- Home
- A-Z Publications
- Current Topics in Medicinal Chemistry
- Previous Issues
- Volume 17, Issue 17, 2017
Current Topics in Medicinal Chemistry - Volume 17, Issue 17, 2017
Volume 17, Issue 17, 2017
-
-
Innovative Approaches for Controlling Clinically Relevant Biofilms: Current Trends and Future Prospects
Authors: Kristina Ivanova, Eva Ramon, Javier Hoyo and Tzanko TzanovBacteria that colonize and form biofilms on living tissues and medical devices are a global healthcare concern. They cause life threatening infections and are associated with increased mortality and morbidity in the hospitals. Although antibiotics have been successfully applied for treatment of bacterial diseases, the adaptive and genetic changes of the microorganisms within the biofilms make them inherently resistant to all known antibacterial agents. Therefore, novel antimicrobial strategies that do not exert selective pressure on bacterial population and minimize the risk of resistance occurrence have been sought to prevent and treat biofilm related infections. A critical overview of the numerous groups and the rationale of advanced materials and surfaces with antibacterial and antibiofilm properties is the aim of this review. The development of antibiofilm coatings based on molecules interfering with bacterial cell-to-cell communication and biofilm integrity are discussed. Nano-scale transformation of obsolete antibiotics and surface functionalization with bacteriophages and natural antibacterials including enzymes, antimicrobial peptides, and polyphenols are also considered. Finally, recent efforts to design new generation of integrated antibacterial materials are reported.
-
-
-
Exploiting Quorum Sensing Inhibition for the Control of Pseudomonas aeruginosa and Acinetobacter baumannii Biofilms
Pseudomonas aeruginosa and Acinetobacter baumannii are two of the main bacteria responsible for nosocomial infections; both organisms are resistant to several classes of antibiotics making their infections very difficult to treat. Moreover, they possess a remarkable ability to form biofilms, which further enhances their antimicrobial resistance. Both organisms coordinate their formation of biofilms and their expression of virulence factors through quorum sensing, a system that regulates gene expression at high cell densities and that plays a key role in the establishment of bacterial infections. Hence, interfering with these quorum-sensing systems has been proposed as an alternative to traditional antibiotics for the eradication of bacterial infections. In this review, we describe the quorum sensing systems of both organisms, the way they coordinate the formation of biofilms, the recent advances in biofilm disruption by quorum sensing interference, and the advantages and limitations of the implementation of these novel therapeutic options in the clinic.
-
-
-
Nucleotide Second Messenger Signaling as a Target for the Control of Bacterial Biofilm Formation
Authors: Alberto J. Martin-Rodriguez and Ute RomlingBacterial biofilm formation and associated phenotypes are causative for chronic infection in humans. The major regulators of biofilm formation in Gram-negative and Gram-positive bacteria are nucleotide-based second messenger signaling pathways. Nucleotide-based signaling is a ubiquitous signal transduction mechanism in all domains of life that relay changes in the extracellular or intracellular milieu to protein or RNA effectors, leading to adaptive physiological responses. To date, six bona fide nucleotide signaling pathways, (p)ppGpp, cAMP, cGMP, c-di-AMP, c-di-GMP and cGAMP, have been characterized with respect to basic pathway modules and phenotypic and physiological output. Thereby, c-di-GMP is by far the most complex signaling network with up to over 100 turnover proteins in some bacteria. While c-di-GMP is a ubiquitous regulator of the motility/sessility switch which translates into the transition from acute to chronic infection, and (p)ppGpp has been shown to be required for persistence, the role of other nucleotide signaling pathways is comparatively poorly characterized. Due to their importance in chronic infections, interference with these signal transduction systems has emerged as a strategy for the control of recurrent bacterial infections. Substantial efforts are being placed in finding small molecules for antibiofilm chemotherapy. The purpose of this review is to provide an overview of our current knowledge on bacterial nucleotide signaling and to provide an up-to-date perspective on small molecules thwarting these transduction pathways. Furthermore, we summarize the high-throughput approaches developed for the discovery of small-molecule inhibitors of nucleotide turnover proteins or effectors from large chemical libraries. Implications and future prospects for the control of biofilm-related infections are discussed. We also highlight the current needs and future directions that could lead to a better understanding of these important signaling networks.
-
-
-
Riboswitches as Potential Targets for the Development of Anti-Biofilm Drugs
Authors: Jose A. Reyes-Darias and Tino KrellIn nature, bacteria can exist as single motile cells or as sessile cellular community, known as microbial biofilms. Bacteria within biofilms are embedded in a self-produced extracellular matrix that makes them more resistant to antibiotic treatment and responses of the host immune system. Microbial biofilms are very important in medicine since they are associated with several human diseases such as dental caries, periodontitis, otitis media, infective endocarditis, infectious kidney stones, osteomyelitis or prostatitis. In addition, biofilms formed on the surface of clinical devices such as pacemakers, implants and catheters are difficult to treat, which underlines the clinical relevance of biofilm formation. At the molecular level, the switch from the planktonic state to biofilm formation is regulated primarily by bis- (3'-5)-cyclic dimeric guanosine monophosphate (c-di-GMP). C-di-GMP performs its function by binding to a wide variety of proteins, but also to riboswitches. C-di-GMP riboswitches are RNA regulatory elements located in the 5′-untranslated regions (5′-UTRs) of RNA messengers (mRNA) from genes involved in virulence, motility and biofilm formation, which are regulated by changes in the intracellular concentration of c-di-GMP. This review discusses the role of c-di-GMP responsive riboswitches as potential targets for the design of anti-biofilm agents.
-
-
-
Eradicating Bacterial Biofilms with Natural Products and their Inspired Analogues that Operate Through Unique Mechanisms
Authors: Aaron T. Garrison and Robert W. Huigens IIIBacterial biofilms are surface-attached communities of slow- or non-replicating bacterial cells that display high levels of tolerance toward conventional antibiotic therapies. It is important to know that our entire arsenal of conventional antibiotics originated from screens used to identify inhibitors of bacterial growth, so it should be little surprise that our arsenal of growth-inhibiting agents have little effect on persistent biofilms. Despite this current state, a diverse collection of natural products and their related or inspired synthetic analogues are emerging that have the ability to kill persistent bacterial biofilms and persister cells in stationary cultures. Unlike conventional antibiotics that hit bacterial targets critical for rapidly-dividing bacteria (i.e., cell wall machinery, bacterial ribosomes), biofilm-eradicating agents operate through unique growth-independent mechanisms. These naturally occurring agents continue to inspire discovery efforts aimed at effectively treating chronic and recurring bacterial infections due to persistent bacterial biofilms.
-
-
-
Antimicrobial Peptides for the Control of Biofilm Formation
Authors: Mercedes Gonzalez Moreno, Lisa Lombardi and Mariagrazia Di LucaAntimicrobial peptides (AMPs) are an abundant and varied group of molecules recognized as the most ancient components of the innate immune system. They are found in a wide group of organisms including bacteria, plants and animals as a defense mechanism against different kinds of infectious pathogens. Over the past two decades, a fast-growing number of AMPs have been identified/ designed and their wide-spectrum antimicrobial activity has been deeply investigated. In recent years, there has been an increasing interest in the use of AMPs as alternative anti-biofilm molecules for the control of biofilm-related infections. Biofilms are sessile communities of microbial cells embedded in a self-produced matrix and characterized by a low metabolic activity. Due to their peculiar physiological properties, bacteria/fungi in biofilms result more resistant to conventional antibiotic therapies compared with their planktonic counterparts. AMPs may be a promising strategy to combat biofilm-related infections, as many of them target the microbial membrane, thus being potentially effective also on metabolically inactive cells. Investigations conducted so far evidenced that these peptides may be active in either eradicating established biofilms or preventing their formation, depending on the specific molecule. Here we present a detailed review of the literature describing the latest results of both in vitro and in vivo experiments aimed at evaluating AMP potential usage in biofilm control. In addition, we provide the reader with an overview on AMP local delivery systems, and we discuss their potential application in the coating of medical indwelling devices.
-
-
-
Fungal Biofilm - A Real Obstacle Against an Efficient Therapy: Lessons from Candida
The past decades have witnessed a dramatic increase in invasive fungal infections, especially caused by different species belonging to the Candida genus. Nowadays, even after many improvements in several medical procedures, Candida infections (candidiasis) still account for an unacceptable high rate of morbimortality in hospital settings. Corroborating this statement, fungal biofilms formed on both abiotic and living surfaces are responsible for an important medical and economic burden, since biofilm lifestyle confers numerous advantages to the pathogens, including high tolerance to environmental stresses such as antimicrobials and host immune responses. Aggravating this scenario, the currently used antifungal drugs have mostly been developed to target exponentially growing fungal cells and are poorly or not effective against biofilm structures. So, the challenges to inhibit biofilm formation (e.g., blocking the fungal adhesion and its fully development due to the changes of physicochemical properties of the inert substrates by covering or impregnating them with antimicrobial compounds, for example, silver nanoparticles) and/or to disarticulate mature biofilm architecture (e.g., by using compounds capable in destabilizing, weakening or destroying the extracellular matrix components, including inhibitors of quorum sensing signals, hydrolytic enzymes, surfactants, chelator agents and biocides) are stimulating researchers around the world to search novel strategies and new chemotherapeutic options to control fungal biofilm. In this context, the present review summarizes some promising approaches and/or strategies that could improve our ability to prevent or eradicate fungal biofilms in medical settings, focusing on the lessons learned with Candida model.
-
Volumes & issues
-
Volume 25 (2025)
-
Volume (2025)
-
Volume 24 (2024)
-
Volume 23 (2023)
-
Volume 22 (2022)
-
Volume 21 (2021)
-
Volume 20 (2020)
-
Volume 19 (2019)
-
Volume 18 (2018)
-
Volume 17 (2017)
-
Volume 16 (2016)
-
Volume 15 (2015)
-
Volume 14 (2014)
-
Volume 13 (2013)
-
Volume 12 (2012)
-
Volume 11 (2011)
-
Volume 10 (2010)
-
Volume 9 (2009)
-
Volume 8 (2008)
-
Volume 7 (2007)
-
Volume 6 (2006)
-
Volume 5 (2005)
-
Volume 4 (2004)
-
Volume 3 (2003)
-
Volume 2 (2002)
-
Volume 1 (2001)
Most Read This Month
