Skip to content
2000
Volume 12, Issue 1
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Introduction

This study aims to comprehensively summarize the clinical evidence comparing the effectiveness and safety of integrating astragalus-containing Chinese medicines with western medicines for T2DM.

Methods

Six databases were searched for eligible studies from inception to June 2023. The aggregated outcomes were expressed as odds ratio (OR) or standardized mean difference (SMD). Random effect model was used for statistical analyses. The risk of bias for included studies was assessed with the Cochrane Risk of Bias Tool. The overall quality of evidence was assessed with the Grades of Recommendations Assessment, Development and Evaluation approach.

Results

The results showed a significant improvement in the FPG (SMD -0.98; 95%CI -1.23, -0.72), 2hPG (SMD -0.94; 95%CI -1.13, -0.76), HbA1c (SMD -0.97; 95%CI -1.18, -0.75), HOMA-IR (SMD -1.07; 95%CI -1.47, -0.66), HOMA-β (SMD 0.84; 95%CI 0.38, 1.31), HDL (SMD 0.41; 95%CI 0.17, 0.66), LDL (SMD -1.17; 95%CI -1.62, -0.72), TC (SMD -0.83; 95%CI -1.06, -0.59) and TG (SMD -0.93, 95%CI -1.20, -0.65) with astragalus-containing TCMs plus conventional therapy comparing to conventional therapy alone. The incidence of hypoglycemia and gastrointestinal tract adverse events was significantly reduced in the combination group. Subgroup analyses based on the type of western medicines, type of traditional Chinese medicines, baseline glucose level, follow-up duration and disease subtypes, all indicated the similar results regarding the superior effectiveness in the combination group.

Discussion

The meta-analyses suggested the astragalus-containing TCMs plus WMs surpassed WMs monotherapy in terms of decreasing the FPG, 2hPG and HbA1c level. Our results were limited by the quality of trials included in the meta-analyses.

Conclusion

Add-on therapy of astragalus-containing TCMs was generally more effective in ameliorating the glycolipid metabolism and improving insulin resistance. The clinical benefits of integrative therapies remained in different subgroup patients.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838346844250109164504
2025-02-24
2025-09-27
Loading full text...

Full text loading...

/deliver/fulltext/ctm/12/1/CTM-12-E22150838346844.html?itemId=/content/journals/ctm/10.2174/0122150838346844250109164504&mimeType=html&fmt=ahah

References

  1. WangL. PengW. ZhaoZ. ZhangM. ShiZ. SongZ. ZhangX. LiC. HuangZ. SunX. WangL. ZhouM. WuJ. WangY. Prevalence and treatment of diabetes in China, 2013-2018.JAMA2021326242498250610.1001/jama.2021.2220834962526
    [Google Scholar]
  2. TomicD. ShawJ.E. MaglianoD.J. The burden and risks of emerging complications of diabetes mellitus.Nat. Rev. Endocrinol.202218952553910.1038/s41574‑022‑00690‑735668219
    [Google Scholar]
  3. DeshpandeA.D. HayesH.M. SchootmanM. Epidemiology of diabetes and diabetes-related complications.Phys. Ther.200888111254126410.2522/ptj.2008002018801858
    [Google Scholar]
  4. PelletierR. NgK. AlkabbaniW. LabibY. MouradN. GambleJ.M. Adverse events associated with sodium glucose co-transporter 2 inhibitors: An overview of quantitative systematic reviews.Ther. Adv. Drug Saf.202112204209862198913410.1177/204209862198913433552467
    [Google Scholar]
  5. LiuJ YaoC WangY ZhaoJ LuoH Non-drug interventions of traditional Chinese medicine in preventing type 2 diabetes: A review.Chinese Med.202318115110.1186/s13020‑023‑00854‑1
    [Google Scholar]
  6. WangJ WongYK LiaoF What has traditional Chinese medicine delivered for modern medicine?.Exp. Rev. Mol. Med.201820e4
    [Google Scholar]
  7. WangJ MaQ LiY LiP WangM WangT Research progress on traditional Chinese medicine syndromes of diabetes mellitus.Biomed. Pharm.2020121109565
    [Google Scholar]
  8. YedjouC.G. GrigsbyJ. MbemiA. NelsonD. MildortB. LatinwoL. TchounwouP.B. The management of diabetes mellitus using medicinal plants and vitamins.Int. J. Mol. Sci.20232410908510.3390/ijms2410908537240430
    [Google Scholar]
  9. RasoolA.A.M. JabbarA.S.N. JawadR.S. SibitN.H. Potential benefits of urtica dioica and its combination with vitamin E in experimental diabetes.J. Med. Pharm. Chem. Res.202574762774
    [Google Scholar]
  10. PittasAG HughesD.B SheehanP WareJH KnowlerWC ArodaVR Vitamin D supplementation and prevention of type 2 diabetes.New England J. Med.20193816520530
    [Google Scholar]
  11. ZhangJ. WuM. WangY. JiaY. LiE. Medicine in future and advantages of integrated chinese and western medicine.Chin. J. Integr. Med.2019252879010.1007/s11655‑018‑3029‑830796688
    [Google Scholar]
  12. FuJ. WangZ. HuangL. ZhengS. WangD. ChenS. ZhangH. YangS. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi).Phytother. Res.20142891275128310.1002/ptr.518825087616
    [Google Scholar]
  13. AuyeungK.K. HanQ.B. KoJ.K. Astragalus membranaceus : A review of its protection against inflammation and gastrointestinal cancers.Am. J. Chin. Med.201644112210.1142/S0192415X1650001426916911
    [Google Scholar]
  14. XieW. DuL. Diabetes is an inflammatory disease: Evidence from traditional Chinese medicines.Diabetes Obes. Metab.201113428930110.1111/j.1463‑1326.2010.01336.x21205111
    [Google Scholar]
  15. GuoZ. LouY. KongM. LuoQ. LiuZ. WuJ. A systematic review of phytochemistry, pharmacology and pharmacokinetics on Astragali Radix: Implications for Astragali Radix as a personalized medicine.Int. J. Mol. Sci.2019206146310.3390/ijms2006146330909474
    [Google Scholar]
  16. PageM.J. McKenzieJ.E. BossuytP.M. BoutronI. HoffmannT.C. MulrowC.D. ShamseerL. TetzlaffJ.M. AklE.A. BrennanS.E. ChouR. GlanvilleJ. GrimshawJ.M. HróbjartssonA. LaluM.M. LiT. LoderE.W. WilsonM.E. McDonaldS. McGuinnessL.A. StewartL.A. ThomasJ. TriccoA.C. WelchV.A. WhitingP. MoherD. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews.BMJ202137271n7110.1136/bmj.n7133782057
    [Google Scholar]
  17. ShamseerL. MoherD. ClarkeM. GhersiD. LiberatiA. PetticrewM. ShekelleP. StewartL.A. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation.BMJ2015349jan02 1g764710.1136/bmj.g764725555855
    [Google Scholar]
  18. HigginsJ.P.T. AltmanD.G. GøtzscheP.C. JüniP. MoherD. OxmanA.D. SavovicJ. SchulzK.F. WeeksL. SterneJ.A.C. The cochrane collaboration’s tool for assessing risk of bias in randomised trials.BMJ2011343oct18 2d592810.1136/bmj.d592822008217
    [Google Scholar]
  19. GuyattG. OxmanA.D. AklE.A. KunzR. VistG. BrozekJ. NorrisS. YtterF.Y. GlasziouP. deBeerH. JaeschkeR. RindD. MeerpohlJ. DahmP. SchünemannH.J. GRADE guidelines: 1. Introduction—GRADE evidence profiles and summary of findings tables.J. Clin. Epidemiol.201164438339410.1016/j.jclinepi.2010.04.02621195583
    [Google Scholar]
  20. BalduzziSA-O RückerGA-O SchwarzerGA-O How to perform a meta-analysis with R: A practical tutorial.BMJ Ment Health2019224153160
    [Google Scholar]
  21. JulianP.T. Chapter 6: Choosing effect measures and computing estimates of effect.Available from: https://training.cochrane.org/handbook/current/chapter-06
  22. StogiannisD SiannisF AndroulakisEA-O Heterogeneity in meta-analysis: A comprehensive overview.Int. J. Biostat.2024201169199
    [Google Scholar]
  23. SetodjiC.M. ShwartzM. Fixed-effect or random-effect models: What are the key inference issues?.Med. Care20135112527
    [Google Scholar]
  24. MarušićM.F. FidahićM. CepehaC.M. FarcașL.G. TsekeA. PuljakL. Methodological tools and sensitivity analysis for assessing quality or risk of bias used in systematic reviews published in the high-impact anesthesiology journals.BMC Med. Res. Methodol.202020112110.1186/s12874‑020‑00966‑432423382
    [Google Scholar]
  25. EggerM SmithD.G Bias in meta-analysis detected by a simple, graphical test.BMJ1997315710962934
    [Google Scholar]
  26. JennionsM.D. MøllerA.P. Publication bias in ecology and evolution: An empirical assessment using the ‘trim and fill’ method.Biol. Rev. Camb. Philos. Soc.200277221122210.1017/S146479310100587512056747
    [Google Scholar]
  27. ButcherN.J. MonsourA. MewE.J. ChanA.W. MoherD. WilsonM.E. TerweeC.B. TowC.A.A. BabaA. GavinF. GrimshawJ.M. KellyL.E. SaeedL. ThabaneL. AskieL. SmithM. KapadiaF.M. WilliamsonP.R. SzatmariP. TugwellP. GolubR.M. MongaS. VohraS. MarlinS. UngarW.J. OffringaM. Guidelines for reporting outcomes in trial reports.JAMA2022328222252226410.1001/jama.2022.2102236511921
    [Google Scholar]
  28. DoigGS SimpsonF Randomization and allocation concealment: A practical guide for researchers.J. Crit. Care2005202187191
    [Google Scholar]
  29. DouZ. XiaY. ZhangJ. LiY. ZhangY. ZhaoL. HuangZ. SunH. WuL. HanD. LiuY. Syndrome differentiation and treatment regularity in traditional Chinese medicine for type 2 diabetes: A text mining analysis.Front. Endocrinol.20211272803210.3389/fendo.2021.72803235002950
    [Google Scholar]
  30. PapageorgiouS.N. PapadopoulosM.A. AthanasiouA.E. Assessing small study effects and publication bias in orthodontic meta-analyses: A meta-epidemiological study.Clin. Oral Investig.20141841031104410.1007/s00784‑014‑1196‑324526347
    [Google Scholar]
  31. LambrinouE. HansenT.B. BeulensJ.W.J. Lifestyle factors, self-management and patient empowerment in diabetes care.Eur. J. Prev. Cardiol.201926S2556310.1177/204748731988545531766913
    [Google Scholar]
  32. WillcoxM.L. ElugbajuC. AnbakiA.M. LownM. GrazB. Effectiveness of medicinal plants for glycaemic control in type 2 diabetes: An overview of meta-analyses of clinical trials.Front. Pharmacol.20211277756110.3389/fphar.2021.77756134899340
    [Google Scholar]
  33. ChengL.J. WangW. LimS.T. WuV.X. Factors associated with glycaemic control in patients with diabetes mellitus: A systematic literature review.J. Clin. Nurs.2019289-101433145010.1111/jocn.1479530667583
    [Google Scholar]
  34. GuyattGH GRADE guidelines: 5. Rating the quality of evidence—publication bias.J. Clin. Epidemiol.2011641212771282
    [Google Scholar]
  35. PetersJL Performance of the trim and fill method in the presence of publication bias and between-study heterogeneity.Stat. Med.2007262545444562
    [Google Scholar]
  36. MavridisD SalantiG How to assess publication bias: Funnel plot, trim-and-fill method and selection models.Evid Based Ment Health201417130
    [Google Scholar]
  37. GuyattGH GRADE guidelines: 7. Rating the quality of evidence—inconsistency.J. Clin. Epidemiol.2011641212941302
    [Google Scholar]
  38. PoorolajalJ. NoornejadS. NoornejadS. Metaplot: A new stata module for assessing heterogeneity in a meta-analysis.PLoS One2021166e025334110.1371/journal.pone.025334134181682
    [Google Scholar]
  39. 5.1 ChMeta-analysis of change scores.Available from: https://handbook-5-1.cochrane.org/chapter_9/9_4_5_2_meta_analysis_of_change_scores.htm
  40. TianJA-O JinDA-O BaoQ DingQ ZhangH GaoZ Evidence and potential mechanisms of traditional Chinese medicine for the treatment of type 2 diabetes: A systematic review and meta-analysis.Diab. Obes. Metabol.201921818011816
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838346844250109164504
Loading
/content/journals/ctm/10.2174/0122150838346844250109164504
Loading

Data & Media loading...

Supplements

PRISMA checklist is available as supplementary material on the publisher’s website along with the published article.

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test