Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

This review paper examines the potential of herbal medicines in managing Type II diabetes, focusing on (Roxb. ex Fleming) H. Karst. Covering historical usage, active compounds, mechanisms of action, clinical evidence, applications, safety, regulatory considerations, integration with conventional medicine, patient perspectives, cultural context, and future prospects, the paper addresses the global challenge of diabetes mellitus. Hyperglycemia associated with diabetes poses significant health risks and is rapidly increasing worldwide. Overcoming the challenges of managing diabetes with minimal side effects and the escalating costs of conventional treatments has led to growing interest in herbal plant extracts. , known for its hypoglycemic properties, stands out as a promising traditional remedy for diabetes control. While the use of extracts shows potential, further research is essential to fully explore their efficacy and establish them as a viable alternative therapy for diabetes management.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838284991240215055924
2024-02-26
2025-11-08
Loading full text...

Full text loading...

References

  1. ClarkeC.B. Flora of British India. London: L.Reeve18854560604
    [Google Scholar]
  2. ScartezziniP. SperoniE. Review on some plants of Indian traditional medicine with antioxidant activity.J. Ethnopharmacol.2000711-2234310.1016/S0378‑8741(00)00213‑0 10904144
    [Google Scholar]
  3. KhanM.A.B. HashimM.J. KingJ.K. GovenderR.D. MustafaH. Al KaabiJ. Epidemiology of type 2 diabetes: Global burden of disease and forecasted trends.J. Epidemiol. Glob. Health201910110711110.2991/jegh.k.191028.001 32175717
    [Google Scholar]
  4. ShawJ.E. SicreeR.A. ZimmetP.Z. Global estimates of the prevalence of diabetes for 2010 and 2030.Diabetes Res. Clin. Pract.201087141410.1016/j.diabres.2009.10.007 19896746
    [Google Scholar]
  5. PatelD.K. PrasadS.K. KumarR. HemalathaS. An overview on antidiabetic medicinal plants having insulin mimetic property.Asian Pac. J. Trop. Biomed.20122432033010.1016/S2221‑1691(12)60032‑X 23569923
    [Google Scholar]
  6. SwatiK. BhattV. SendriN. BhattP. BhandariP. Swertia chirayita: A comprehensive review on traditional uses, phytochemistry, quality assessment and pharmacology.J. Ethnopharmacol.202210300 36113678
    [Google Scholar]
  7. JoshiP. DhawanV. Swertia chirayita-an overview.Curr. Sci.2005894635640
    [Google Scholar]
  8. GautamM.K. GuptaA. VijaykumarM. RaoC.V. GoelR.K. Studies on the hypoglycemic effects of Murraya paniculata Linn. extract on alloxan-induced oxidative stress in diabetic and non-diabetic models.Asian Pac. J. Trop. Dis.20122S186S19110.1016/S2222‑1808(12)60149‑2
    [Google Scholar]
  9. Galicia-GarciaU. Benito-VicenteA. JebariS. Pathophysiology of type 2 diabetes mellitus.Int. J. Mol. Sci.20202117627510.3390/ijms21176275 32872570
    [Google Scholar]
  10. SchwartzS.S. EpsteinS. CorkeyB.E. GrantS.F.A. GavinJ.R.III AguilarR.B. The time is right for a new classification system for diabetes: Rationale and implications of the β-cell–centric classification schema.Diabetes Care201639217918610.2337/dc15‑1585 26798148
    [Google Scholar]
  11. EkorM. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety.Front. Pharmacol.2014417710.3389/fphar.2013.00177 24454289
    [Google Scholar]
  12. ModakM. DixitP. LondheJ. GhaskadbiS. DevasagayamT.P.A. Indian herbs and herbal drugs used for the treatment of diabetes.J. Clin. Biochem. Nutr.200740316317310.3164/jcbn.40.163 18398493
    [Google Scholar]
  13. FatimaH. ShahidM. JamilA. NaveedM. Therapeutic potential of selected medicinal plants against carrageenan induced inflammation in rats.Dose Response20211941559325821105802810.1177/15593258211058028 34867126
    [Google Scholar]
  14. KarA. ChoudharyB.K. BandyopadhyayN.G. Comparative evaluation of hypoglycaemic activity of some Indian medicinal plants in alloxan diabetic rats.J. Ethnopharmacol.200384110510810.1016/S0378‑8741(02)00144‑7 12499084
    [Google Scholar]
  15. DeyP. SinghJ. SuluvoyJ.K. DilipK.J. NayakJ. Utilization of swertia chirayita plant extracts for management of diabetes and associated disorders: Present status, future prospects and limitations.Nat. Prod. Bioprospect.202010643144310.1007/s13659‑020‑00277‑7 33118125
    [Google Scholar]
  16. KumarV. Van StadenJ. A review of swertia chirayita (Gentianaceae) as a traditional medicinal plant.Front. Pharmacol.2016630810.3389/fphar.2015.00308 26793105
    [Google Scholar]
  17. JadhavA.N. BhutaniK.K. Ayurveda and gynecological disorders.J. Ethnopharmacol.200597115115910.1016/j.jep.2004.10.020 15652289
    [Google Scholar]
  18. JieL. YapingL. KlaassenC.D. The effect of Chinese hepatoprotective medicines on experimental liver injury in mice.J. Ethnopharmacol.199442318319110.1016/0378‑8741(94)90084‑1 7934088
    [Google Scholar]
  19. RehmanS. LatifA. AhmadS. KhanA.U. In vitro antibacterial screening of Swertia chirayita Linn. against some gram-negative pathogenic strains.Int. J. Pharm. Res. Dev.20114188194
    [Google Scholar]
  20. Mujtaba ShahG. AbbasiA.M. KhanN. Traditional uses of medicinal plants against malarial disease by the tribal communities of Lesser Himalayas–Pakistan.J. Ethnopharmacol.2014155145046210.1016/j.jep.2014.05.047 24892831
    [Google Scholar]
  21. BanerjeeS. SurT.P. DasP.C. SikdarS. Assessment of the anti-inflammatory effects of Swertia chirata in acute and chronic experimental models in male albino rats.Indian J. Pharmacol.2000322124
    [Google Scholar]
  22. SchimmerO. MauthnerH. Polymethoxylated xanthones from the herb of Centaurium erythraea with strong antimutagenic properties in Salmonella typhimurium.Planta Med.199662656156410.1055/s‑2006‑957973 9000888
    [Google Scholar]
  23. YuanH. MaQ. YeL. PiaoG. The traditional medicine and modern medicine from natural products.Molecules201621555910.3390/molecules21050559 27136524
    [Google Scholar]
  24. VaidyaH. GoyalR.K. CheemaS.K. Anti-diabetic activity of swertiamarin is due to an active metabolite, gentianine, that upregulates PPAR-γ gene expression in 3T3-L1 cells.Phytother. Res.201327462462710.1002/ptr.4763 22718571
    [Google Scholar]
  25. MalviyaN. JainS. MalviyaS. Antidiabetic potential of medicinal plants.Acta Pol. Pharm.2010672113118 20369787
    [Google Scholar]
  26. GuoS. DuQ. XingN. Swertia L.: A comprehensive review of its genetic relationship, chemical compositions, pharmacological effects, toxicities, and applications.Phytother. Res.20233762605264310.1002/ptr.7857 37143212
    [Google Scholar]
  27. BrahmachariG. MondalS. GangopadhyayA. Swertia (Gentianaceae): Chemical and pharmacological aspects.Chem. Biodivers.20041111627165110.1002/cbdv.200490123 17191805
    [Google Scholar]
  28. RanaV.S. RawatM.S.M. A new xanthone glycoside and antioxidant constituents from the rhizomes of Swertia speciosa.Chem. Biodivers.20052101310131510.1002/cbdv.200590102 17191931
    [Google Scholar]
  29. LiJ. ZhaoY.L. HuangH.Y. WangY.Z. Phytochemistry and pharmacological activities of the genus swertia(Gentianaceae): A review.Am. J. Chin. Med.201745466773610.1142/S0192415X17500380 28490237
    [Google Scholar]
  30. ChakravartyA.K. MukhopadhyayS. DasB. Swertane triterpenoids from Swertia chirata.Phytochemistry199130124087409210.1016/0031‑9422(91)83473‑X
    [Google Scholar]
  31. RayS. MajumderH.K. ChakravartyA.K. MukhopadhyayS. GilR.R. CordellG.A. Amarogentin, a naturally occurring secoiridoid glycoside and a newly recognized inhibitor of topoisomerase I from Leishmania donovani.J. Nat. Prod.1996591272910.1021/np960018g 8984149
    [Google Scholar]
  32. MeddaS. MukhopadhyayS. BasuM.K. Evaluation of the in-vivo activity and toxicity of amarogentin, an antileishmanial agent, in both liposomal and niosomal forms.J. Antimicrob. Chemother.199944679179410.1093/jac/44.6.791 10590280
    [Google Scholar]
  33. PantN. JainD.C. BhakuniR.S. Phytochemicals from genus Swertia and their biological activities.Indian J. Chem.200039565586
    [Google Scholar]
  34. PatilK. DhandeS. KadamV. Therapeutic Swertia chirata—an overview.Res J Pharmacogn Phytochem20135199207
    [Google Scholar]
  35. PhobooS. PintoM.D.S. BarbosaA.C.L. Phenolic-linked biochemical rationale for the anti-diabetic properties of Swertia chirayita (Roxb. ex Flem.) Karst.Phytother. Res.201327222723510.1002/ptr.4714 22523004
    [Google Scholar]
  36. VaidyaH. RajaniM. SudarsanamV. PadhH. GoyalR. Swertiamarin: A lead from Enicostemma littorale Blume. for anti-hyperlipidaemic effect.Eur. J. Pharmacol.20096171-310811210.1016/j.ejphar.2009.06.053 19577561
    [Google Scholar]
  37. SunH. LiL. ZhangA. Protective effects of sweroside on human MG-63 cells and rat osteoblasts.Fitoterapia20138417417910.1016/j.fitote.2012.11.010 23201331
    [Google Scholar]
  38. BajpaiM. AsthanaR. SharmaN. ChatterjeeS. MukherjeeS. Hypoglycemic effect of swerchirin from the hexane fraction of Swertia chirayita.Planta Med.199157210210410.1055/s‑2006‑960041 1891489
    [Google Scholar]
  39. SaxenaA.M. MurthyP.S. MukherjeeS.K. Mode of action of three structurally different hypoglycemic agents: A comparative study.Indian J. Exp. Biol.1996344351355 8698425
    [Google Scholar]
  40. YaB.Q. NianL.C. LiC. GenX.P. Protective effect of swerchirin on hematopoiesis in 60Co-irradiated mice.Phytomedicine199962858810.1016/S0944‑7113(99)80040‑3 10374245
    [Google Scholar]
  41. SaxenaA.M. BajpaiM.B. MukherjeeS.K. Swerchirin induced blood sugar lowering of streptozotocin treated hyperglycemic rats.Indian J. Exp. Biol.1991297674675 1839020
    [Google Scholar]
  42. HirakawaK. YoshidaM. NagatsuA. Chemopreventive action of xanthone derivatives on photosensitized DNA damage.Photochem. Photobiol.200581231431910.1111/j.1751‑1097.2005.tb00189.x 15646999
    [Google Scholar]
  43. NiihoY. YamazakiT. NakajimaY. Gastroprotective effects of bitter principles isolated from Gentian root and Swertia herb on experimentally-induced gastric lesions in rats.J. Nat. Med.2006601828810.1007/s11418‑005‑0014‑2
    [Google Scholar]
  44. SahaP. MandalS. DasA. DasS. Amarogentin can reduce hyperproliferation by downregulation of Cox-II and upregulation of apoptosis in mouse skin carcinogenesis model.Cancer Lett.2006244225225910.1016/j.canlet.2005.12.036 16517061
    [Google Scholar]
  45. PalD. SurS. MandalS. Prevention of liver carcinogenesis by amarogentin through modulation of G 1/S cell cycle check point and induction of apoptosis.Carcinogenesis201233122424243110.1093/carcin/bgs276 22948180
    [Google Scholar]
  46. WangC.Z. MaierU.H. EisenreichW. Unexpected biosynthetic precursors of amarogentin a retrobiosynthetic 13C NMR study.Eur. J. Org. Chem.2001200181459146510.1002/1099‑0690(200104)2001:8<1459:AID‑EJOC1459>3.0.CO;2‑0
    [Google Scholar]
  47. KavimaniS. ManisenthlkumarK.T. Effect of methanolic extract of Enicostemma littorale on Dalton’s ascitic lymphoma.J. Ethnopharmacol.2000711-234935210.1016/S0378‑8741(00)00190‑2 10904185
    [Google Scholar]
  48. SaravananS. Hairul IslamV.I. Prakash BabuN. Swertiamarin attenuates inflammation mediators via modulating NF-κB/I κB and JAK2/STAT3 transcription factors in adjuvant induced arthritis.Eur. J. Pharm. Sci.201456708610.1016/j.ejps.2014.02.005 24582615
    [Google Scholar]
  49. Pardo-AndreuG.L. PaimB.A. CastilhoR.F. Mangifera indica L. extract (Vimang®) and its main polyphenol mangiferin prevent mitochondrial oxidative stress in atherosclerosis-prone hypercholesterolemic mouse.Pharmacol. Res.200857533233810.1016/j.phrs.2008.03.005 18450471
    [Google Scholar]
  50. GuhaS. GhosalS. ChattopadhyayU. Antitumor, immunomodulatory and anti-HIV effect of mangiferin, a naturally occurring glucosylxanthone.Chemotherapy199642644345110.1159/000239478 8957579
    [Google Scholar]
  51. KavithaM. NatarajJ. EssaM.M. MemonM.A. ManivasagamT. Mangiferin attenuates MPTP induced dopaminergic neurodegeneration and improves motor impairment, redox balance and Bcl-2/Bax expression in experimental Parkinson’s disease mice.Chem. Biol. Interact.2013206223924710.1016/j.cbi.2013.09.016 24095822
    [Google Scholar]
  52. YoshimiN. MatsunagaK. KatayamaM. The inhibitory effects of mangiferin, a naturally occurring glucosylxanthone, in bowel carcinogenesis of male F344 rats.Cancer Lett.2001163216317010.1016/S0304‑3835(00)00678‑9 11165750
    [Google Scholar]
  53. BhattacharyaS.K. GhosalS. ChaudhuriR.K. SinghA.K. SharmaP.V. Letter: Chemical constituents of gentianaceae. XI. Antipsychotic activity of gentianine.J. Pharm. Sci.19746381341134210.1002/jps.2600630850 4859384
    [Google Scholar]
  54. NatarajanP. WanA. ZamanV. Antimalarial, antiamoebic and toxicity tests on gentianine.Planta Med.197425325826010.1055/s‑0028‑1097940 4599567
    [Google Scholar]
  55. ŠilerB MišićD NestorovićJ Antibacterial and antifungal screening of Centaurium pulchellum crude extracts and main secoiridoid compounds.Nat Prod Commun20105101934578X100050110.1177/1934578X1000501001 21121240
    [Google Scholar]
  56. LuoY.D. ChenJ. CaoJ. WenX.D. LiP. Determination of sweroside in rat plasma and bile for oral bioavailability and hepatobiliary excretion.Chem. Pharm. Bull.2009571798310.1248/cpb.57.79 19122321
    [Google Scholar]
  57. JeongY.T. JeongS.C. HwangJ.S. KimJ.H. Modulation effects of sweroside isolated from the Lonicera japonica on melanin synthesis.Chem. Biol. Interact.2015238333910.1016/j.cbi.2015.05.022 26051519
    [Google Scholar]
  58. JesusJ.A. LagoJ.H.G. LaurentiM.D. YamamotoE.S. PasseroL.F.D. Antimicrobial activity of oleanolic and ursolic acids: an update.Evid. Based Complement. Alternat. Med.2015201511410.1155/2015/620472 25793002
    [Google Scholar]
  59. LiuJ. Pharmacology of oleanolic acid and ursolic acid.J. Ethnopharmacol.1995492576810.1016/0378‑8741(95)90032‑2 8847885
    [Google Scholar]
  60. SoicaC. OpreanC. BorcanF. The synergistic biologic activity of oleanolic and ursolic acids in complex with hydroxypropyl-γ-cyclodextrin.Molecules20141944924494010.3390/molecules19044924 24747649
    [Google Scholar]
  61. BasnetP. KadotaS. ShimizuM. TakataY. KobayashiM. NambaT. Bellidifolin stimulates glucose uptake in rat 1 fibroblasts and ameliorates hyperglycemia in streptozotocin (STZ)-induced diabetic rats.Planta Med.199561540240510.1055/s‑2006‑958124 7480198
    [Google Scholar]
  62. MandalS. DasP.C. JoshiP.C. Anti-inflammatory action of Swertia chirata.Fitoterapia199263122128
    [Google Scholar]
  63. AteufackG. NguelefackT.B. MbiantchaM. TaneP. KamanyiA. Spasmogenic activity of 1-hydroxy-3,7,8– trimethoxyxanthone isolated from the methanol extract of the stem bark of Anthocleista vogelii planch (loganiaceae) in rats.Pharmacologyonline20073374384
    [Google Scholar]
  64. AteufackG. NguelefackT.B. WaboH.K. TaneP. KamanyiA. Antiulcerogenic activity of 1-Hydroxy-3,7,8-trimethoxyxanthone isolated from the methanol extract of Anthocleista vogelii planch in Rats.Ulcers201420141610.1155/2014/172096
    [Google Scholar]
  65. ChenY. HuangB. HeJ. HanL. ZhanY. WangY. In vitro and in vivo antioxidant effects of the ethanolic extract of Swertia chirayita.J. Ethnopharmacol.2011136230931510.1016/j.jep.2011.04.058 21549823
    [Google Scholar]
  66. KshirsagarP. ChavanJ. NimbalkarM. YadavS. DixitG. GaikwadN. Phytochemical composition, antioxidant activity and HPLC profiles of Swertia species from Western Ghats.Nat. Prod. Res.201529878078410.1080/14786419.2014.986124 25482162
    [Google Scholar]
  67. DasS.C. BhadraS. RoyS. SahaS.K. IslamM.S. BacharS.C. Analgesic and anti-inflammatory activities of ethanolic root extract of Swertia chirata (Gentianaceae).Jordan J. Biol. Sci.201253136
    [Google Scholar]
  68. SaxenaA.M. BajpaiM.B. MurthyP.S. MukherjeeS.K. Mechanism of blood sugar lowering by a swerchirin-containing hexane fraction (SWI) of Swertia chirayita.Indian J. Exp. Biol.1993312178181 8500831
    [Google Scholar]
  69. KaranM. VasishtK. HandaS.S. Morphological and chromatographic comparison of certain Indian species of Swertia.Curr. Res. Med. Aromat. Plants19991999563
    [Google Scholar]
  70. RaiL.K. PrasadP. SharmaE. Conservation threats to some important medicinal plants of the Sikkim Himalaya.Biol. Conserv.2000931273310.1016/S0006‑3207(99)00116‑0
    [Google Scholar]
  71. ZhouN.J. GengC.A. HuangX.Y. Anti-hepatitis B virus active constituents from Swertia chirayita.Fitoterapia2015100273410.1016/j.fitote.2014.11.011 25447162
    [Google Scholar]
  72. Anquez-TraxlerC. The legal and regulatory framework of herbal medicinal products in the European Union: A focus on the traditional herbal medicines category.Drug Inf. J.2011451152310.1177/009286151104500102
    [Google Scholar]
  73. DaviesM.J. D’AlessioD.A. FradkinJ. Management of hyperglycemia in Type 2 Diabetes, 2018. A consensus report by the American diabetes association (ADA) and the European association for the study of diabetes (EASD).Diabetes Care201841122669270110.2337/dci18‑0033 30291106
    [Google Scholar]
  74. FeingoldK.R. Oral and injectable (non-insulin) pharmacological agents for the treatment of type 2 diabetes.2000Available from: https://www.ncbi.nlm.nih.gov/books/NBK279141/
    [Google Scholar]
  75. GeorgeM.M. CopelandK.C. Current treatment options for type 2 diabetes mellitus in youth: today’s realities and lessons from the TODAY study.Curr. Diab. Rep.2013131728010.1007/s11892‑012‑0334‑z 23065368
    [Google Scholar]
  76. AhmmedS.M. MukherjeeP.K. BahadurS. CYP450 mediated inhibition potential of Swertia chirata: An herb from Indian traditional medicine.J. Ethnopharmacol.2016178343910.1016/j.jep.2015.11.046
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838284991240215055924
Loading
/content/journals/ctm/10.2174/0122150838284991240215055924
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test