Skip to content
2000
Volume 23, Issue 1
  • ISSN: 1570-1611
  • E-ISSN: 1875-6212

Abstract

Cardiovascular disorders (CVDs) are reported to occur with very high rates of incidence and exhibit high morbidity and mortality rates across the globe. Therefore, research is focused on searching for novel therapeutic targets involving multiple pathophysiological mechanisms. Oxidative stress plays a critical role in the development and progression of various CVDs, such as hypertension, pulmonary hypertension, heart failure, arrhythmia, atherosclerosis, ischemia-reperfusion injury, and myocardial infarction. Among multiple pathways generating reactive oxygen species (ROS), Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases of the NOX family as the major source of ROS generation and plays an intricate role in the development and progression of CVDs. Therefore, exploring the role of different NADPH oxidase isoforms in various cardiovascular pathologies has attracted attention to current cardiovascular research. Focusing on NADPH oxidases to reduce oxidative stress in managing diverse CVDs may offer unique therapeutic approaches to prevent and treat various heart conditions. The current review article highlights the role of different NADPH oxidase isoforms in the pathophysiology of various CVDs. Moreover, the focus is also to emphasize different experimental studies that utilized various NADPH oxidase isoform modulators to manage other disorders. The present review article considers new avenues for researchers/scientists working in the field of cardiovascular pharmacology utilizing NADPH oxidase isoform modulators.

Loading

Article metrics loading...

/content/journals/cvp/10.2174/0115701611308870240910115023
2024-09-20
2025-10-27
Loading full text...

Full text loading...

References

  1. FrąkW. WojtasińskaA. LisińskaW. MłynarskaE. FranczykB. RyszJ. Pathophysiology of cardiovascular diseases: New insights into molecular mechanisms of atherosclerosis, arterial hypertension, and coronary artery disease.Biomedicines2022108193810.3390/biomedicines1008193836009488
    [Google Scholar]
  2. SenonerT. DichtlW. Oxidative stress in cardiovascular diseases: Still a therapeutic target?Nutrients2019119209010.3390/nu1109209031487802
    [Google Scholar]
  3. SkoniecznaM. HejmoT. Poterala-HejmoA. Cieslar-PobudaA. BuldakR.J. NADPH oxidases: Insights into selected functions and mechanisms of action in cancer and stem cells.Oxid. Med. Cell. Longev.201720171942053910.1155/2017/942053928626501
    [Google Scholar]
  4. Nguyen Dinh CatA. MontezanoA.C. BurgerD. TouyzR.M. AngiotensinI.I. Angiotensin II, NADPH oxidase, and redox signaling in the vasculature.Antioxid. Redox Signal.201319101110112010.1089/ars.2012.464122530599
    [Google Scholar]
  5. BedardK. KrauseK.H. The NOX family of ROS-generating NADPH oxidases: Physiology and pathophysiology.Physiol. Rev.200787124531310.1152/physrev.00044.200517237347
    [Google Scholar]
  6. RoyK WuY MeitzlerJL JuhaszA LiuH JiangG NADPH oxidases and cancer.Clin Sci Lond Engl 1979.2015182128637510.1042/CS20140542
    [Google Scholar]
  7. LambethJ.D. NOX enzymes and the biology of reactive oxygen.Nat. Rev. Immunol.20044318118910.1038/nri131215039755
    [Google Scholar]
  8. ZhangM. PerinoA. GhigoA. HirschE. ShahA.M. NADPH oxidases in heart failure: Poachers or gamekeepers?Antioxid. Redox Signal.20131891024104110.1089/ars.2012.455022747566
    [Google Scholar]
  9. SahooS MeijlesDN PaganoPJ NADPH oxidases in heart failure: Poachers or gamekeepers?Clin Sci Lond Engl 1979.201613053173510.1042/CS20150087
    [Google Scholar]
  10. BrandesR.P. SchröderK. Differential vascular functions of Nox family NADPH oxidases.Curr. Opin. Lipidol.200819551351810.1097/MOL.0b013e32830c91e318769233
    [Google Scholar]
  11. LetoT.L. MorandS. HurtD. UeyamaT. Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases.Antioxid. Redox Signal.200911102607261910.1089/ars.2009.263719438290
    [Google Scholar]
  12. MittalM. SiddiquiM.R. TranK. ReddyS.P. MalikA.B. Reactive oxygen species in inflammation and tissue injury.Antioxid. Redox Signal.20142071126116710.1089/ars.2012.514923991888
    [Google Scholar]
  13. LassègueB. ClempusR.E. Vascular NAD(P)H oxidases: Specific features, expression, and regulation.Am. J. Physiol. Regul. Integr. Comp. Physiol.20032852R277R29710.1152/ajpregu.00758.200212855411
    [Google Scholar]
  14. BrandesR.P. Role of NADPH oxidases in the control of vascular gene expression.Antioxid. Redox Signal.20035680381110.1089/15230860377038011514588154
    [Google Scholar]
  15. PetryA. DjordjevicT. WeitnauerM. KietzmannT. HessJ. GörlachA. NOX2 and NOX4 mediate proliferative response in endothelial cells.Antioxid. Redox Signal.200689-101473148410.1089/ars.2006.8.147316987004
    [Google Scholar]
  16. SuhY.A. ArnoldR.S. LassegueB. ShiJ. XuX. SorescuD. ChungA.B. GriendlingK.K. LambethJ.D. Cell transformation by the superoxide-generating oxidase Mox1.Nature19994016748798210.1038/4345910485709
    [Google Scholar]
  17. Di WangH HopeS DuY QuinnMT CayatteA PaganoPJ Paracrine role of adventitial superoxide anion in mediating spontaneous tone of the isolated rat aorta in angiotensin II-induced hypertension.Hypertens Dallas Tex 19791999335122532
    [Google Scholar]
  18. PaganoP.J. ClarkJ.K. Cifuentes-PaganoM.E. ClarkS.M. CallisG.M. QuinnM.T. Localization of a constitutively active, phagocyte-like NADPH oxidase in rabbit aortic adventitia: Enhancement by angiotensin II.Proc. Natl. Acad. Sci. USA19979426144831448810.1073/pnas.94.26.144839405639
    [Google Scholar]
  19. BánfiB. MolnárG. MaturanaA. StegerK. HegedûsB. DemaurexN. KrauseK.H. A Ca(2+)-activated NADPH oxidase in testis, spleen, and lymph nodes.J. Biol. Chem.200127640375943760110.1074/jbc.M10303420011483596
    [Google Scholar]
  20. CaveA.C. BrewerA.C. NarayanapanickerA. RayR. GrieveD.J. WalkerS. ShahA.M. NADPH oxidases in cardiovascular health and disease.Antioxid. Redox Signal.200685-669172810.1089/ars.2006.8.69116771662
    [Google Scholar]
  21. WarburgO. Beobachtungen über die Oxydationsprozesse im Seeigelei.1908571–2116
    [Google Scholar]
  22. BaldridgeC.W. GerardR.W. The extra respiration of phagocytosis.Am. J. Physiol.1932103123523610.1152/ajplegacy.1932.103.1.235
    [Google Scholar]
  23. SbarraA.J. KarnovskyM.L. The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes.J. Biol. Chem.195923461355136210.1016/S0021‑9258(18)70011‑213654378
    [Google Scholar]
  24. IyerG.Y.N. IslamM.F. QuastelJ.H. Biochemical aspects of phagocytosis.Nature1961192480253554110.1038/192535a0
    [Google Scholar]
  25. RossiF. ZattiM. Biochemical aspects of phagocytosis in polymorphonuclear leucocytes. NADH and NADPH oxidation by the granules of resting and phagocytizing cells.Experientia1964201212310.1007/BF021460194379032
    [Google Scholar]
  26. RossiF. ZattiM. Changes in the metabolic pattern of polymorpho-nuclear leucocytes during phagocytosis.Br. J. Exp. Pathol.196445554855914213063
    [Google Scholar]
  27. QuieP.G. WhiteJ.G. HolmesB. GoodR.A. In vitro bactericidal capacity of human polymorphonuclear leukocytes: Diminished activity in chronic granulomatous disease of childhood.J. Clin. Invest.196746466867910.1172/JCI1055686021213
    [Google Scholar]
  28. BaehnerR.L. NathanD.G. Leukocyte oxidase: Defective activity in chronic granulomatous disease.Science1967155376483583610.1126/science.155.3764.8356018195
    [Google Scholar]
  29. HolmesB. PageA.R. GoodR.A. Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function.J. Clin. Invest.19674691422143210.1172/JCI1056346036538
    [Google Scholar]
  30. BabiorB.M. KipnesR.S. CurnutteJ.T. Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent.J. Clin. Invest.197352374174410.1172/JCI1072364346473
    [Google Scholar]
  31. KlebanoffS.J. Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes.Semin. Hematol.19751221171421118738
    [Google Scholar]
  32. BabiorB.M. Oxygen-dependent microbial killing by phagocytes (first of two parts).N. Engl. J. Med.19782981265966810.1056/NEJM19780323298120524176
    [Google Scholar]
  33. SegalA.W. JonesO.T.G. Novel cytochrome b system in phagocytic vacuoles of human granulocytes.Nature1978276568751551710.1038/276515a0723935
    [Google Scholar]
  34. CrossA.R. ParkinsonJ.F. JonesO.T.G. The superoxide-generating oxidase of leucocytes. NADPH-dependent reduction of flavin and cytochrome b in solubilized preparations.Biochem. J.1984223233734410.1042/bj22303376497852
    [Google Scholar]
  35. DinauerM.C. OrkinS.H. BrownR. JesaitisA.J. ParkosC.A. The glycoprotein encoded by the X-linked chronic granulomatous disease locus is a component of the neutrophil cytochrome b complex.Nature1987327612471772010.1038/327717a03600768
    [Google Scholar]
  36. ParkosC.A. AllenR.A. CochraneC.G. JesaitisA.J. Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000.J. Clin. Invest.198780373274210.1172/JCI1131283305576
    [Google Scholar]
  37. TeahanC. RoweP. ParkerP. TottyN. SegalA.W. The X-linked chronic granulomatous disease gene codes for the β-chain of cytochrome b−245.Nature1987327612472072110.1038/327720a03600769
    [Google Scholar]
  38. GroomQ.J. TorresM.A. Fordham-SkeltonA.P. Hammond-KosackK.E. RobinsonN.J. JonesJ.D.G. rbohA, a rice homologue of the mammalian gp91phox respiratory burst oxidase gene.Plant J.199610351552210.1046/j.1365‑313X.1996.10030515.x8811865
    [Google Scholar]
  39. DupuyC. OhayonR. ValentA. Noël-HudsonM.S. DèmeD. VirionA. Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. Cloning of the porcine and human cdnas.J. Biol. Chem.199927452372653726910.1074/jbc.274.52.3726510601291
    [Google Scholar]
  40. De DekenX. WangD. ManyM.C. CostagliolaS. LibertF. VassartG. DumontJ.E. MiotF. Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family.J. Biol. Chem.200027530232272323310.1074/jbc.M00091620010806195
    [Google Scholar]
  41. HajjarC. CherrierM.V. Dias MirandelaG. Petit-HartleinI. StasiaM.J. Fontecilla-CampsJ.C. FieschiF. DupuyJ. The NOX family of proteins is also present in bacteria.MBio201786e01487-1710.1128/mBio.01487‑1729114025
    [Google Scholar]
  42. MagnaniF. NenciS. Millana FananasE. CecconM. RomeroE. FraaijeM.W. MatteviA. Crystal structures and atomic model of NADPH oxidase.Proc. Natl. Acad. Sci. USA2017114266764676910.1073/pnas.170229311428607049
    [Google Scholar]
  43. VermotA. Petit-HärtleinI. SmithS.M.E. FieschiF. NADPH oxidases (NOX): An overview from discovery, molecular mechanisms to physiology and pathology.Antioxidants202110689010.3390/antiox1006089034205998
    [Google Scholar]
  44. BánfiB. MaturanaA. JaconiS. ArnaudeauS. LaforgeT. SinhaB. LigetiE. DemaurexN. KrauseK.H. A mammalian H+ channel generated through alternative splicing of the NADPH oxidase homolog NOH-1.Science2000287545013814210.1126/science.287.5450.13810615049
    [Google Scholar]
  45. HelmckeI. HeumüllerS. TikkanenR. SchröderK. BrandesR.P. Identification of structural elements in Nox1 and Nox4 controlling localization and activity.Antioxid. Redox Signal.20091161279128710.1089/ars.2008.238319061439
    [Google Scholar]
  46. ChengG. LambethJ.D. NOXO1, regulation of lipid binding, localization, and activation of Nox1 by the Phox homology (PX) domain.J. Biol. Chem.200427964737474210.1074/jbc.M30596820014617635
    [Google Scholar]
  47. HilenskiL.L. ClempusR.E. QuinnM.T. LambethJ.D. GriendlingK.K. Distinct subcellular localizations of Nox1 and Nox4 in vascular smooth muscle cells.Arterioscler. Thromb. Vasc. Biol.200424467768310.1161/01.ATV.0000112024.13727.2c14670934
    [Google Scholar]
  48. AmbastaR.K. KumarP. GriendlingK.K. SchmidtH.H.H.W. BusseR. BrandesR.P. Direct interaction of the novel Nox proteins with p22phox is required for the formation of a functionally active NADPH oxidase.J. Biol. Chem.200427944459354594110.1074/jbc.M40648620015322091
    [Google Scholar]
  49. ChamulitratW. SchmidtR. TomakidiP. StremmelW. ChunglokW. KawaharaT. RokutanK. Association of gp91phox homolog Nox1 with anchorage-independent growth and MAP kinase-activation of transformed human keratinocytes.Oncogene200322386045605310.1038/sj.onc.120665412955083
    [Google Scholar]
  50. DesoukiM.M. KulawiecM. BansalS. DasG.C. SinghK.K. Cross talk between mitochondria and superoxide generating NADPH oxidase in breast and ovarian tumors.Cancer Biol. Ther.20054121367137310.4161/cbt.4.12.223316294028
    [Google Scholar]
  51. ArbiserJ.L. PetrosJ. KlafterR. GovindajaranB. McLaughlinE.R. BrownL.F. CohenC. MosesM. KilroyS. ArnoldR.S. LambethJ.D. Reactive oxygen generated by Nox1 triggers the angiogenic switch.Proc. Natl. Acad. Sci. USA200299271572010.1073/pnas.02263019911805326
    [Google Scholar]
  52. CifuentesM.E. PaganoP.J. Targeting reactive oxygen species in hypertension.Curr. Opin. Nephrol. Hypertens.200615217918610.1097/01.mnh.0000214776.19233.6816481886
    [Google Scholar]
  53. NauseefW.M. Nox enzymes in immune cells.Semin. Immunopathol.200830319520810.1007/s00281‑008‑0117‑418449540
    [Google Scholar]
  54. GuzikT.J. SadowskiJ. GuzikB. JopekA. KapelakB. PrzybyłowskiP. WierzbickiK. KorbutR. HarrisonD.G. ChannonK.M. Coronary artery superoxide production and nox isoform expression in human coronary artery disease.Arterioscler. Thromb. Vasc. Biol.200626233333910.1161/01.ATV.0000196651.64776.5116293794
    [Google Scholar]
  55. GuzikT.J. SadowskiJ. KapelakB. JopekA. RudzinskiP. PillaiR. KorbutR. ChannonK.M. Systemic regulation of vascular NAD(P)H oxidase activity and nox isoform expression in human arteries and veins.Arterioscler. Thromb. Vasc. Biol.20042491614162010.1161/01.ATV.0000139011.94634.9d15256399
    [Google Scholar]
  56. InfangerD.W. SharmaR.V. DavissonR.L. NADPH oxidases of the brain: Distribution, regulation, and function.Antioxid. Redox Signal.200689-101583159610.1089/ars.2006.8.158316987013
    [Google Scholar]
  57. BuulJ.D.V. Fernandez-BorjaM. AnthonyE.C. HordijkP.L. Expression and localization of NOX2 and NOX4 in primary human endothelial cells.Antioxid. Redox Signal.200573-430831710.1089/ars.2005.7.30815706079
    [Google Scholar]
  58. ParaviciniT.M. TouyzR.M. NADPH oxidases, reactive oxygen species, and hypertension: Clinical implications and therapeutic possibilities.Diabetes Care200831Suppl. 2S170S18010.2337/dc08‑s24718227481
    [Google Scholar]
  59. BorregaardN. HeipleJ.M. SimonsE.R. ClarkR.A. Subcellular localization of the b-cytochrome component of the human neutrophil microbicidal oxidase: Translocation during activation.J. Cell Biol.1983971526110.1083/jcb.97.1.526408102
    [Google Scholar]
  60. KawanoM. MiyamotoK. KaitoY. SumimotoH. TamuraM. Noxa1 as a moderate activator of Nox2-based NADPH oxidase.Arch. Biochem. Biophys.201251911710.1016/j.abb.2011.12.02522244833
    [Google Scholar]
  61. Ushio-FukaiM. ZafariA.M. FukuiT. IshizakaN. GriendlingK.K. p22phox is a critical component of the superoxide-generating NADH/NADPH oxidase system and regulates angiotensin II-induced hypertrophy in vascular smooth muscle cells.J. Biol. Chem.199627138233172332110.1074/jbc.271.38.233178798532
    [Google Scholar]
  62. GeisztM. KoppJ.B. VárnaiP. LetoT.L. Identification of renox, an NAD(P)H oxidase in kidney.Proc. Natl. Acad. Sci. USA200097148010801410.1073/pnas.13013589710869423
    [Google Scholar]
  63. GoettschC. GoettschW. ArsovA. HofbauerL.C. BornsteinS.R. MorawietzH. Long-term cyclic strain downregulates endothelial Nox4.Antioxid. Redox Signal.200911102385239710.1089/ars.2009.256119309265
    [Google Scholar]
  64. GoettschC. GoettschW. MullerG. SeebachJ. SchnittlerH.J. MorawietzH. Nox4 overexpression activates reactive oxygen species and p38 MAPK in human endothelial cells.Biochem. Biophys. Res. Commun.2009380235536010.1016/j.bbrc.2009.01.10719280689
    [Google Scholar]
  65. SorescuD. WeissD. LassègueB. ClempusR.E. SzöcsK. SorescuG.P. ValppuL. QuinnM.T. LambethJ.D. VegaJ.D. TaylorW.R. GriendlingK.K. Superoxide production and expression of nox family proteins in human atherosclerosis.Circulation2002105121429143510.1161/01.CIR.0000012917.74432.6611914250
    [Google Scholar]
  66. PedruzziE. GuichardC. OllivierV. DrissF. FayM. PrunetC. MarieJ.C. PouzetC. SamadiM. ElbimC. O’DowdY. BensM. VandewalleA. Gougerot-PocidaloM.A. LizardG. Ogier-DenisE. NAD(P)H oxidase Nox-4 mediates 7-ketocholesterol-induced endoplasmic reticulum stress and apoptosis in human aortic smooth muscle cells.Mol. Cell. Biol.20042424107031071710.1128/MCB.24.24.10703‑10717.200415572675
    [Google Scholar]
  67. SchröderK. ZhangM. BenkhoffS. MiethA. PliquettR. KosowskiJ. KruseC. LuedikeP. MichaelisU.R. WeissmannN. DimmelerS. ShahA.M. BrandesR.P. Nox4 is a protective reactive oxygen species generating vascular NADPH oxidase.Circ. Res.201211091217122510.1161/CIRCRESAHA.112.26705422456182
    [Google Scholar]
  68. GorinY. RiconoJ.M. KimN.H. BhandariB. ChoudhuryG.G. AbboudH.E. Nox4 mediates angiotensin II-induced activation of Akt/protein kinase B in mesangial cells.Am. J. Physiol. Renal Physiol.20032852F219F22910.1152/ajprenal.00414.200212842860
    [Google Scholar]
  69. MahadevK MotoshimaH WuX RuddyJM ArnoldRS ChengG The NAD(P)H oxidase homolog Nox4 modulates insulin-stimulated generation of H2O2 and plays an integral role in insulin signal transduction.Mol Cell Biol.2004245184454
    [Google Scholar]
  70. LeeY.M. KimB.J. ChunY.S. SoI. ChoiH. KimM.S. ParkJ.W. NOX4 as an oxygen sensor to regulate TASK-1 activity.Cell. Signal.200618449950710.1016/j.cellsig.2005.05.02516019190
    [Google Scholar]
  71. SturrockA. CahillB. NormanK. HuecksteadtT.P. HillK. SandersK. KarwandeS.V. StringhamJ.C. BullD.A. GleichM. KennedyT.P. HoidalJ.R. Transforming growth factor-β1 induces Nox4 NAD(P)H oxidase and reactive oxygen species-dependent proliferation in human pulmonary artery smooth muscle cells.Am. J. Physiol. Lung Cell. Mol. Physiol.20062904L661L67310.1152/ajplung.00269.200516227320
    [Google Scholar]
  72. LiJ. StouffsM. SerranderL. BanfiB. BettiolE. CharnayY. StegerK. KrauseK.H. JaconiM.E. The NADPH oxidase NOX4 drives cardiac differentiation: Role in regulating cardiac transcription factors and MAP kinase activation.Mol. Biol. Cell20061793978398810.1091/mbc.e05‑06‑053216775014
    [Google Scholar]
  73. KurodaJ. NakagawaK. YamasakiT. NakamuraK. TakeyaR. KuribayashiF. Imajoh-OhmiS. IgarashiK. ShibataY. SueishiK. SumimotoH. The superoxide-producing NAD(P)H oxidase Nox4 in the nucleus of human vascular endothelial cells.Genes Cells200510121139115110.1111/j.1365‑2443.2005.00907.x16324151
    [Google Scholar]
  74. ClempusR.E. SorescuD. DikalovaA.E. PounkovaL. JoP. SorescuG.P. LassègueB. GriendlingK.K. GriendlingK.K. Nox4 is required for maintenance of the differentiated vascular smooth muscle cell phenotype.Arterioscler. Thromb. Vasc. Biol.2007271424810.1161/01.ATV.0000251500.94478.1817082491
    [Google Scholar]
  75. LyleA.N. DeshpandeN.N. TaniyamaY. Seidel-RogolB. PounkovaL. DuP. PapaharalambusC. LassègueB. GriendlingK.K. Poldip2, a novel regulator of Nox4 and cytoskeletal integrity in vascular smooth muscle cells.Circ. Res.2009105324925910.1161/CIRCRESAHA.109.19372219574552
    [Google Scholar]
  76. MartynK.D. FrederickL.M. von LoehneysenK. DinauerM.C. KnausU.G. Functional analysis of Nox4 reveals unique characteristics compared to other NADPH oxidases.Cell. Signal.2006181698210.1016/j.cellsig.2005.03.02315927447
    [Google Scholar]
  77. DikalovS. DikalovaA. BikineyevaA. SchmidtH. HarrisonD. GriendlingK. Distinct roles of Nox1 and Nox4 in basal and angiotensin II-stimulated superoxide and hydrogen peroxide production.Free Radic. Biol. Med.20084591340135110.1016/j.freeradbiomed.2008.08.01318760347
    [Google Scholar]
  78. MochizukiT. FurutaS. MitsushitaJ. ShangW.H. ItoM. YokooY. YamauraM. IshizoneS. NakayamaJ. KonagaiA. HiroseK. KiyosawaK. KamataT. Inhibition of NADPH oxidase 4 activates apoptosis via the AKT/apoptosis signal-regulating kinase 1 pathway in pancreatic cancer PANC-1 cells.Oncogene200625263699370710.1038/sj.onc.120940616532036
    [Google Scholar]
  79. CucoranuI. ClempusR. DikalovaA. PhelanP.J. AriyanS. DikalovS. SorescuD. NAD(P)H oxidase 4 mediates transforming growth factor-beta1-induced differentiation of cardiac fibroblasts into myofibroblasts.Circ. Res.200597990090710.1161/01.RES.0000187457.24338.3D16179589
    [Google Scholar]
  80. ChengG. CaoZ. XuX. MeirE.G.V. LambethJ.D. Homologs of gp91 phox : Cloning and tissue expression of Nox3, Nox4, and Nox5.Gene20012691-213114010.1016/S0378‑1119(01)00449‑811376945
    [Google Scholar]
  81. BelaibaR. DjordjevicT. PetryA. DiemerK. BonelloS. BanfiB. HessJ. PogrebniakA. BickelC. GörlachA. NOX5 variants are functionally active in endothelial cells.Free Radic. Biol. Med.200742444645910.1016/j.freeradbiomed.2006.10.05417275676
    [Google Scholar]
  82. GuzikT.J. ChenW. GongoraM.C. GuzikB. LobH.E. MangalatD. HochN. DikalovS. RudzinskiP. KapelakB. SadowskiJ. HarrisonD.G. Calcium-dependent NOX5 nicotinamide adenine dinucleotide phosphate oxidase contributes to vascular oxidative stress in human coronary artery disease.J. Am. Coll. Cardiol.200852221803180910.1016/j.jacc.2008.07.06319022160
    [Google Scholar]
  83. MillerF.J.Jr FilaliM. HussG.J. StanicB. ChamseddineA. BarnaT.J. LambF.S. Cytokine activation of nuclear factor kappa B in vascular smooth muscle cells requires signaling endosomes containing Nox1 and ClC-3.Circ. Res.2007101766367110.1161/CIRCRESAHA.107.15107617673675
    [Google Scholar]
  84. CsányiG. TaylorW.R. PaganoP.J. NOX and inflammation in the vascular adventitia.Free Radic. Biol. Med.20094791254126610.1016/j.freeradbiomed.2009.07.02219628034
    [Google Scholar]
  85. Ushio-FukaiM. AlexanderR.W. AkersM. YinQ. FujioY. WalshK. GriendlingK.K. Reactive oxygen species mediate the activation of Akt/protein kinase B by angiotensin II in vascular smooth muscle cells.J. Biol. Chem.199927432226992270410.1074/jbc.274.32.2269910428852
    [Google Scholar]
  86. TaniyamaY. Ushio-FukaiM. HitomiH. RocicP. KingsleyM.J. PfahnlC. WeberD.S. AlexanderR.W. GriendlingK.K. Role of p38 MAPK and MAPKAPK-2 in angiotensin II-induced Akt activation in vascular smooth muscle cells.Am. J. Physiol. Cell Physiol.20042872C494C49910.1152/ajpcell.00439.200315084475
    [Google Scholar]
  87. AdachiT. PimentelD.R. HeibeckT. HouX. LeeY.J. JiangB. IdoY. CohenR.A. S-glutathiolation of Ras mediates redox-sensitive signaling by angiotensin II in vascular smooth muscle cells.J. Biol. Chem.200427928298572986210.1074/jbc.M31332020015123696
    [Google Scholar]
  88. Ushio-FukaiM. GriendlingK.K. BeckerP.L. HilenskiL. HalleranS. AlexanderR.W. Epidermal growth factor receptor transactivation by angiotensin II requires reactive oxygen species in vascular smooth muscle cells.Arterioscler. Thromb. Vasc. Biol.200121448949510.1161/01.ATV.21.4.48911304462
    [Google Scholar]
  89. MatsunoK. YamadaH. IwataK. JinD. KatsuyamaM. MatsukiM. TakaiS. YamanishiK. MiyazakiM. MatsubaraH. Yabe-NishimuraC. Nox1 is involved in angiotensin II-mediated hypertension: A study in Nox1-deficient mice.Circulation2005112172677268510.1161/CIRCULATIONAHA.105.57370916246966
    [Google Scholar]
  90. GavazziG. BanfiB. DeffertC. FietteL. SchappiM. HerrmannF. KrauseK.H. Decreased blood pressure in NOX1-deficient mice.FEBS Lett.2006580249750410.1016/j.febslet.2005.12.04916386251
    [Google Scholar]
  91. SiuK.L. LiQ. ZhangY. GuoJ. YounJ.Y. DuJ. CaiH. NOX isoforms in the development of abdominal aortic aneurysm.Redox Biol.20171111812510.1016/j.redox.2016.11.00227912196
    [Google Scholar]
  92. YounJ.Y. GaoL. CaiH. The p47phox- and NADPH oxidase organiser 1 (NOXO1)-dependent activation of NADPH oxidase 1 (NOX1) mediates endothelial nitric oxide synthase (eNOS) uncoupling and endothelial dysfunction in a streptozotocin-induced murine model of diabetes.Diabetologia20125572069207910.1007/s00125‑012‑2557‑622549734
    [Google Scholar]
  93. KumariK. VishwakarmaV.K. KumarK. MridhaA.R. AravaS.K. DhingraS. SinghN. YadavH.N. Effect of benidipine alone and in combination with bosentan and sildenafil in amelioration of pulmonary arterial hypertension in experimental model in rats.J. Cardiovasc. Pharmacol.202483433033910.1097/FJC.000000000000154138241693
    [Google Scholar]
  94. GrayS.P. Di MarcoE. OkabeJ. SzyndralewiezC. HeitzF. MontezanoA.C. de HaanJ.B. KoulisC. El-OstaA. AndrewsK.L. Chin-DustingJ.P.F. TouyzR.M. WinglerK. CooperM.E. SchmidtH.H.H.W. Jandeleit-DahmK.A. NADPH oxidase 1 plays a key role in diabetes mellitus-accelerated atherosclerosis.Circulation2013127181888190210.1161/CIRCULATIONAHA.112.13215923564668
    [Google Scholar]
  95. WangH.D. XuS. JohnsD.G. DuY. QuinnM.T. CayatteA.J. CohenR.A. Role of NADPH oxidase in the vascular hypertrophic and oxidative stress response to angiotensin II in mice.Circ. Res.200188994795310.1161/hh0901.08998711349005
    [Google Scholar]
  96. JudkinsC.P. DiepH. BroughtonB.R.S. MastA.E. HookerE.U. MillerA.A. SelemidisS. DustingG.J. SobeyC.G. DrummondG.R. Direct evidence of a role for Nox2 in superoxide production, reduced nitric oxide bioavailability, and early atherosclerotic plaque formation in ApoE −/− mice.Am. J. Physiol. Heart Circ. Physiol.20102981H24H3210.1152/ajpheart.00799.200919837950
    [Google Scholar]
  97. MatsushimaS. KurodaJ. AgoT. ZhaiP. IkedaY. OkaS. FongG.H. TianR. SadoshimaJ. Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1α and upregulation of peroxisome proliferator-activated receptor-α.Circ. Res.201311281135114910.1161/CIRCRESAHA.111.30017123476056
    [Google Scholar]
  98. ByrneJ.A. GrieveD.J. BendallJ.K. LiJ.M. GoveC. LambethJ.D. CaveA.C. ShahA.M. Contrasting roles of NADPH oxidase isoforms in pressure-overload versus angiotensin II-induced cardiac hypertrophy.Circ. Res.200393980280510.1161/01.RES.0000099504.30207.F514551238
    [Google Scholar]
  99. ParajuliN. PatelV.B. WangW. BasuR. OuditG.Y. Loss of NOX2 (gp91 phox ) prevents oxidative stress and progression to advanced heart failure.Clin. Sci. (Lond.)2014127533134010.1042/CS2013078724624929
    [Google Scholar]
  100. MurdochC.E. ChaubeyS. ZengL. YuB. IveticA. WalkerS.J. VanhoutteD. HeymansS. GrieveD.J. CaveA.C. BrewerA.C. ZhangM. ShahA.M. Endothelial NADPH oxidase-2 promotes interstitial cardiac fibrosis and diastolic dysfunction through proinflammatory effects and endothelial-mesenchymal transition.J. Am. Coll. Cardiol.201463242734274110.1016/j.jacc.2014.02.57224681145
    [Google Scholar]
  101. SirkerA. MurdochC.E. ProttiA. SawyerG.J. SantosC.X.C. MartinD. ZhangX. BrewerA.C. ZhangM. ShahA.M. Cell-specific effects of Nox2 on the acute and chronic response to myocardial infarction.J. Mol. Cell. Cardiol.201698111710.1016/j.yjmcc.2016.07.00327397876
    [Google Scholar]
  102. DjordjevicT. BelAibaR.S. BonelloS. PfeilschifterJ. HessJ. GörlachA. Human urotensin II is a novel activator of NADPH oxidase in human pulmonary artery smooth muscle cells.Arterioscler. Thromb. Vasc. Biol.200525351952510.1161/01.ATV.0000154279.98244.eb15618545
    [Google Scholar]
  103. BouaboutG. Ayme-DietrichE. JacobH. ChampyM.F. BirlingM.C. PavlovicG. MadeiraL. FertakL.E. Petit-DemoulièreB. SorgT. HeraultY. MudgettJ. MonassierL. Nox4 genetic inhibition in experimental hypertension and metabolic syndrome.Arch. Cardiovasc. Dis.20181111415210.1016/j.acvd.2017.03.01129113787
    [Google Scholar]
  104. CowleyA.W.Jr YangC. ZheleznovaN.N. StaruschenkoA. KurthT. ReinL. KumarV. SadovnikovK. DaytonA. HoffmanM. RyanR.P. SkeltonM.M. SalehpourF. RanjiM. GeurtsA. Evidence of the importance of Nox4 in production of hypertension in dahl salt-sensitive rats.Hypertension201667244045010.1161/HYPERTENSIONAHA.115.0628026644237
    [Google Scholar]
  105. VishwakarmaV.K. ShahS. KaurT. SinghA.P. AravaS.K. KumarN. YadavR.K. YadavS. AroraT. YadavH.N. Effect of vinpocetine alone and in combination with enalapril in experimental model of diabetic cardiomyopathy in rats: Possible involvement of PDE-1/TGF-β/ Smad 2/3 signalling pathways.J. Pharm. Pharmacol.20237591198121110.1093/jpp/rgad04337229596
    [Google Scholar]
  106. GrayS.P. Di MarcoE. KennedyK. ChewP. OkabeJ. El-OstaA. CalkinA.C. BiessenE.A.L. TouyzR.M. CooperM.E. SchmidtH.H.H.W. Jandeleit-DahmK.A.M. Reactive oxygen species can provide atheroprotection via NOX4-dependent inhibition of inflammation and vascular remodeling.Arterioscler. Thromb. Vasc. Biol.201636229530710.1161/ATVBAHA.115.30701226715682
    [Google Scholar]
  107. MatsushimaS. KurodaJ. AgoT. ZhaiP. ParkJ.Y. XieL.H. TianB. SadoshimaJ. Increased oxidative stress in the nucleus caused by Nox4 mediates oxidation of HDAC4 and cardiac hypertrophy.Circ. Res.2013112465166310.1161/CIRCRESAHA.112.27976023271793
    [Google Scholar]
  108. ZhangM. BrewerA.C. SchröderK. SantosC.X.C. GrieveD.J. WangM. AnilkumarN. YuB. DongX. WalkerS.J. BrandesR.P. ShahA.M. NADPH oxidase-4 mediates protection against chronic load-induced stress in mouse hearts by enhancing angiogenesis.Proc. Natl. Acad. Sci. USA201010742181211812610.1073/pnas.100970010720921387
    [Google Scholar]
  109. SiuK.L. LotzC. PingP. CaiH. Netrin-1 abrogates ischemia/reperfusion-induced cardiac mitochondrial dysfunction via nitric oxide-dependent attenuation of NOX4 activation and recoupling of NOS.J. Mol. Cell. Cardiol.20157817418510.1016/j.yjmcc.2014.07.00525066694
    [Google Scholar]
  110. AgoT. KurodaJ. PainJ. FuC. LiH. SadoshimaJ. Upregulation of Nox4 by hypertrophic stimuli promotes apoptosis and mitochondrial dysfunction in cardiac myocytes.Circ. Res.201010671253126410.1161/CIRCRESAHA.109.21311620185797
    [Google Scholar]
  111. BrarS.S. CorbinZ. KennedyT.P. HemendingerR. ThorntonL. BommariusB. ArnoldR.S. WhortonA.R. SturrockA.B. HuecksteadtT.P. QuinnM.T. KrenitskyK. ArdieK.G. LambethJ.D. HoidalJ.R. NOX5 NAD(P)H oxidase regulates growth and apoptosis in DU 145 prostate cancer cells.Am. J. Physiol. Cell Physiol.20032852C353C36910.1152/ajpcell.00525.200212686516
    [Google Scholar]
  112. KawaharaT. LambethJ.D. Phosphatidylinositol (4,5)-bisphosphate modulates Nox5 localization via an N-terminal polybasic region.Mol. Biol. Cell200819104020403110.1091/mbc.e07‑12‑122318614798
    [Google Scholar]
  113. TouyzR.M. AnagnostopoulouA. RiosF. MontezanoA.C. CamargoL.L. NOX5: Molecular biology and pathophysiology.Exp. Physiol.2019104560561610.1113/EP08620430801870
    [Google Scholar]
  114. CasasA.I. KleikersP.W.M. GeussE. LanghauserF. AdlerT. BuschD.H. Gailus-DurnerV. de AngelisM.H. EgeaJ. LopezM.G. KleinschnitzC. SchmidtH.H.H.W. Calcium-dependent blood-brain barrier breakdown by NOX5 limits postreperfusion benefit in stroke.J. Clin. Invest.201912941772177810.1172/JCI12428330882367
    [Google Scholar]
  115. JhaJ.C. BanalC. OkabeJ. GrayS.P. HettigeT. ChowB.S.M. Thallas-BonkeV. De VosL. HoltermanC.E. CoughlanM.T. PowerD.A. SkeneA. EkinciE.I. CooperM.E. TouyzR.M. KennedyC.R. Jandeleit-DahmK. NADPH oxidase Nox5 accelerates renal injury in diabetic nephropathy.Diabetes201766102691270310.2337/db16‑158528747378
    [Google Scholar]
  116. MontezanoA.C. De Lucca CamargoL. PerssonP. RiosF.J. HarveyA.P. AnagnostopoulouA. PalaciosR. GandaraA.C.P. Alves-LopesR. NevesK.B. Dulak-LisM. HoltermanC.E. de OliveiraP.L. GrahamD. KennedyC. TouyzR.M. NADPH oxidase 5 is a pro-contractile Nox isoform and a point of cross-talk for calcium and redox signaling-implications in vascular function.J. Am. Heart Assoc.2018712e00938810.1161/JAHA.118.00938829907654
    [Google Scholar]
  117. ValavanidisA. VlachogianniT. FiotakisK. LoridasS. Pulmonary oxidative stress, inflammation and cancer: Respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms.Int. J. Environ. Res. Public Health20131093886390710.3390/ijerph1009388623985773
    [Google Scholar]
  118. ChatterjeeM SalujaR KannegantiS ChintaS DikshitM Biochemical and molecular evaluation of neutrophil NOS in spontaneously hypertensive rats.Cell Mol Biol Noisy--Gd Fr.20075318493
    [Google Scholar]
  119. PacherP. BeckmanJ.S. LiaudetL. Nitric oxide and peroxynitrite in health and disease.Physiol. Rev.200787131542410.1152/physrev.00029.200617237348
    [Google Scholar]
  120. DrögeW. Free radicals in the physiological control of cell function.Physiol. Rev.2002821479510.1152/physrev.00018.200111773609
    [Google Scholar]
  121. CerielloA. Possible role of oxidative stress in the pathogenesis of hypertension.Diabetes Care200831Suppl. 2S181S18410.2337/dc08‑s24518227482
    [Google Scholar]
  122. LiuJ.Q. ZelkoI.N. ErbynnE.M. ShamJ.S.K. FolzR.J. Hypoxic pulmonary hypertension: Role of superoxide and NADPH oxidase (gp91 phox ).Am. J. Physiol. Lung Cell. Mol. Physiol.20062901L2L1010.1152/ajplung.00135.200516085672
    [Google Scholar]
  123. IsmailS. SturrockA. WuP. CahillB. NormanK. HuecksteadtT. SandersK. KennedyT. HoidalJ. NOX4 mediates hypoxia-induced proliferation of human pulmonary artery smooth muscle cells: The role of autocrine production of transforming growth factor-β1 and insulin-like growth factor binding protein-3.Am. J. Physiol. Lung Cell. Mol. Physiol.20092963L489L49910.1152/ajplung.90488.200819036873
    [Google Scholar]
  124. FikeC.D. SlaughterJ.C. KaplowitzM.R. ZhangY. AschnerJ.L. Reactive oxygen species from NADPH oxidase contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension.Am. J. Physiol. Lung Cell. Mol. Physiol.20082955L881L88810.1152/ajplung.00047.200818757525
    [Google Scholar]
  125. MittalM. RothM. KönigP. HofmannS. DonyE. GoyalP. SelbitzA.C. SchermulyR.T. GhofraniH.A. KwapiszewskaG. KummerW. KlepetkoW. HodaM.A.R. FinkL. HänzeJ. SeegerW. GrimmingerF. SchmidtH.H.H.W. WeissmannN. Hypoxia-dependent regulation of nonphagocytic NADPH oxidase subunit NOX4 in the pulmonary vasculature.Circ. Res.2007101325826710.1161/CIRCRESAHA.107.14801517585072
    [Google Scholar]
  126. GupteS.A. WolinM.S. Oxidant and redox signaling in vascular oxygen sensing: Implications for systemic and pulmonary hypertension.Antioxid. Redox Signal.20081061137115210.1089/ars.2007.199518315496
    [Google Scholar]
  127. DieboldI. PetryA. HessJ. GörlachA. The NADPH oxidase subunit NOX4 is a new target gene of the hypoxia-inducible factor-1.Mol. Biol. Cell201021122087209610.1091/mbc.e09‑12‑100320427574
    [Google Scholar]
  128. ChenF. HaighS. BarmanS. FultonD.J.R. From form to function: The role of Nox4 in the cardiovascular system.Front. Physiol.2012341210.3389/fphys.2012.0041223125837
    [Google Scholar]
  129. NisbetR.E. BlandJ.M. KleinhenzD.J. MitchellP.O. WalpE.R. SutliffR.L. HartC.M. Rosiglitazone attenuates chronic hypoxia-induced pulmonary hypertension in a mouse model.Am. J. Respir. Cell Mol. Biol.201042448249010.1165/rcmb.2008‑0132OC19520921
    [Google Scholar]
  130. LuX. MurphyT.C. NanesM.S. HartC.M. PPARγ regulates hypoxia-induced Nox4 expression in human pulmonary artery smooth muscle cells through NF-κB.Am. J. Physiol. Lung Cell. Mol. Physiol.20102994L559L56610.1152/ajplung.00090.201020622120
    [Google Scholar]
  131. RajagopalanS. KurzS. MünzelT. TarpeyM. FreemanB.A. GriendlingK.K. HarrisonD.G. Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone.J. Clin. Invest.19969781916192310.1172/JCI1186238621776
    [Google Scholar]
  132. Farogh Ahsan Arshiya Shamim UpadhyayP.K. SrivastavR.K. AhsanF. ShamimA. Cramming the causative mechanism of glycogen synthase kinase-3β mediated by ischemic preconditioning against ovariectomy challenged rat heart.Int. J. Res. Pharmaceut. Sci.202112166967510.26452/ijrps.v12i1.4158
    [Google Scholar]
  133. NakaneH. MillerF.J.Jr FaraciF.M. ToyodaK. HeistadD.D. Gene transfer of endothelial nitric oxide synthase reduces angiotensin II-induced endothelial dysfunction.Hypertension200035259560110.1161/01.HYP.35.2.59510679503
    [Google Scholar]
  134. ZafariA.M. Ushio-FukaiM. AkersM. YinQ. ShahA. HarrisonD.G. TaylorW.R. GriendlingK.K. Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy.Hypertension199832348849510.1161/01.HYP.32.3.4889740615
    [Google Scholar]
  135. WindS. BeuerleinK. ArmitageM.E. TayeA. KumarA.H.S. JanowitzD. NeffC. ShahA.M. WinglerK. SchmidtH.H.H.W. Oxidative stress and endothelial dysfunction in aortas of aged spontaneously hypertensive rats by NOX1/2 is reversed by NADPH oxidase inhibition.Hypertension201056349049710.1161/HYPERTENSIONAHA.109.14918720606112
    [Google Scholar]
  136. DikalovaA. ClempusR. LassègueB. ChengG. McCoyJ. DikalovS. MartinA.S. LyleA. WeberD.S. WeissD. TaylorW.R. SchmidtH.H.H.W. OwensG.K. LambethJ.D. GriendlingK.K. Nox1 overexpression potentiates angiotensin II-induced hypertension and vascular smooth muscle hypertrophy in transgenic mice.Circulation2005112172668267610.1161/CIRCULATIONAHA.105.53893416230485
    [Google Scholar]
  137. GavazziG. DeffertC. TrocmeC. SchäppiM. HerrmannF.R. KrauseK.H. NOX1 deficiency protects from aortic dissection in response to angiotensin II.Hypertension200750118919610.1161/HYPERTENSIONAHA.107.08970617502491
    [Google Scholar]
  138. LaudeK. CaiH. FinkB. HochN. WeberD.S. McCannL. KojdaG. FukaiT. SchmidtH.H.H.W. DikalovS. RamasamyS. GamezG. GriendlingK.K. HarrisonD.G. Hemodynamic and biochemical adaptations to vascular smooth muscle overexpression of p22 phox in mice.Am. J. Physiol. Heart Circ. Physiol.20052881H7H1210.1152/ajpheart.00637.200415471976
    [Google Scholar]
  139. UpadhyayP.K. ThakurN. VishwakarmaV.K. ChaurasiyaH.S. AnsariT.M. Modulation of angiotensin-II and angiotensin 1-7 levels influences cardiac function in myocardial ischemia-reperfusion injury.Curr. Drug Res. Rev.20241610.2174/012589977528016024012206560738299413
    [Google Scholar]
  140. LandmesserU. CaiH. DikalovS. McCannL. HwangJ. JoH. HollandS.M. HarrisonD.G. Role of p47(phox) in vascular oxidative stress and hypertension caused by angiotensin II.Hypertension200240451151510.1161/01.HYP.0000032100.23772.9812364355
    [Google Scholar]
  141. LandmesserU. DikalovS. PriceS.R. McCannL. FukaiT. HollandS.M. MitchW.E. HarrisonD.G. Oxidation of tetrahydrobiopterin leads to uncoupling of endothelial cell nitric oxide synthase in hypertension.J. Clin. Invest.200311181201120910.1172/JCI20031417212697739
    [Google Scholar]
  142. KamaniC.H. AllenbachG. JreigeM. PavonA.G. MeyerM. TestartN. FirsovaM. Fernandes VieiraV. BoughdadS. Nicod LalondeM. SchaeferN. GueryB. MonneyP. PriorJ.O. TregliaG. Diagnostic performance of 18F-FDG PET/CT in native valve endocarditis: Systematic review and bivariate meta-analysis.Diagnostics (Basel)2020101075410.3390/diagnostics1010075432993032
    [Google Scholar]
  143. DikalovaA.E. GóngoraM.C. HarrisonD.G. LambethJ.D. DikalovS. GriendlingK.K. Upregulation of Nox1 in vascular smooth muscle leads to impaired endothelium-dependent relaxation via eNOS uncoupling.Am. J. Physiol. Heart Circ. Physiol.20102993H673H67910.1152/ajpheart.00242.201020639222
    [Google Scholar]
  144. TouyzR.M. MercureC. HeY. JaveshghaniD. YaoG. CalleraG.E. YogiA. LochardN. ReudelhuberT.L. Angiotensin II-dependent chronic hypertension and cardiac hypertrophy are unaffected by gp91phox-containing NADPH oxidase.Hypertension200545453053710.1161/01.HYP.0000158845.49943.5e15753233
    [Google Scholar]
  145. JungO. SchreiberJ.G. GeigerH. PedrazziniT. BusseR. BrandesR.P. gp91phox-containing NADPH oxidase mediates endothelial dysfunction in renovascular hypertension.Circulation2004109141795180110.1161/01.CIR.0000124223.00113.A415037533
    [Google Scholar]
  146. RayR. MurdochC.E. WangM. SantosC.X. ZhangM. Alom-RuizS. AnilkumarN. OuattaraA. CaveA.C. WalkerS.J. GrieveD.J. CharlesR.L. EatonP. BrewerA.C. ShahA.M. Endothelial Nox4 NADPH oxidase enhances vasodilatation and reduces blood pressure in vivo.Arterioscler. Thromb. Vasc. Biol.20113161368137610.1161/ATVBAHA.110.21923821415386
    [Google Scholar]
  147. TakacI. SchröderK. BrandesR.P. The Nox family of NADPH oxidases: Friend or foe of the vascular system?Curr. Hypertens. Rep.2012141707810.1007/s11906‑011‑0238‑322071588
    [Google Scholar]
  148. RajendranP. RengarajanT. ThangavelJ. NishigakiY. SakthisekaranD. SethiG. NishigakiI. The vascular endothelium and human diseases.Int. J. Biol. Sci.20139101057106910.7150/ijbs.750224250251
    [Google Scholar]
  149. KleinschnitzC. GrundH. WinglerK. ArmitageM.E. JonesE. MittalM. BaritD. SchwarzT. GeisC. KraftP. BarthelK. SchuhmannM.K. HerrmannA.M. MeuthS.G. StollG. MeurerS. SchreweA. BeckerL. Gailus-DurnerV. FuchsH. KlopstockT. de AngelisM.H. Jandeleit-DahmK. ShahA.M. WeissmannN. SchmidtH.H.H.W. Post-stroke inhibition of induced NADPH oxidase type 4 prevents oxidative stress and neurodegeneration.PLoS Biol.201089e100047910.1371/journal.pbio.100047920877715
    [Google Scholar]
  150. YogiA. MercureC. TouyzJ. CalleraG.E. MontezanoA.C.I. AranhaA.B. TostesR.C. ReudelhuberT. TouyzR.M. Renal redox-sensitive signaling, but not blood pressure, is attenuated by Nox1 knockout in angiotensin II-dependent chronic hypertension.Hypertension200851250050610.1161/HYPERTENSIONAHA.107.10319218195161
    [Google Scholar]
  151. SirkerA. ZhangM. ShahA.M. NADPH oxidases in cardiovascular disease: Insights from in vivo models and clinical studies.Basic Res. Cardiol.2011106573574710.1007/s00395‑011‑0190‑z21598086
    [Google Scholar]
  152. LassègueB. San MartínA. GriendlingK.K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system.Circ. Res.2012110101364139010.1161/CIRCRESAHA.111.24397222581922
    [Google Scholar]
  153. PerrottaI. AquilaS. The role of oxidative stress and autophagy in atherosclerosis.Oxid. Med. Cell. Longev.2015201511010.1155/2015/13031525866599
    [Google Scholar]
  154. FreyR.S. Ushio-FukaiM. MalikA.B. NADPH oxidase-dependent signaling in endothelial cells: Role in physiology and pathophysiology.Antioxid. Redox Signal.200911479181010.1089/ars.2008.222018783313
    [Google Scholar]
  155. Prieto-BermejoR. Hernández-HernándezA. The importance of NADPH oxidases and redox signaling in angiogenesis.Antioxidants2017623210.3390/antiox602003228505091
    [Google Scholar]
  156. LeeM.Y. MartinA.S. MehtaP.K. DikalovaA.E. GarridoA.M. DatlaS.R. LyonsE. KrauseK.H. BanfiB. LambethJ.D. LassègueB. GriendlingK.K. Mechanisms of vascular smooth muscle NADPH oxidase 1 (Nox1) contribution to injury-induced neointimal formation.Arterioscler. Thromb. Vasc. Biol.200929448048710.1161/ATVBAHA.108.18192519150879
    [Google Scholar]
  157. VendrovA.E. HakimZ.S. MadamanchiN.R. RojasM. MadamanchiC. RungeM.S. Atherosclerosis is attenuated by limiting superoxide generation in both macrophages and vessel wall cells.Arterioscler. Thromb. Vasc. Biol.200727122714272110.1161/ATVBAHA.107.15262917823367
    [Google Scholar]
  158. FörstermannU. XiaN. LiH. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis.Circ. Res.2017120471373510.1161/CIRCRESAHA.116.30932628209797
    [Google Scholar]
  159. YangS. ChenH. SuW. LuoY. LiaoJ. WangY. XiongL. ZhangC. LiF. ChenZ.S. WangT. Protective effects of Salvianic acid A against multiple-organ ischemia-reperfusion injury: A review.Front. Pharmacol.202314129712410.3389/fphar.2023.129712438089048
    [Google Scholar]
  160. TakacI. SchröderK. ZhangL. LardyB. AnilkumarN. LambethJ.D. ShahA.M. MorelF. BrandesR.P. The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4.J. Biol. Chem.201128615133041331310.1074/jbc.M110.19213821343298
    [Google Scholar]
  161. FultonD.J.R. BarmanS.A. Clarity on the isoform-specific roles of NADPH oxidases and NADPH oxidase-4 in atherosclerosis.Arterioscler. Thromb. Vasc. Biol.201636457958110.1161/ATVBAHA.116.30709627010024
    [Google Scholar]
  162. Di MarcoE. GrayS.P. KennedyK. SzyndralewiezC. LyleA.N. LassègueB. GriendlingK.K. CooperM.E. SchmidtH.H.H.W. Jandeleit-DahmK.A.M. NOX4-derived reactive oxygen species limit fibrosis and inhibit proliferation of vascular smooth muscle cells in diabetic atherosclerosis.Free Radic. Biol. Med.20169755656710.1016/j.freeradbiomed.2016.07.01327445103
    [Google Scholar]
  163. NishimuraA. AgoT. KurodaJ. ArimuraK. TachibanaM. NakamuraK. WakisakaY. SadoshimaJ. IiharaK. KitazonoT. Detrimental role of pericyte Nox4 in the acute phase of brain ischemia.J. Cereb. Blood Flow Metab.20163661143115410.1177/0271678X1560645626661159
    [Google Scholar]
  164. PoznyakA.V. GrechkoA.V. OrekhovaV.A. KhotinaV. IvanovaE.A. OrekhovA.N. NADPH oxidases and their role in atherosclerosis.Biomedicines20208720610.3390/biomedicines807020632664404
    [Google Scholar]
  165. BurtenshawD. HakimjavadiR. RedmondE. CahillP. Nox, reactive oxygen species and regulation of vascular cell fate.Antioxidants2017649010.3390/antiox604009029135921
    [Google Scholar]
  166. AguadoA. FischerT. RodríguezC. ManeaA. Martínez-GonzálezJ. TouyzR.M. HernanzR. AlonsoM.J. DixonD.A. BrionesA.M. SalaicesM. Hu antigen R is required for NOX-1 but not NOX-4 regulation by inflammatory stimuli in vascular smooth muscle cells.J. Hypertens.201634225326510.1097/HJH.000000000000080126682942
    [Google Scholar]
  167. ValenteA.J. YoshidaT. MurthyS.N. SakamuriS.S.V.P. KatsuyamaM. ClarkR.A. DelafontaineP. ChandrasekarB. Angiotensin II enhances AT 1 -Nox1 binding and stimulates arterial smooth muscle cell migration and proliferation through AT 1, Nox1, and interleukin-18.Am. J. Physiol. Heart Circ. Physiol.20123033H282H29610.1152/ajpheart.00231.201222636674
    [Google Scholar]
  168. García-RedondoA.B. AguadoA. BrionesA.M. SalaicesM. NADPH oxidases and vascular remodeling in cardiovascular diseases.Pharmacol. Res.201611411012010.1016/j.phrs.2016.10.01527773825
    [Google Scholar]
  169. VendrovA.E. SumidaA. CanugoviC. LozhkinA. HayamiT. MadamanchiN.R. RungeM.S. NOXA1-dependent NADPH oxidase regulates redox signaling and phenotype of vascular smooth muscle cell during atherogenesis.Redox Biol.20192110106310.1016/j.redox.2018.11.02130576919
    [Google Scholar]
  170. MaxwellS.R.J. LipG.Y.H. Reperfusion injury: A review of the pathophysiology, clinical manifestations and therapeutic options.Int. J. Cardiol.19975829511710.1016/S0167‑5273(96)02854‑99049675
    [Google Scholar]
  171. EltzschigH.K. CollardC.D. Vascular ischaemia and reperfusion injury.Br. Med. Bull.2004701718610.1093/bmb/ldh02515494470
    [Google Scholar]
  172. KrijnenP A J. MeischlC. HackC.E. MeijerC.J. VisserC.A. RoosD. NiessenH.W. Increased Nox2 expression in human cardiomyocytes after acute myocardial infarction.J. Clin. Pathol.200356319419910.1136/jcp.56.3.19412610097
    [Google Scholar]
  173. LiZ. ZhangX. LiuS. ZengS. YuL. YangG. GuoJ. XuY. BRG1 regulates NOX gene transcription in endothelial cells and contributes to cardiac ischemia-reperfusion injury.Biochim. Biophys. Acta Mol. Basis Dis.20181864103477348610.1016/j.bbadis.2018.08.00230293567
    [Google Scholar]
  174. YuQ. LeeC.F. WangW. KaramanlidisG. KurodaJ. MatsushimaS. SadoshimaJ. TianR. Elimination of NADPH oxidase activity promotes reductive stress and sensitizes the heart to ischemic injury.J. Am. Heart Assoc.201431e00055510.1161/JAHA.113.00055524470522
    [Google Scholar]
  175. NarravulaS ColganSP Hypoxia-inducible factor 1-mediated inhibition of peroxisome proliferator-activated receptor alpha expression during hypoxia.J Immunol Baltim Md 1950.200116661275438
    [Google Scholar]
  176. BraunersreutherV. JaquetV. Reactive oxygen species in myocardial reperfusion injury: From physiopathology to therapeutic approaches.Curr. Pharm. Biotechnol.20121319711410.2174/13892011279886878221470157
    [Google Scholar]
  177. MoensA.L. ChampionH.C. ClaeysM.J. TavazziB. KaminskiP.M. WolinM.S. BorgonjonD.J. Van NassauwL. HaileA. ZvimanM. BedjaD. WuytsF.L. ElsaesserR.S. CosP. GabrielsonK.L. LazzarinoG. PaolocciN. TimmermansJ.P. VrintsC.J. KassD.A. High-dose folic acid pretreatment blunts cardiac dysfunction during ischemia coupled to maintenance of high-energy phosphates and reduces postreperfusion injury.Circulation2008117141810181910.1161/CIRCULATIONAHA.107.72548118362233
    [Google Scholar]
  178. Barry-LaneP.A. PattersonC. van der MerweM. HuZ. HollandS.M. YehE.T.H. RungeM.S. p47phox is required for atherosclerotic lesion progression in ApoE–/– mice.J. Clin. Invest.2001108101513152210.1172/JCI20011192711714743
    [Google Scholar]
  179. WinglerK. WünschS. KreutzR. RothermundL. PaulM. SchmidtH.H.H.W. Upregulation of the vascular NAD(P)H-oxidase isoforms Nox1 and Nox4 by the renin-angiotensin system in vitro and in vivo.Free Radic. Biol. Med.200131111456146410.1016/S0891‑5849(01)00727‑411728818
    [Google Scholar]
  180. BendallJ.K. RinzeR. AdlamD. TathamA.L. de BonoJ. ChannonK.M. VolpiE. ChannonK.M. Endothelial Nox2 overexpression potentiates vascular oxidative stress and hemodynamic response to angiotensin II: Studies in endothelial-targeted Nox2 transgenic mice.Circ. Res.200710071016102510.1161/01.RES.0000263381.83835.7b17363703
    [Google Scholar]
  181. DouglasG. BendallJ.K. CrabtreeM.J. TathamA.L. CarterE.E. HaleA.B. ChannonK.M. Endothelial-specific Nox2 overexpression increases vascular superoxide and macrophage recruitment in ApoE−/− mice.Cardiovasc. Res.2012941202910.1093/cvr/cvs02622287576
    [Google Scholar]
  182. KurodaJ. AgoT. MatsushimaS. ZhaiP. SchneiderM.D. SadoshimaJ. NADPH oxidase 4 (Nox4) is a major source of oxidative stress in the failing heart.Proc. Natl. Acad. Sci. USA201010735155651557010.1073/pnas.100217810720713697
    [Google Scholar]
  183. ZhangY. ShimizuH. SiuK.L. MahajanA. ChenJ.N. CaiH. NADPH oxidase 4 induces cardiac arrhythmic phenotype in zebrafish.J. Biol. Chem.201428933232002320810.1074/jbc.M114.58719624962575
    [Google Scholar]
  184. SchürmannC. RezendeF. KruseC. YasarY. LöweO. ForkC. van de SluisB. BremerR. WeissmannN. ShahA.M. JoH. BrandesR.P. SchröderK. The NADPH oxidase Nox4 has anti-atherosclerotic functions.Eur. Heart J.201536483447345610.1093/eurheartj/ehv46026385958
    [Google Scholar]
  185. CraigeS.M. KantS. ReifM. ChenK. PeiY. AngoffR. SugamuraK. FitzgibbonsT. KeaneyJ.F.Jr Endothelial NADPH oxidase 4 protects ApoE-/- mice from atherosclerotic lesions.Free Radic. Biol. Med.2015891710.1016/j.freeradbiomed.2015.07.00426169727
    [Google Scholar]
  186. CooperJ.M. PettyR.K.H. HayesD.J. Morgan-HughestJ.A. ClarkJ.B. Chronic administration of the oral hypoglycaemic agent diphenyleneiodonium to rats.Biochem. Pharmacol.198837468769410.1016/0006‑2952(88)90143‑83342100
    [Google Scholar]
  187. QinS. SchulteB.A. WangG.Y. Role of senescence induction in cancer treatment.World J. Clin. Oncol.20189818018710.5306/wjco.v9.i8.18030622926
    [Google Scholar]
  188. JeenaM.T. KimS. JinS. RyuJ.H. Recent progress in mitochondria-targeted drug and drug-free agents for cancer therapy.Cancers (Basel)2019121410.3390/cancers1201000431861339
    [Google Scholar]
  189. ’t HartB.A. CoprayS. PhilippensI. Apocynin, a low molecular oral treatment for neurodegenerative disease.BioMed Res. Int.2014201429802025140304
    [Google Scholar]
  190. YangT. ZangD.W. ShanW. GuoA.C. WuJ.P. WangY.J. WangQ. Synthesis and evaluations of novel apocynin derivatives as anti-glioma agents.Front. Pharmacol.20191095110.3389/fphar.2019.0095131551769
    [Google Scholar]
  191. HeumüllerS. WindS. Barbosa-SicardE. SchmidtH.H.H.W. BusseR. SchröderK. BrandesR.P. Apocynin is not an inhibitor of vascular NADPH oxidases but an antioxidant.Hypertension200851221121710.1161/HYPERTENSIONAHA.107.10021418086956
    [Google Scholar]
  192. KimB.Y. ParkH.R. ShinJ.H. KimS.W. ChoJ.H. ParkY.J. KimS.W. The serine protease inhibitor, 4-(2-aminoethyl) benzene sulfonyl fluoride hydrochloride, reduces allergic inflammation in a house dust mite allergic rhinitis mouse model.Allergy Asthma Immunol. Res.20146655856610.4168/aair.2014.6.6.55825374756
    [Google Scholar]
  193. QinF SiwikDA LuptakI HouX WangL HiguchiA The polyphenols resveratrol and S17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice.Circulation.20121251417576410.1161/CIRCULATIONAHA.111.067801
    [Google Scholar]
  194. LiY. XuS. MihaylovaM.M. ZhengB. HouX. JiangB. ParkO. LuoZ. LefaiE. ShyyJ.Y.J. GaoB. WierzbickiM. VerbeurenT.J. ShawR.J. CohenR.A. ZangM. AMPK phosphorylates and inhibits SREBP activity to attenuate hepatic steatosis and atherosclerosis in diet-induced insulin-resistant mice.Cell Metab.201113437638810.1016/j.cmet.2011.03.00921459323
    [Google Scholar]
  195. WilleyJ.Z. ElkindM.S.V. 3-Hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors in the treatment of central nervous system diseases.Arch. Neurol.20106791062106710.1001/archneurol.2010.19920837848
    [Google Scholar]
  196. KotylaP. The role of 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins) in modern rheumatology.Ther. Adv. Musculoskelet. Dis.20102525726910.1177/1759720X1038430722870452
    [Google Scholar]
  197. DierkesR. WarnkingK. LiedmannS. SeyerR. LudwigS. EhrhardtC. The Rac1 inhibitor NSC23766 exerts anti-influenza virus properties by affecting the viral polymerase complex activity.PLoS One201492e8852010.1371/journal.pone.008852024523909
    [Google Scholar]
  198. VeluthakalR. SidaralaV. KowluruA. NSC23766, a known inhibitor of tiam1-rac1 signaling module, prevents the onset of type 1 diabetes in the NOD mouse model.Cell. Physiol. Biochem.201639276076710.1159/00044566627467102
    [Google Scholar]
  199. LuW.J. LiJ.Y. ChenR.J. HuangL.T. LeeT.Y. LinK.H. VAS2870 and VAS3947 attenuate platelet activation and thrombus formation via a NOX-independent pathway downstream of PKC.Sci. Rep.2019911885210.1038/s41598‑019‑55189‑531827142
    [Google Scholar]
  200. NieswandtB. PleinesI. BenderM. Platelet adhesion and activation mechanisms in arterial thrombosis and ischaemic stroke.J. Thromb. Haemost.20119Suppl. 19210410.1111/j.1538‑7836.2011.04361.x21781245
    [Google Scholar]
  201. MayA.E. SeizerP. GawazM. Platelets: Inflammatory firebugs of vascular walls.Arterioscler. Thromb. Vasc. Biol.2008283s5s1010.1161/ATVBAHA.107.15891518174454
    [Google Scholar]
  202. StokesK.Y. RussellJ.M. JenningsM.H. AlexanderJ.S. GrangerD.N. Platelet-associated NAD(P)H oxidase contributes to the thrombogenic phenotype induced by hypercholesterolemia.Free Radic. Biol. Med.2007431223010.1016/j.freeradbiomed.2007.02.02717561090
    [Google Scholar]
  203. Ardila-LealL.D. Poutou-PiñalesR.A. Pedroza-RodríguezA.M. Quevedo-HidalgoB.E. A brief history of colour, the environmental impact of synthetic dyes and removal by using laccases.Molecules20212613381310.3390/molecules2613381334206669
    [Google Scholar]
  204. DhimanM. GargN.J. NADPH oxidase inhibition ameliorates Trypanosoma cruzi-induced myocarditis during Chagas disease.J. Pathol.2011225458359610.1002/path.297521952987
    [Google Scholar]
  205. AltenhöferS. RadermacherK.A. KleikersP.W.M. WinglerK. SchmidtH.H.H.W. Evolution of NADPH oxidase inhibitors: Selectivity and mechanisms for target engagement.Antioxid. Redox Signal.201523540642710.1089/ars.2013.581424383718
    [Google Scholar]
  206. HuangX. XiaokaitiY. YangJ. PanJ. LiZ. LuriaV. LiY. SongG. ZhuX. ZhangH.T. O’DonnellJ.M. XuY. Inhibition of phosphodiesterase 2 reverses gp91phox oxidase-mediated depression- and anxiety-like behavior.Neuropharmacology201814317618510.1016/j.neuropharm.2018.09.03930268520
    [Google Scholar]
  207. KimJ.A. NeupaneG.P. LeeE.S. JeongB.S. ParkB.C. ThapaP. NADPH oxidase inhibitors: A patent review.Expert Opin. Ther. Pat.20112181147115810.1517/13543776.2011.58487021554154
    [Google Scholar]
  208. DieboldB.A. SmithS.M.E. LiY. LambethJ.D. NOX2 as a target for drug development: Indications, possible complications, and progress.Antioxid. Redox Signal.201523537540510.1089/ars.2014.586224512192
    [Google Scholar]
  209. ChenQ. DevineI. WalkerS. PhamH. OndrasikR. PatelH. ChauW. ParkerC.W. BartolK.D. RiahiS. MittalA. BarsottiR. YoungL. Nox2ds-tat, a peptide inhibitor of NADPH oxidase, exerts cardioprotective effects by attenuating reactive oxygen species during ischemia/reperfusion injury.Am. J. Biomed. Sci.20168320822710.5099/aj160300208
    [Google Scholar]
  210. RanayhossainiD.J. RodriguezA.I. SahooS. ChenB.B. MallampalliR.K. KelleyE.E. CsanyiG. GladwinM.T. RomeroG. PaganoP.J. Selective recapitulation of conserved and nonconserved regions of putative NOXA1 protein activation domain confers isoform-specific inhibition of Nox1 oxidase and attenuation of endothelial cell migration.J. Biol. Chem.201328851364373645010.1074/jbc.M113.52134424187133
    [Google Scholar]
  211. GrayS.P. JhaJ.C. KennedyK. van BommelE. ChewP. SzyndralewiezC. TouyzR.M. SchmidtH.H.H.W. CooperM.E. Jandeleit-DahmK.A.M. Combined NOX1/4 inhibition with GKT137831 in mice provides dose-dependent reno- and atheroprotection even in established micro- and macrovascular disease.Diabetologia201760592793710.1007/s00125‑017‑4215‑528160092
    [Google Scholar]
  212. UrnerS. HoF. JhaJ.C. ZieglerD. Jandeleit-DahmK. NADPH oxidase inhibition: Preclinical and clinical studies in diabetic complications.Antioxid. Redox Signal.202033641543410.1089/ars.2020.804732008354
    [Google Scholar]
  213. BabiorB.M. NADPH oxidase.Curr. Opin. Immunol.2004161424710.1016/j.coi.2003.12.00114734109
    [Google Scholar]
  214. SchildknechtS. WeberA. GerdingH. PapeR. RobottaM. DrescherM. MarquardtA. DaiberA. FergerB. LeistM. The NOX1/4 inhibitor GKT136901 as selective and direct scavenger of peroxynitrite.Curr. Med. Chem.201321336537610.2174/0929867311320999017923848532
    [Google Scholar]
  215. JhaJ.C. BanalC. ChowB.S.M. CooperM.E. Jandeleit-DahmK. Diabetes and kidney disease: Role of oxidative stress.Antioxid. Redox Signal.2016251265768410.1089/ars.2016.666426906673
    [Google Scholar]
  216. LiaoJ. PengB. HuangG. DiaoC. QinY. HongY. LinJ. LinY. JiangL. TangN. TangF. LiangJ. ZhangJ. YanY. ChenQ. ZhouZ. ShenC. HuangW. HuangK. LanQ. CuiL. ZhongH. XuF. LiM. WeiY. LuP. ZhangM. Inhibition of NOX4 with GLX351322 alleviates acute ocular hypertension-induced retinal inflammation and injury by suppressing ROS mediated redox-sensitive factors activation.Biomed. Pharmacother.202316511505210.1016/j.biopha.2023.11505237399715
    [Google Scholar]
  217. ZhangY. MurugesanP. HuangK. CaiH. NADPH oxidases and oxidase crosstalk in cardiovascular diseases: Novel therapeutic targets.Nat. Rev. Cardiol.202017317019410.1038/s41569‑019‑0260‑831591535
    [Google Scholar]
  218. WangX. ElksnisA. WikströmP. WalumE. WelshN. CarlssonP.O. The novel NADPH oxidase 4 selective inhibitor GLX7013114 counteracts human islet cell death in vitro.PLoS One2018139e020427110.1371/journal.pone.020427130265686
    [Google Scholar]
  219. DionysopoulouS. WikströmP. BucoloC. RomanoG.L. MicaleV. SvenssonR. SpyridakosD. MastrodimouN. GeorgakisS. VerginisP. WalumE. ThermosK. Topically administered NOX4 inhibitor, GLX7013114, is efficacious in treating the early pathological events of diabetic retinopathy.Diabetes202372563865210.2337/db22‑051536821829
    [Google Scholar]
  220. KuhnsD.B. AlvordW.G. HellerT. FeldJ.J. PikeK.M. MarcianoB.E. UzelG. DeRavinS.S. PrielD.A.L. SouleB.P. ZaremberK.A. MalechH.L. HollandS.M. GallinJ.I. Residual NADPH oxidase and survival in chronic granulomatous disease.N. Engl. J. Med.2010363272600261010.1056/NEJMoa100709721190454
    [Google Scholar]
  221. de OliveiraM.G. MonicaF.Z. PassosG.R. VictorioJ.A. DavelA.P. OliveiraA.L.L. ParadaC.A. D’AnconaC.A.L. HillW.G. AntunesE. Selective pharmacological inhibition of NOX2 by GSK2795039 improves bladder dysfunction in cyclophosphamide-induced cystitis in mice.Antioxidants20221219210.3390/antiox1201009236670953
    [Google Scholar]
  222. ZielonkaJ. ZielonkaM. VerPlankL. ChengG. HardyM. OuariO. AyhanM.M. PodsiadłyR. SikoraA. LambethJ.D. KalyanaramanB. Mitigation of NADPH oxidase 2 activity as a strategy to inhibit peroxynitrite formation.J. Biol. Chem.2016291137029704410.1074/jbc.M115.70278726839313
    [Google Scholar]
  223. PadilhaE.C. ShahP. RaiG. XuX. NOX2 inhibitor GSK2795039 metabolite identification towards drug optimization.J. Pharm. Biomed. Anal.202120111410210.1016/j.jpba.2021.11410233992989
    [Google Scholar]
  224. NohM.H. LeeD.K. KimY.S. KimH.Y. MoonS.H. HanS.Y. HurD.Y. APX-115A, a pan-NADPH oxidase inhibitor, reduces the degree and incidence rate of dry eye in the STZ-induced diabetic rat model.Exp. Ther. Med.202325519410.3892/etm.2023.1189337090081
    [Google Scholar]
  225. KwonG. UddinM.J. LeeG. JiangS. ChoA. LeeJ.H. LeeS.R. BaeY.S. MoonS.H. LeeS.J. ChaD.R. HaH. A novel pan-Nox inhibitor, APX-115, protects kidney injury in streptozotocin-induced diabetic mice: Possible role of peroxisomal and mitochondrial biogenesis.Oncotarget2017843742177423210.18632/oncotarget.1854029088780
    [Google Scholar]
  226. LeeH.E. ShimS. ChoiY. BaeY.S. NADPH oxidase inhibitor development for diabetic nephropathy through water tank model.Kidney Res. Clin. Pract.202241Suppl. 2S89S9810.23876/j.krcp.21.26935977907
    [Google Scholar]
/content/journals/cvp/10.2174/0115701611308870240910115023
Loading
/content/journals/cvp/10.2174/0115701611308870240910115023
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test