydroxylase inhibitor JNJ promotes abdominal aortic aneurysm progression in diabetic mice.Eur. J. Vascul Endovascul Surg.2022633484494
    [Google Scholar]
  68. ZalewskiD. ChmielP. KołodziejP. Dysregulations of key regulators of angiogenesis and inflammation in abdominal aortic aneurysm.Int. J. Mol. Sci.202324151208710.3390/ijms241512087 37569462
    [Google Scholar]
  69. SunW. PangY. LiuZ. Macrophage inflammasome mediates hyperhomocysteinemia-aggravated abdominal aortic aneurysm.J. Mol. Cell. Cardiol.2015819610610.1016/j.yjmcc.2015.02.005 25680906
    [Google Scholar]
  70. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: A systematic analysis for the global burden of disease study 2013.Lancet2015385996311717110.1016/S0140‑6736(14)61682‑2 25530442
    [Google Scholar]
  71. DromparisP. MichelakisE.D. Mitochondria in vascular health and disease.Annu. Rev. Physiol.20137519512610.1146/annurev‑physiol‑030212‑183804 23157555
    [Google Scholar]
  72. SemenzaG.L. Hypoxia-inducible factors in physiology and medicine.Cell2012148339940810.1016/j.cell.2012.01.021 22304911
    [Google Scholar]
  73. PonikowskaG.M. JankowskaK.A. EislerS.A. 2-Methoxyestradiol affects mitochondrial biogenesis pathway and succinate dehydrogenase complex flavoprotein subunit A in osteosarcoma cancer cells.Canc Genom Prot2018151738910.21873/cgp.20067 29275365
    [Google Scholar]
  74. GabrielsonM. VorkapicE. FolkessonM. Altered PPARγ coactivator-1 alpha expression in abdominal aortic aneurysm: Possible effects on mitochondrial biogenesis.J. Vasc. Res.2016531-2172610.1159/000446653 27344146
    [Google Scholar]
  75. CaiZ. ZhaoG. YanJ. CYP2J2 overexpression increases EETs and protects against angiotensin II-induced abdominal aortic aneurysm in mice.J. Lipid Res.20135451448145610.1194/jlr.M036533 23446230
    [Google Scholar]
  76. RicoteM. LiA.C. WillsonT.M. KellyC.J. GlassC.K. The peroxisome proliferator-activated receptor-γ is a negative regulator of macrophage activation.Nature19983916662798210.1038/34178 9422508
    [Google Scholar]
  77. KadlecA.O. ChabowskiD.S. AissaA.K. GuttermanD.D. Role of PGC-1α in vascular regulation.Arterioscler. Thromb. Vasc. Biol.20163681467147410.1161/ATVBAHA.116.307123 27312223
    [Google Scholar]
  78. ScarpullaR.C. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells.Gene20022861818910.1016/S0378‑1119(01)00809‑5 11943463
    [Google Scholar]
  79. MadroñalN.M. RodriguezC. KassanM. Enhanced endoplasmic reticulum and mitochondrial stress in abdominal aortic aneurysm.Clin. Sci.2019133131421143810.1042/CS20190399 31239294
    [Google Scholar]
  80. RyanM.T. HoogenraadN.J. Mitochondrial-nuclear communications.Annu. Rev. Biochem.200776170172210.1146/annurev.biochem.76.052305.091720 17227225
    [Google Scholar]
  81. SunL.Y. LyuY.Y. ZhangH.Y. Nuclear receptor NR1D1 regulates abdominal aortic aneurysm development by targeting the mitochondrial tricarboxylic acid cycle enzyme aconitase-2.Circulation2022146211591160910.1161/CIRCULATIONAHA.121.057623 35880522
    [Google Scholar]
  82. van der PluijmI. BurgerJ. HeijningenV.P.M. Decreased mitochondrial respiration in aneurysmal aortas of Fibulin-4 mutant mice is linked to PGC1A regulation.Cardiovasc. Res.2018114131776179310.1093/cvr/cvy150 29931197
    [Google Scholar]
  83. DewanjeeS. VallamkonduJ. KalraR.S. JohnA. ReddyP.H. KandimallaR. Autophagy in the diabetic heart: A potential pharmacotherapeutic target in diabetic cardiomyopathy.Ageing Res. Rev.20216810133810.1016/j.arr.2021.101338 33838320
    [Google Scholar]
  84. GengN. ChenT. ChenL. Nuclear receptor Nur77 protects against oxidative stress by maintaining mitochondrial homeostasis via regulating mitochondrial fission and mitophagy in smooth muscle cell.J. Mol. Cell. Cardiol.2022170223310.1016/j.yjmcc.2022.05.007 35661620
    [Google Scholar]
  85. SundquistK. SundquistJ. PalmerK. MemonA.A. Role of mitochondrial DNA copy number in incident cardiovascular diseases and the association between cardiovascular disease and type 2 diabetes: A follow-up study on middle-aged women.Atherosclerosis2022341586210.1016/j.atherosclerosis.2021.11.020 34876297
    [Google Scholar]
  86. HaydenH. KlopfJ. IbrahimN. Quantitation of oxidized nuclear and mitochondrial DNA in plasma samples of patients with abdominal aortic aneurysm.Free Radic. Biol. Med.20232069410510.1016/j.freeradbiomed.2023.06.014 37353175
    [Google Scholar]
  87. TavrisB.S. PetersA.S. BöcklerD. DihlmannS. Mitochondrial dysfunction and increased DNA damage in vascular smooth muscle cells of abdominal aortic aneurysm (AAA-SMC).Oxid. Med. Cell. Longev.2023202311710.1155/2023/6237960 36743698
    [Google Scholar]
  88. OllerJ. RodríguezG.E. RodríguezR.M.J. Extracellular tuning of mitochondrial respiration leads to aortic aneurysm.Circulation2021143212091210910.1161/CIRCULATIONAHA.120.051171 33709773
    [Google Scholar]
  89. LiuY. HuangY. XuC. Mitochondrial dysfunction and therapeutic perspectives in cardiovascular diseases.Int. J. Mol. Sci.202223241605310.3390/ijms232416053 36555691
    [Google Scholar]
  90. ForbesJ.M. ThorburnD.R. Mitochondrial dysfunction in diabetic kidney disease.Nat. Rev. Nephrol.201814529131210.1038/nrneph.2018.9 29456246
    [Google Scholar]
  91. LampertM.A. OrogoA.M. NajorR.H. BNIP3L/NIX and FUNDC1-mediated mitophagy is required for mitochondrial network remodeling during cardiac progenitor cell differentiation.Autophagy20191571182119810.1080/15548627.2019.1580095 30741592
    [Google Scholar]
  92. VatsS. SundquistK. LiY. Characterization of the mitochondrial genetic landscape in abdominal aortic aneurysm.J. Am. Heart Assoc.2023128e02924810.1161/JAHA.122.029248 37026541
    [Google Scholar]
  93. MaD. ZhengB. LiuH. Klf5 down-regulation induces vascular senescence through eIF5a depletion and mitochondrial fission.PLoS Biol.2020188e300080810.1371/journal.pbio.3000808 32817651
    [Google Scholar]
  94. HuangG. CongZ. WangX. Targeting HSP90 attenuates angiotensin II-induced adventitial remodelling via suppression of mitochondrial fission.Cardiovasc. Res.20191165cvz19410.1093/cvr/cvz194 31346611
    [Google Scholar]
  95. GavishL. GilonD. BeeriR. ZuckermanA. NachmanD. GertzS.D. Photobiomodulation and estrogen stabilize mitochondrial membrane potential in angiotensin- II challenged porcine aortic smooth muscle cells.J. Biophotonics2021141e20200032910.1002/jbio.202000329 32888351
    [Google Scholar]
  96. CardosoS. CorreiaS. CarvalhoC. Perspectives on mitochondrial uncoupling proteins-mediated neuroprotection.J. Bioenerg. Biomembr.2015471-211913110.1007/s10863‑014‑9580‑x 25217852
    [Google Scholar]
  97. PecqueurC. GuerraA.C. RicquierD. BouillaudF. UCP2, a metabolic sensor coupling glucose oxidation to mitochondrial metabolism?IUBMB Life200961776276710.1002/iub.188 19514063
    [Google Scholar]
  98. BouillaudF. GuerraA.M.C. RicquierD. UCPs, at the interface between bioenergetics and metabolism.Biochim. Biophys. Acta Mol. Cell Res.20161863102443245610.1016/j.bbamcr.2016.04.013 27091404
    [Google Scholar]
  99. CouplanE. BarrosoD.M.G.M. GuerraA.M.C. RicquierD. GoubernM. BouillaudF. No evidence for a basal, retinoic, or superoxide-induced uncoupling activity of the uncoupling protein 2 present in spleen or lung mitochondria.J. Biol. Chem.200227729262682627510.1074/jbc.M202535200 12011051
    [Google Scholar]
  100. HernándezG.A. PerdomoL. de las HerasN. Antagonistic effect of TNF-alpha and insulin on uncoupling protein 2 (UCP-2) expression and vascular damage.Cardiovasc. Diabetol.201413110810.1186/s12933‑014‑0108‑9 25077985
    [Google Scholar]
  101. CharlesA-L. GuilbertA-S. BouitbirJ. Effect of postconditioning on mitochondrial dysfunction in experimental aortic cross-clamping.Br. J. Surg.201198451151610.1002/bjs.7384 21259232
    [Google Scholar]
  102. HsuC.Y. VoT.T.T. LeeC.W. Carbon monoxide releasing molecule-2 attenuates angiotensin II-induced IL-6/Jak2/Stat3-associated inflammation by inhibiting NADPH oxidase- and mitochondria-derived ROS in human aortic smooth muscle cells.Biochem. Pharmacol.202219811497810.1016/j.bcp.2022.114978 35218740
    [Google Scholar]
  103. LiQ. YounJ.Y. SiuK.L. MurugesanP. ZhangY. CaiH. Knockout of dihydrofolate reductase in mice induces hypertension and abdominal aortic aneurysm via mitochondrial dysfunction.Redox Biol.20192410118510.1016/j.redox.2019.101185 30954686
    [Google Scholar]
  104. UsuiF. ShirasunaK. KimuraH. Inflammasome activation by mitochondrial oxidative stress in macrophages leads to the development of angiotensin II-induced aortic aneurysm.Arterioscler. Thromb. Vasc. Biol.201535112713610.1161/ATVBAHA.114.303763 25378412
    [Google Scholar]
  105. GaoP. ZhangH. ZhangQ. Caloric restriction exacerbates angiotensin II-induced abdominal aortic aneurysm in the absence of p53.Hypertension201973354756010.1161/HYPERTENSIONAHA.118.12086 30686087
    [Google Scholar]
  106. MichelS. WanetA. PauwD.A. RommelaereG. ArnouldT. RenardP. Crosstalk between mitochondrial (dys)function and mitochondrial abundance.J. Cell. Physiol.201222762297231010.1002/jcp.23021 21928343
    [Google Scholar]
  107. ZhangY. HuangX. SunT. MicroRNA-19b-3p dysfunction of mesenchymal stem cell-derived exosomes from patients with abdominal aortic aneurysm impairs therapeutic efficacy.J. Nanobiotechnology202321113510.1186/s12951‑023‑01894‑3 37101174
    [Google Scholar]
  108. SpragueA.H. KhalilR.A. Inflammatory cytokines in vascular dysfunction and vascular disease.Biochem. Pharmacol.200978653955210.1016/j.bcp.2009.04.029 19413999
    [Google Scholar]
  109. ChenG. XuY. YaoY. IKKε knockout alleviates angiotensin II induced apoptosis and excessive autophagy in vascular smooth muscle cells by regulating the ERK1/2 pathway.Exp. Ther. Med.2021224105110.3892/etm.2021.10485 34434265
    [Google Scholar]
  110. MaciaE. EhrlichM. MassolR. BoucrotE. BrunnerC. KirchhausenT. Dynasore, a cell-permeable inhibitor of dynamin.Dev. Cell200610683985010.1016/j.devcel.2006.04.002 16740485
    [Google Scholar]
  111. KimJ. ProcknowJ.D. YanagisawaH. WagenseilJ.E. Differences in genetic signaling, and not mechanical properties of the wall, are linked to ascending aortic aneurysms in fibulin-4 knockout mice.Am. J. Physiol. Heart Circ. Physiol.20153091H103H11310.1152/ajpheart.00178.2015 25934097
    [Google Scholar]
  112. SawadaH. HaoH. NaitoY. Aortic iron overload with oxidative stress and inflammation in human and murine abdominal aortic aneurysm.Arterioscler. Thromb. Vasc. Biol.20153561507151410.1161/ATVBAHA.115.305586 25882069
    [Google Scholar]
  113. EdelsteinH.M. ScherzerP. TobarA. LeviM. GafterU. Altered renal lipid metabolism and renal lipid accumulation in human diabetic nephropathy.J. Lipid Res.201455356157210.1194/jlr.P040501 24371263
    [Google Scholar]
  114. SuzukiY. KamiD. TayaT. ZLN005 improves the survival of polymicrobial sepsis by increasing the bacterial killing via inducing lysosomal acidification and biogenesis in phagocytes.Front. Immunol.202314108990510.3389/fimmu.2023.1089905 36820088
    [Google Scholar]
  115. ZhouQ. XuH. YanL. PGC-1α promotes mitochondrial respiration and biogenesis during the differentiation of hiPSCs into cardiomyocytes.Genes Dis.20218689190610.1016/j.gendis.2020.12.006 34522716
    [Google Scholar]
  116. ChenY. LiS. GuoY. Astaxanthin attenuates hypertensive vascular remodeling by protecting vascular smooth muscle cells from oxidative stress-induced mitochondrial dysfunction.Oxid. Med. Cell. Longev.2020202011910.1155/2020/4629189 32351673
    [Google Scholar]
  117. ZhangH. WangY. BianX. YinH. MicroRNA-194 acts as a suppressor during abdominal aortic aneurysm via inhibition of KDM3A-mediated BNIP3.Life Sci.202127711930910.1016/j.lfs.2021.119309 33662431
    [Google Scholar]
  118. DrögeW. Free radicals in the physiological control of cell function.Physiol. Rev.2002821479510.1152/physrev.00018.2001 11773609
    [Google Scholar]
  119. ZhengY.H. TianC. MengY. Osteopontin stimulates autophagy via integrin/CD44 and p38 MAPK signaling pathways in vascular smooth muscle cells.J. Cell. Physiol.2012227112713510.1002/jcp.22709 21374592
    [Google Scholar]
  120. ItaniH.A. DikalovaA.E. McMasterW.G. Mitochondrial cyclophilin D in vascular oxidative stress and hypertension.Hypertension20166761218122710.1161/HYPERTENSIONAHA.115.07085 27067720
    [Google Scholar]
  121. ZorovD.B. JuhaszovaM. SollottS.J. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release.Physiol. Rev.201494390995010.1152/physrev.00026.2013 24987008
    [Google Scholar]
  122. ZhangT. LiuC.F. ZhangT.N. WenR. SongW.L. Overexpression of peroxisome proliferator-activated receptor γ coactivator 1-α protects cardiomyocytes from lipopolysaccharide-induced mitochondrial damage and apoptosis.Inflammation20204351806182010.1007/s10753‑020‑01255‑4 32529514
    [Google Scholar]
  123. CooperH.A. CicaleseS. PrestonK.J. Targeting mitochondrial fission as a potential therapeutic for abdominal aortic aneurysm.Cardiovasc. Res.2021117397198210.1093/cvr/cvaa133 32384150
    [Google Scholar]
  124. PedroB.S.J.M. KroemerG. GalluzziL. Autophagy and mitophagy in cardiovascular disease.Circ. Res.2017120111812182410.1161/CIRCRESAHA.117.311082 28546358
    [Google Scholar]
  125. JacksonC.B. TurnbullD.M. MinczukM. GammageP.A. Therapeutic manipulation of mtDNA heteroplasmy: A shifting perspective.Trends Mol. Med.202026769870910.1016/j.molmed.2020.02.006 32589937
    [Google Scholar]
  126. NissankaN. MoraesC.T. Mitochondrial DNA heteroplasmy in disease and targeted nuclease‐based therapeutic approaches.EMBO Rep.2020213e4961210.15252/embr.201949612 32073748
    [Google Scholar]
  127. AmadoP.C.J. CordobaB.A. MirandaH.A. MoralesJ.S. Mitochondrial heteroplasmy shifting as a potential biomarker of cancer progression.Int. J. Mol. Sci.20212214736910.3390/ijms22147369 34298989
    [Google Scholar]
  128. TrammellS.A.J. SchmidtM.S. WeidemannB.J. Nicotinamide riboside is uniquely and orally bioavailable in mice and humans.Nat. Commun.2016711294810.1038/ncomms12948 27721479
    [Google Scholar]
  129. AirhartS.E. ShiremanL.M. RislerL.J. An open-label, non-randomized study of the pharmacokinetics of the nutritional supplement nicotinamide riboside (NR) and its effects on blood NAD+ levels in healthy volunteers.PLoS One20171212e018645910.1371/journal.pone.0186459 29211728
    [Google Scholar]
  130. KornbrustD.J. MacDonaldJ.S. PeterC.P. Toxicity of the HMG-coenzyme a reductase inhibitor, lovastatin, to rabbits.J. Pharmacol. Exp. Ther.19892482498505 2918466
    [Google Scholar]
  131. WatsonA. NongZ. YinH. Nicotinamide phosphoribosyltransferase in smooth muscle cells maintains genome integrity, resists aortic medial degeneration, and is suppressed in human thoracic aortic aneurysm disease.Circ. Res.2017120121889190210.1161/CIRCRESAHA.116.310022 28356339
    [Google Scholar]
  132. AbeY. SakairiT. KajiyamaH. ShrivastavS. BeesonC. KoppJ.B. Bioenergetic characterization of mouse podocytes.Am. J. Physiol. Cell Physiol.20102992C464C47610.1152/ajpcell.00563.2009 20445170
    [Google Scholar]
  133. RossB.D. EspinalJ. SilvaP. Glucose metabolism in renal tubular function.Kidney Int.1986291546710.1038/ki.1986.8 3515015
    [Google Scholar]
  134. GuderW.G. RossB.D. Enzyme distribution along the nephron.Kidney Int.198426210111110.1038/ki.1984.143 6094907
    [Google Scholar]
  135. MartinelliD. CatterucciaM. PiemonteF. EPI-743 reverses the progression of the pediatric mitochondrial disease—genetically defined leigh syndrome.Mol. Genet. Metab.2012107338338810.1016/j.ymgme.2012.09.007 23010433
    [Google Scholar]
  136. LuM. YinN. LiuW. CuiX. ChenS. WangE. Curcumin ameliorates diabetic nephropathy by suppressing NLRP3 inflammasome signaling.BioMed Res. Int.2017201711010.1155/2017/1516985 28194406
    [Google Scholar]
  137. AllahA.E.S.H. GomaaA.M.S. Effects of curcumin and captopril on the functions of kidney and nerve in streptozotocin-induced diabetic rats: Role of angiotensin converting enzyme 1.Appl. Physiol. Nutr. Metab.201540101061106710.1139/apnm‑2015‑0145 26398443
    [Google Scholar]
  138. YangH. XuW. ZhouZ. Curcumin attenuates urinary excretion of albumin in type II diabetic patients with enhancing nuclear factor erythroid-derived 2-like 2 (Nrf2) system and repressing inflammatory signaling efficacies.Exp. Clin. Endocrinol. Diabetes2015123636036710.1055/s‑0035‑1545345 25875220
    [Google Scholar]
  139. TangL. CongZ. HaoS. Protective effect of melatonin on the development of abdominal aortic aneurysm in a rat model.J. Surg. Res.2017209266278.e110.1016/j.jss.2016.06.018 27392820
    [Google Scholar]
  140. ShiF. MaC. JiC. LiM. LiuX. HanY. Serum lipid oxidative stress products as risk factors are the candidate predictive biomarkers for human abdominal aortic aneurysms.Clin. Appl. Thromb. Hemost.202026107602962093222610.1177/1076029620932226 32571088
    [Google Scholar]
  141. WallaceD.C. Mitochondrial DNA mutations in disease and aging.Environ. Mol. Mutagen.201051544045010.1002/em.20586 20544884
    [Google Scholar]
  142. PetschnikA.E. FellB. KruseC. DannerS. The role of α-smooth muscle actin in myogenic differentiation of human glandular stem cells and their potential for smooth muscle cell replacement therapies.Expert Opin. Biol. Ther.201010685386110.1517/14712591003769832 20367528
    [Google Scholar]
  143. AvolioE. AlvinoV.V. GhorbelM.T. CampagnoloP. Perivascular cells and tissue engineering: Current applications and untapped potential.Pharmacol. Ther.2017171839210.1016/j.pharmthera.2016.11.002 27889329
    [Google Scholar]
  144. NiethH. SchollmeyerP. Substrate-utilization of the human kidney.Nature196620950291244124510.1038/2091244a0 5956318
    [Google Scholar]
  145. ChauhanV. VaidM. Dyslipidemia in chronic kidney disease: Managing a high-risk combination.Postgrad. Med.20091216546110.3810/pgm.2009.11.2077 19940417
    [Google Scholar]
  146. VaziriN.D. Dyslipidemia of chronic renal failure: The nature, mechanisms, and potential consequences.Am. J. Physiol. Renal Physiol.20062902F262F27210.1152/ajprenal.00099.2005 16403839
    [Google Scholar]
  147. BoytardL. HadiT. SilvestroM. Lung-derived HMGB1 is detrimental for vascular remodeling of metabolically imbalanced arterial macrophages.Nat. Commun.2020111431110.1038/s41467‑020‑18088‑2 32855420
    [Google Scholar]
  148. MadroñalN.M. PeguerosA.R. UmbertP.L. Targeting mitochondrial stress with Szeto‐Schiller 31 prevents experimental abdominal aortic aneurysm: Crosstalk with endoplasmic reticulum stress.Br. J. Pharmacol.2023180172230224910.1111/bph.16077 36964990
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611312293241220101556
Loading
/content/journals/cvp/10.2174/0115701611312293241220101556
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test