Skip to content
2000
Volume 4, Issue 1
  • ISSN: 2950-3779
  • E-ISSN: 2950-3787

Abstract

Pharmacovigilance (PV) is a data-driven method that quickly identifies medication safety risks by processing reports of suspected Adverse Events (AEs) and extracting health data. The first steps in the PV case processing cycle include data collection, data entry, coding, preliminary validity and completeness checks, and medical evaluation for severity, seriousness, expectation, and causality. Afterward, a report is submitted, quality is checked, and data storage and maintenance are performed. This process is costly and time-consuming, as it requires both a workforce and technology. Conversely, artificial intelligence (AI) is used to reduce this time investment and increase data accuracy. AI includes machine learning methods like deep learning and natural language processing, which can recognize and retrieve information on adverse drug occurrences. By doing so, it is possible to optimize the pharmacovigilance process and improve the tracking of documented adverse medication occurrences. AI's advancement in pharmacovigilance raises concerns about potential changes in drug safety professionals' roles, prompting curiosity about their future in an AI-assisted workplace. Artificial Intelligence (AI) should augment human intelligence, not replace human specialists. It's crucial to highlight and ensure AI improves PV more than it causes problems. The pharmaceutical business faces significant obstacles and opportunities, especially when it comes to implementing and employing advanced Information Technology (IT) in Pharmaceutical Monitoring Systems (PMS). Automation improves PV in several ways (., boosting data quality or improving consistency). Several themes are discussed, outlining the challenges encountered, exploring potential solutions, and emphasizing the need for further research. The accepted use case involves automating the workflow in the case of ICRS.

Loading

Article metrics loading...

/content/journals/cucs/10.2174/0129503779340108241226103521
2025-01-01
2025-09-02
Loading full text...

Full text loading...

References

  1. McbrideW.G. Thalidomide and congenital abnormalities.Lancet19612787216135810.1016/S0140‑6736(61)90927‑8
    [Google Scholar]
  2. OlssonS. The role of the WHO programme on international drug monitoring in coordinating worldwide drug safety efforts.Drug Safety199819111010.2165/00002018‑199819010‑00001
    [Google Scholar]
  3. EdwardsIR OlssonS The WHO international drug monitoring programme.Side Effects of Drugs Annual.Elsevier20032654855710.1016/S0378‑6080(03)80057‑0
    [Google Scholar]
  4. BégaudB. ChaslerieA. HaramburuF. Organization and results of drug vigilance in France.Rev. Epidemiol. Sante Publique19944254164237973001
    [Google Scholar]
  5. HamidA.A.A. RahimR. TeoS.P. Pharmacovigilance and its importance for primary health care professionals.Korean J. Fam. Med.202243529029510.4082/kjfm.21.019336168900
    [Google Scholar]
  6. LuoY. ThompsonW.K. HerrT.M. ZengZ. BerendsenM.A. JonnalagaddaS.R. CarsonM.B. StarrenJ. Natural language processing for EHR-based pharmacovigilance: A structured review.Drug Saf.201740111075108910.1007/s40264‑017‑0558‑628643174
    [Google Scholar]
  7. JeetuG. AnushaG. Pharmacovigilance: A worldwide master key for drug safety monitoring.J. Young Pharm.20102331532010.4103/0975‑1483.6680221042493
    [Google Scholar]
  8. LiQ. XieP. Outpatient workload in China.Lancet201338198821983198410.1016/S0140‑6736(13)61198‑823746895
    [Google Scholar]
  9. LinderJ.A. HaasJ.S. IyerA. LabuzettaM.A. IbaraM. CelesteM. GettyG. BatesD.W. Secondary use of electronic health record data: Spontaneous triggered adverse drug event reporting.Pharmacoepidemiol. Drug Saf.201019121211121510.1002/pds.202721155192
    [Google Scholar]
  10. ZhouY. MillerV. HoganM. CallahanL. An overview of adverse drug reaction monitoring in China.Int. J. Pharm. Med.2006202798510.2165/00124363‑200620020‑00001
    [Google Scholar]
  11. SharrarR.G. DieckG.S. Monitoring product safety in the postmarketing environment.Ther. Adv. Drug Saf.20134521121910.1177/204209861349078025114782
    [Google Scholar]
  12. DesaiM.K. Artificial intelligence in pharmacovigilance – Opportunities and challenges.Perspect. Clin. Res.202415311612110.4103/picr.picr_290_2339140015
    [Google Scholar]
  13. AronsonJ.K. Artificial intelligence in pharmacovigilance: An introduction to terms, concepts, applications, and limitations.Drug Saf.202245540741810.1007/s40264‑022‑01156‑535579806
    [Google Scholar]
  14. HaubenM. HartfordC.G. Artificial intelligence in pharmacovigilance: Scoping points to consider.Clin. Ther.202143237237910.1016/j.clinthera.2020.12.01433478803
    [Google Scholar]
  15. SyrowatkaA. SongW. Key use cases for artificial intelligence to reduce the frequency of adverse drug events: A scoping reviewThe Lan. Dig. Health202242e137e14810.1016/S2589‑7500(21)00229‑6
    [Google Scholar]
  16. Council for International Organisations of Medical SciencesBenefitrisk balance for marketed drugs: Evaluating safety signals report of CIOMS working group IV.Available from: https://cioms.ch/wp-content/uploads/2017/01/benefit-risk.pdf 1998
  17. Nascimentod.F.M. SilukM.J.C. Saviand.S.F. GarletB.T. PinheiroR.J. RamosC. Factors for measuring photovoltaic adoption from the perspective of operators.Sustainability2020128318410.3390/su12083184
    [Google Scholar]
  18. PriceJ. What can big data offer the pharmacovigilance of orphan drugs?Clin. Ther.201638122533254510.1016/j.clinthera.2016.11.00927914633
    [Google Scholar]
  19. LavertuA. VoraB. GiacominiK.M. AltmanR. RensiS. A new era in pharmacovigilance: Toward real‐world data and digital monitoring.Clin. Pharmacol. Ther.202110951197120210.1002/cpt.217233492663
    [Google Scholar]
  20. HanM. The application of Big Data in pharmacovigilance: A systematic review.Proceedings of the 2021 International Conference on Public Art and Human Development ( ICPAHD 2021)Atlantis Press28 January202253353710.2991/assehr.k.220110.102
    [Google Scholar]
  21. WongJ. AlhambraP.D. RijnbeekP.R. DesaiR.J. RepsJ.M. TohS. Applying machine learning in distributed data networks for pharmacoepidemiologic and pharmacovigilance studies: Opportunities, challenges, and considerations.Drug Saf.202245549351010.1007/s40264‑022‑01158‑335579813
    [Google Scholar]
  22. YangS. KarS. Application of artificial intelligence and machine learning in early detection of adverse drug reactions (ADRs) and drug-induced toxicity.Art. Int. Chem.20231210001110.1016/j.aichem.2023.100011
    [Google Scholar]
  23. KimH.R. SungM. ParkJ.A. JeongK. KimH.H. LeeS. ParkY.R. Analyzing adverse drug reaction using statistical and machine learning methods.Medicine202210125e2938710.1097/MD.000000000002938735758373
    [Google Scholar]
  24. TrifiròG. A new era of pharmacovigilance: Future challenges and opportunities.Front. Drug Safety Regul.20222866898
    [Google Scholar]
  25. BateA. HobbigerS.F. Artificial intelligence, real-world automation and the safety of medicines.Drug Saf.202144212513210.1007/s40264‑020‑01001‑733026641
    [Google Scholar]
  26. LiangL. HuJ. SunG. HongN. WuG. HeY. LiY. HaoT. LiuL. GongM. Artificial intelligence-based pharmacovigilance in the setting of limited resources.Drug Saf.202245551151910.1007/s40264‑022‑01170‑735579814
    [Google Scholar]
  27. TrifiròG. CrisafulliS. A new era of pharmacovigilance: Future challenges and opportunities.Front. Drug Saf. Regul.2022286689810.3389/fdsfr.2022.866898
    [Google Scholar]
  28. WangX. HripcsakG. MarkatouM. FriedmanC. Active computerized pharmacovigilance using natural language processing, statistics, and electronic health records: A feasibility study.J. Am. Med. Inform. Assoc.200916332833710.1197/jamia.M302819261932
    [Google Scholar]
  29. StreeflandM.B. Why are we still creating individual case safety reports?Clin. Ther.201840121973198010.1016/j.clinthera.2018.10.01230420290
    [Google Scholar]
  30. GuptaS.K. Role of Pharmacovigilance in ensuring safety of patients.Ind. J. Med. Special.201562394510.1016/j.injms.2015.06.001
    [Google Scholar]
  31. VCR PD AS ChR KC Automation in pharmacovigilance: Artificial intelligence and machine learning for patient safety.J. Inn. App. Pharma. Sci.202273118122
    [Google Scholar]
  32. BhatiV NandaveM KumarA PanditaD. Databases used in pharmacovigilance across the globe.Pharmacovigilance Essentials: Advances, Challenges and Global Perspectives.Springer Nature Singapore2024557710.1007/978‑981‑99‑8949‑2_3
    [Google Scholar]
  33. AlmenoffJ. TonningJ.M. GouldA.L. SzarfmanA. HaubenM. HellstromO.R. BallR. HornbuckleK. WalshL. YeeC. SacksS.T. YuenN. PatadiaV. BlumM. JohnstonM. GerritsC. SeifertH. LaCroixK. Perspectives on the use of data mining in pharmaco-vigilance.Drug Saf.20052811981100710.2165/00002018‑200528110‑0000216231953
    [Google Scholar]
  34. LihiteR.J. LahkarM. An update on the pharmacovigilance programme of India.Front. Pharmacol.2015619410.3389/fphar.2015.0019426441651
    [Google Scholar]
  35. MadhushikaM.T. WeerarathnaT.P. LiyanageP.L.G.C. JayasingheS.S. Evolution of adverse drug reactions reporting systems: Paper based to software based.Eur. J. Clin. Pharmacol.20227891385139010.1007/s00228‑022‑03358‑335788724
    [Google Scholar]
  36. BergvallT. NorénG.N. LindquistM. VigiGrade: A tool to identify well-documented individual case reports and highlight systematic data quality issues.Drug Saf.2014371657710.1007/s40264‑013‑0131‑x24343765
    [Google Scholar]
  37. European CommissionCommission implementing regulation (EU) No. 520/2012.Available from: https://eur-lex.europa.eu/eli/reg_impl/2012/520/oj 2012
  38. US Food and Drug Administration (FDA)Expedited safety reporting requirements for human drug and biological products.Available from: https://www.fda.gov/science-research/clinical-trials-and-human-subject-protection/expedited-safety-reporting-requirements-human-drug-and-biological-products 2015
  39. European parliament and the council of Europe. Directive 2010/84/EU.Available from: https://health.ec.europa.eu/medicinal-products/eudralex/eudralex-volume-1_en 2014
  40. European CommissionImplementing Regulation (EU) 520/2012.Available from: https://eur-lex.europa.eu/eli/reg_impl/2012/520/oj 2012
  41. GorchakovA.V. DemidovaL.A. SovietovP.N. A rule-based algorithm and its specializations for measuring the complexity of software in educational digital environments.Computers20241337510.3390/computers13030075
    [Google Scholar]
  42. European medicines agency (2017) Guideline on good pharmacovigilance practices (GVP).Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2013/05/WC500143294.pdf 2017
  43. GrossC.P. MalloryR. HeiatA. KrumholzH.M. Reporting the recruitment process in clinical trials: Who are these patients and how did they get there?Ann. Intern. Med.20021371101610.7326/0003‑4819‑137‑1‑200207020‑0000712093240
    [Google Scholar]
  44. McbrideW.G. Thalidomide and congenital malformations.Lancet19612787216135810.1016/S0140‑6736(61)90927‑8
    [Google Scholar]
  45. MackayF.J. Post-marketing studies.Drug Saf.199819534335310.2165/00002018‑199819050‑000029825948
    [Google Scholar]
  46. MannR.D. Prescription‐event monitoring—recent progress and future horizons.Br. J. Clin. Pharmacol.199846319520110.1046/j.1365‑2125.1998.00774.x9764958
    [Google Scholar]
  47. StromB.L. Pharmacoepidemiology.4th edChichesterWiley2005
    [Google Scholar]
  48. CIOMS Benefit risk balance for marketed drugs: Evaluating safety signals.Geneva1998
    [Google Scholar]
  49. CIOMS Organization.Activities, MembersGeneva1994
    [Google Scholar]
  50. CortezA. Introducing the international conference on harmonization guidelines into the world trade organization: A strategy to remove technical trade barriers for pharmaceutical products.MACS Pro.MACD Projectspring2002
    [Google Scholar]
  51. ICH Harmonization for better health Understanding MedDRA, medical dictionary for drug regulatory activities. International conference on harmonization of technical requirements for registration of pharmaceuticals for human use.J Pharmacol Pharmacother201563185187
    [Google Scholar]
  52. World Health Organization International conference on harmonization (ICH): Pharmacovigilance activities.WHO Drug Info.20021611112
    [Google Scholar]
  53. International conference on harmonisation of technical requirements for registration of pharmaceuticals for human use. ICH Harmonised tripartite guideline.Pharmacovigilance planning (E2E)2004
    [Google Scholar]
  54. European Medicine Agency Pharmacovigilance risk assessment committee.Rul. proced.2013
    [Google Scholar]
  55. Recent development in pharmacovigilance from regulator perspective.Available from: https://d2cax41o7ahm5l.cloudfront.net/cs/speaker-ppts/mohammad-wasif-khan-yes-regulatory-healthcare-services-india-pvt-ltd-india.pdf 2012
  56. European Medicine AgencyGuidelines on good pharmacovigilance practices (GVP).Available from: https://www.ema.europa.eu/en/human-regulatory-overview/post-authorisation/pharmacovigilance-post-authorisation/good-pharmacovigilance-practices-gvp 2017
  57. Post marketing reporting of adverse drug experiences.Rev. Apr.2009121
    [Google Scholar]
  58. RahmanS. RuknuddinG. History of pharmacovigilance in India (1983-2022).J. Phar. Drug Saf.20151961710.21276/jpds.2021.19.01.02
    [Google Scholar]
  59. BiswasP. Pharmacovigilance in Asia.J. Pharmacol. Pharmacother.20134S1S7S1910.4103/0976‑500X.12094124347987
    [Google Scholar]
  60. GhewariP.S. SalunkheS.S. BhatiaN.M. KileedarS.G. Strategies and current scenario of pharmacovigilance in India.J. Adv. Drug Deliv.201413122134
    [Google Scholar]
  61. KalaiselvanV. ThotaP. SinghG. Pharmacovigilance programme of India: Recent developments and future perspectives.Indian J. Pharmacol.201648662462810.4103/0253‑7613.19485528066097
    [Google Scholar]
  62. Trends in the Global Pharmacovigilance MarketFuture market insight.Available from: http://www.mynewsdesk.com/us/future-market-insights/pressreleases/3-trends-in-the-global-pharmacovigilance-market-129256 2016
  63. SikdarS. SouttouA. The current challenges in dealing with adverse event reports from social media.26th Ann. Euro. Meet.20142527
    [Google Scholar]
  64. BrennanW. Industry trends shaping the future of pharmacovigilance.Available from: https://www.c3isolutions.com/blog/future-of-pharmacovigilance/ 2015
  65. Sciformix CorporationThe impact and use of social media in pharmacovigilance.Available from: https://www.sciformix.com/wp-content/uploads/Social_Media_in_PV_Whitepaper.pdf 2024
  66. PierceC.E. BouriK. PamerC. ProestelS. RodriguezH.W. LeV.H. FreifeldC.C. BrownsteinJ.S. WalderhaugM. EdwardsI.R. DasguptaN. Evaluation of facebook and twitter monitoring to detect safety signals for medical products: An analysis of recent FDA safety alerts.Drug Saf.201740431733110.1007/s40264‑016‑0491‑028044249
    [Google Scholar]
  67. GuptaV. KaurK. SharmaR. KaushalI.G. KaushalS. Pharmacovigilance: Current schedule Y perspective.J Adv Res Pharm Sci Pharmacol Interv201611&22632
    [Google Scholar]
  68. Pharmacovigilance programme of India.Newsletter2015512
    [Google Scholar]
  69. WEB RADR Stakeholder EventUsing mobile technology for real-time pharmacovigilanceAvailable from: https://webradr.files.wordpress.com/2017/09/web-radr-stakeholder-event_theme2.pdf 2017
  70. HouyezF. Use of mobile applications for ADRs reporting and social media data mining.Available from: http://www.ema.europa.eu/docs/en_GB/document_library/Presentation/2015/04/WC500185781 2015
  71. Outsourcing Trends in PharmacovigilanceAvailable from: http://www.cliniminds.com/presentation/pdffiles/Outsourcing_Trends_in_Pharmacovigilance_full.pdf 2019
  72. WilliamsA. Hot trends in pharmacovigilance.Available from: http://www.quintiles.com/blog/hot-trends-in-pharmacovigilance 2017
  73. Stepping in to the future of pharmacovigilance the what why and how of knowledge process outsourcingParexel white paper.Available from: www.parexel.com/files/8113/8869/0490/Stepping_Into_the_Future_of_Pharmacovigilance.pdf
  74. Global market insightPharmacovigilance Market will grow at lucrative CAGR to cross $8 billion by 2024.Available from: https://industrytoday.co.uk/health_and_safety/pharmacovigilance-market-will-grow-at-lucrative-cagr-to-cross--8-billion-by-2024/64154/64154 2024
  75. PittsP. 21st Century Pharmacovigilance and the Role of Artificial Intelligence.Available from: https://morningconsult.com/opinions/21st-century-pharmacovigilance-role-artificial-intelligence/ 2016
  76. LitvinovaO. YeungA.W.K. HammerleF.P. MickaelM.E. MatinM. PulkerK.M. AtanasovA.G. WillschkeH. Digital technology applications in the management of adverse drug reactions: Bibliometric analysis.Pharmaceuticals202417339510.3390/ph1703039538543181
    [Google Scholar]
  77. DesselV.M. PattiC. Just give me the facts: Literalism vs. symbolism in B2B advertising.Adv. top: Exp. gui. B2B mark.2011111119
    [Google Scholar]
  78. XiaoC. ChoiE. SunJ. Opportunities and challenges in developing deep learning models using electronic health records data: A systematic review.J. Am. Med. Inform. Assoc.201825101419142810.1093/jamia/ocy06829893864
    [Google Scholar]
  79. TarekH.A. Navigating a transforming landscape: The evolving role of pharmacovigilance physicians in drug development and implications for future challenges and training requirementsFront. Drug Saf. Regul.20233125773210.3389/fdsfr.2023.1257732
    [Google Scholar]
  80. CrestanD. TrojniakM.P. FrancesconS. FornasierG. BaldoP. Pharmacovigilance of anti-cancer medicines: Opportunities and challenges.Expert Opin. Drug Saf.202019784986010.1080/14740338.2020.177275132552095
    [Google Scholar]
  81. Sangita fulchand pawar and vikram limbaji musale (2020); Pharmacovigilance: A review int.Int. J. Adv. Res.20208Jan235243
    [Google Scholar]
  82. ShamimMA ShamimMA AroraP DwivediP Artificial intelligence and big data for pharmacovigilance and patient safety.Jou. Med. Surg. Pub. Health2024310013910.1016/j.glmedi.2024.100139
    [Google Scholar]
  83. IbrahimH. AbdoA. KerdawyE.A.M. EldinA.S. Signal detection in pharmacovigilance: A review of informatics-driven approaches for the discovery of drug-drug interaction signals in different data sources.Artif. Intell. Life Sci.2021110000510.1016/j.ailsci.2021.100005
    [Google Scholar]
  84. PriceJ. Pharmacovigilance in crisis: Drug safety at a crossroads.Clin. Ther.201840579079710.1016/j.clinthera.2018.02.01329605513
    [Google Scholar]
  85. WaniP. ShelkeA. MarwadiM. SomaseV. BoradeP. PansareK. SonawaneG. Role of artificial intelligence in pharmacovigilance: A concise review.J. Pharm. Negat. Results202213761496156
    [Google Scholar]
  86. DanyszK. CicirelloS. MingleE. AssuncaoB. TetarenkoN. MockuteR. AbatemarcoD. WiddowsonM. DesaiS. Artificial intelligence and the future of the drug safety professional.Drug Saf.201942449149710.1007/s40264‑018‑0746‑z30343417
    [Google Scholar]
  87. KumarS SharmaA GuptaB. A critical review of drug safety and pharmacovigilance practices.Act. Phar. Rep.202321110.51470/APR
    [Google Scholar]
  88. HuysentruytK. KjoersvikO. DobrackiP. SavageE. MishalovE. CherryM. LeonardE. TaylorR. PatelB. AbatemarcoD. Validating intelligent automation systems in pharmacovigilance: Insights from good manufacturing practices.Drug Saf.202144326127210.1007/s40264‑020‑01030‑233523400
    [Google Scholar]
  89. WardI.R. WangL. LuJ. BennamounM. DwivediG. SanfilippoF.M. Explainable artificial intelligence for pharmacovigilance: What features are important when predicting adverse outcomes?Comput. Meth. Prog. Biomed.202121210641510.1016/j.cmpb.2021.10641534715520
    [Google Scholar]
  90. LiY. TaoW. LiZ. SunZ. LiF. FentonS. XuH. TaoC. Artificial intelligence-powered pharmacovigilance: A review of machine and deep learning in clinical text-based adverse drug event detection for benchmark datasets.J. Biomed. Inform.202415210462110.1016/j.jbi.2024.10462138447600
    [Google Scholar]
  91. CrisafulliS. CiccimarraF. BellittoC. CarolloM. CarraraE. StagiL. TriolaR. CapuanoA. ChiamuleraC. MorettiU. SantoroE. TozziA.E. RecchiaG. TrifiròG. Artificial intelligence for optimizing benefits and minimizing risks of pharmacological therapies: Challenges and opportunities.Front. Drug Saf. Regul.20244135640510.3389/fdsfr.2024.1356405
    [Google Scholar]
  92. SinghH. NimD.K. RandhawaA.S. AhluwaliaS. Integrating clinical pharmacology and artificial intelligence: Potential benefits, challenges, and role of clinical pharmacologists.Expert Rev. Clin. Pharmacol.202417438139110.1080/17512433.2024.231796338340012
    [Google Scholar]
  93. AssafG. PantelisN. WenZ. AI/ML in pharmacovigilance and pharmacoepidemiologyFront. in Drug Saf. Regul.20244151736510.3389/fdsfr.2024.1517365
    [Google Scholar]
  94. PriyadarshiniB.I. Deep learning for predictive toxicology assessment early detection of adverse drug reactions.Pow.r Sys. Tech.202448168069710.52783/pst.322
    [Google Scholar]
  95. GangwalA. AnsariA. AhmadI. AzadA.K. KumarasamyV. SubramaniyanV. WongL.S. Generative artificial intelligence in drug discovery: Basic framework, recent advances, challenges, and opportunities.Front. Pharmacol.202415133106210.3389/fphar.2024.133106238384298
    [Google Scholar]
  96. CesarioE. ComitoC. ZumpanoE. A survey of the recent trends in deep learning for literature based discovery in the biomedical domain.Neurocomputing202456812707910.1016/j.neucom.2023.127079
    [Google Scholar]
  97. ZhangY. LiuC. LiuM. LiuT. LinH. HuangC.B. NingL. Attention is all you need: Utilizing attention in AI-enabled drug discovery.Brief. Bioinform.2023251bbad46710.1093/bib/bbad46738189543
    [Google Scholar]
  98. LeeC.Y. ChenY.P.P. Machine learning on adverse drug reactions for pharmacovigilance.Drug Discov. Today20192471332134310.1016/j.drudis.2019.03.00330876845
    [Google Scholar]
  99. EdreesH. SongW. SyrowatkaA. SimonaA. AmatoM.G. BatesD.W. Intelligent telehealth in pharmacovigilance: A future perspective.Drug Saf.202245544945810.1007/s40264‑022‑01172‑535579810
    [Google Scholar]
  100. NandaveM. KumarA. Pharmacovigilance essentials: Advances, challenges and global perspectives.Springer Nature202410.1007/978‑981‑99‑8949‑2
    [Google Scholar]
  101. MohanH.R. BoraG. KalitaJ.K. Artificial intelligence (AI) in pharmacy practice: From diagnosis to treatment.Inno. Res.2024110212510.25215/9358095784.18
    [Google Scholar]
  102. Itnoline.Available from: https://www.itnonline.com/article/radiologytechnology-Trends-watch-2020 (Accessed on: 5 Oct 2021).2021
  103. ChaetD. ClearfieldR. SabinJ.E. SkimmingK. Ethical practice in telehealth and telemedicine.J. Gen. Intern. Med.201732101136114010.1007/s11606‑017‑4082‑228653233
    [Google Scholar]
  104. CamaraC. LopezP.P. TapiadorJ.E. Security and privacy issues in implantable medical devices: A comprehensive survey.J. Biomed. Inform.20155527228910.1016/j.jbi.2015.04.00725917056
    [Google Scholar]
  105. ParkerL. KarliychukT. GilliesD. MintzesB. RavenM. GrundyQ. A health app developer’s guide to law and policy: A multi-sector policy analysis.BMC Med. Inform. Decis. Mak.201717114110.1186/s12911‑017‑0535‑028969704
    [Google Scholar]
  106. RohlofK. PolyakovY. Presented at 17th International conference on E-health networking, application & services (HealthCom).14-17 OctBoston, MA2015
    [Google Scholar]
  107. VoraL.K. GholapA.D. JethaK. ThakurR.R.S. SolankiH.K. ChavdaV.P. Artificial intelligence in pharmaceutical technology and drug delivery design.Pharmaceutics2023157191610.3390/pharmaceutics1507191637514102
    [Google Scholar]
  108. KompaB. HakimJ.B. PalepuA. KompaK.G. SmithM. BainP.A. WoloszynekS. PainterJ.L. BateA. BeamA.L. Artificial intelligence based on machine learning in pharmacovigilance: A scoping review.Drug Saf.202245547749110.1007/s40264‑022‑01176‑135579812
    [Google Scholar]
  109. KurukuruV.S.B. HaqueA. KhanM.A. SahooS. MalikA. BlaabjergF. A review on artificial intelligence applications for grid-connected solar photovoltaic systems.Energies20211415469010.3390/en14154690
    [Google Scholar]
/content/journals/cucs/10.2174/0129503779340108241226103521
Loading
/content/journals/cucs/10.2174/0129503779340108241226103521
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test