Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

The management of chronic wounds in diabetic patients is a tough challenge, compounded by elevated amputation rates, frequent recurrence, and increased mortality rates. Non-healing wounds in people with diabetes are produced by a combination of variables that impede the clearance of injured tissue, stimulate the formation of healthy cell populations, and increase the risk of infection. Traditional wound dressings, such as gauze, films, and bandages, focused solely on hydration and infection prevention. However, recent scientific investigation has shifted toward advancements in wound healing treatments to overcome the constraints inherent in old methodologies. Hydrogel dressings have surfaced as a particularly enticing and promising avenue for increasing wound healing prowess in the modern medical environment, owing to their remarkable ability for moisture retention, biocompatibility profiles, and therapeutic attributes. The pathophysiology of diabetes wounds has been better studied in recent decades, and a range of functionalized hydrogel dressings have been reported with favourable outcomes, indicating that they have significant potential in healing diabetic wounds. Our approach will comprise a systematic and comprehensive evaluation of the advancements in hydrogel dressing methods related to diabetic wounds. This review presents a strong theoretical foundation for advancing hydrogel dressing technologies and offers suggestions for treating diabetic wound-related problems.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838277241231206051011
2024-01-24
2025-11-08
Loading full text...

Full text loading...

References

  1. ZhengX. NarayananS. SunkariV.G. Triggering of a Dll4-Notch1 loop impairs wound healing in diabetes.Proc. Natl. Acad. Sci.2019116146985699410.1073/pnas.1900351116 30886104
    [Google Scholar]
  2. PougetC. Dunyach-RemyC. PantelA. SchuldinerS. SottoA. LavigneJ.P. Biofilms in diabetic foot ulcers: Significance and clinical relevance.Microorganisms2020810158010.3390/microorganisms8101580 33066595
    [Google Scholar]
  3. NicolettiC. Diabetic foot – Clinical.In: Microvascular Disease in Diabetes.Wiley202010.1002/9781119309642.ch11
    [Google Scholar]
  4. NatherA. CaoS. ChenJ.L.W. LowA.Y. Prevention of diabetic foot complications.Singapore Med. J.201859629129410.11622/smedj.2018069 29974120
    [Google Scholar]
  5. BremH. SheehanP. RosenbergH.J. SchneiderJ.S. BoultonA.J.M. Evidence-based protocol for diabetic foot ulcers.Plast. Reconstr. Surg.20061177193S209S10.1097/01.prs.0000225459.93750.29 16799388
    [Google Scholar]
  6. GoldbergS.R. DiegelmannR.F. What makes wounds chronic?Surg. Clin. North Am.2020100468169310.1016/j.suc.2020.05.001 32681869
    [Google Scholar]
  7. KasiewiczL.N. WhiteheadK.A. Recent advances in biomaterials for the treatment of diabetic foot ulcers.Biomater. Sci.20175101962197510.1039/C7BM00264E 28829074
    [Google Scholar]
  8. EvelhochS.R. Biofilm and chronic Nonhealing wound infections.Surg. Clin. North Am.2020100472773210.1016/j.suc.2020.05.004 32681872
    [Google Scholar]
  9. XuZ. HanS. GuZ. WuJ. Advances and impact of antioxidant Hydrogel in chronic wound healing.Adv. Healthc. Mater.202095190150210.1002/adhm.201901502 31977162
    [Google Scholar]
  10. YaoY. ZhangH. WangZ. Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration.J. Mater. Chem. B Mater. Biol. Med.20197335019503710.1039/C9TB00847K 31432870
    [Google Scholar]
  11. Malone-PovolnyM.J. MaloneyS.E. SchoenfischM.H. Nitric oxide therapy for diabetic wound healing.Adv. Healthc. Mater.2019812180121010.1002/adhm.201801210 30645055
    [Google Scholar]
  12. LinS. ZhangQ. LiS. Antioxidative and angiogenesis-promoting effects of tetrahedral framework nucleic acids in diabetic wound healing with activation of the Akt/Nrf2/HO-1 pathway.ACS Appl. Mater. Interfaces20201210113971140810.1021/acsami.0c00874 32083455
    [Google Scholar]
  13. TyebS. ShiekhP.A. VermaV. KumarA. Adipose-derived stem cells (ADSCs) loaded gelatin-sericin-Laminin Cryogels for tissue regeneration in diabetic wounds.Biomacromolecules202021229430410.1021/acs.biomac.9b01355 31771325
    [Google Scholar]
  14. KarriV.V.S.R. KuppusamyG. TalluriS.V. YamjalaK. MannemalaS.S. MalayandiR. Current and emerging therapies in the management of diabetic foot ulcers.Curr. Med. Res. Opin.201632351954210.1185/03007995.2015.1128888 26643047
    [Google Scholar]
  15. AlexiadouK. DoupisJ. Management of diabetic foot ulcers.Diabetes Ther.201231410.1007/s13300‑012‑0004‑9 22529027
    [Google Scholar]
  16. AgaleS.V. Chronic leg ulcers: Epidemiology, Aetiopathogenesis, and management.Ulcers201320131910.1155/2013/413604
    [Google Scholar]
  17. GayatriD. NurachmahE. MansyurM. SoewondoP. SuriadiS. Relationship between wound severity, discomfort, and psychological problems in patients with a diabetic foot ulcer in Indonesia: A cross-sectional study.Aquichan2020203e203310.5294/aqui.2020.20.3.3
    [Google Scholar]
  18. TasciI. SaglamK. BasgozB.B. Ankle-brachial index and foot ulcer aetiology.Adv. Skin Wound Care201629310410.1097/01.ASW.0000479794.22742.ff 26866861
    [Google Scholar]
  19. JaisS. Various types of wounds that diabetic patients can develop: A narrative review. Clin Pathol2023162632010X23120536610.1177/2632010X231205366 37830052
    [Google Scholar]
  20. LiatisS. TsapogasP. Ischemic and neuro‐ischemic ulcers and gangrene.Atlas of the Diabetic Foot.Wiley201910.1002/9781119255314.ch8
    [Google Scholar]
  21. SinghC.G. SilA. SanyalD. MandalA. Characteristics of neuropathic, ischaemic and Neuroischaemic diabetic foot ulcers- A prospective cohort study.J Clinical Diagno Res20231764510.7860/JCDR/2023/62070.17645
    [Google Scholar]
  22. LiaoX. LiS.H. El AkkawiM.M. FuX. LiuH. HuangY. Surgical amputation for patients with diabetic foot ulcers: A Chinese expert panel consensus treatment guide.Front. Surg.20229100333910.3389/fsurg.2022.1003339 36425891
    [Google Scholar]
  23. Nelzén O.Chapter 4- venous ulcers of the lower extremity: Epidemiology and socioeconomic burden.Venous Ulcers202310.1016/B978‑0‑323‑90610‑4.00025‑2
    [Google Scholar]
  24. AlexandrescuV. TriffauxF. Ischemic ulcer healing: Does appropriate flow reconstruction stand for all that we need?Wound Healing - New insights into Ancient Challenges.InTech201610.5772/64834
    [Google Scholar]
  25. ArmstrongD.G. BoultonA.J.M. BusS.A. Diabetic foot ulcers and their recurrence.N. Engl. J. Med.2017376242367237510.1056/NEJMra1615439 28614678
    [Google Scholar]
  26. HedayatiN. CarsonJ.G. ChiY.W. LinkD. Management of mixed arterial venous lower extremity ulceration.A review. Vasc. Med.201520547948610.1177/1358863X15594683 26206851
    [Google Scholar]
  27. CzernieckiJ.M. TurnerA.P. WilliamsR.M. The development and validation of the AMPREDICT model for predicting mobility outcome after dysvascular lower extremity amputation.J. Vasc. Surg.2017651162171.e310.1016/j.jvs.2016.08.078 27751738
    [Google Scholar]
  28. YotsuR.R. PhamN.M. OeM. Comparison of characteristics and healing course of diabetic foot ulcers by etiological classification: Neuropathic, ischemic, and neuro-ischemic type.J. Diabetes Complications201428452853510.1016/j.jdiacomp.2014.03.013 24846054
    [Google Scholar]
  29. PemayunT.G.D. NaibahoR.M. Clinical profile and outcome of diabetic foot ulcer, a view from tertiary care hospital in Semarang, Indonesia.Diabet. Foot Ankle201781131297410.1080/2000625X.2017.1312974 28649296
    [Google Scholar]
  30. Rosas-GuzmanJ. Rosas-SaucedoJ. Romero-GarciaA. SGLT2 inhibitors in diabetes mellitus treatment.Rev. Recent Clin. Trials201712181810.2174/1574887111666160829145810 27765008
    [Google Scholar]
  31. MouraL.I.F. DiasA.M.A. CarvalhoE. de SousaH.C. Recent advances on the development of wound dressings for diabetic foot ulcer treatment-A review.Acta Biomater.2013977093711410.1016/j.actbio.2013.03.033 23542233
    [Google Scholar]
  32. ZhaoY. LiZ. LiQ. Transparent conductive Supramolecular Hydrogels with stimuli‐responsive properties for on‐demand dissolvable diabetic foot wound dressings.Macromol. Rapid Commun.20204124200044110.1002/marc.202000441 33089609
    [Google Scholar]
  33. ChenK. WangF. LiuS. WuX. XuL. ZhangD. In situ reduction of silver nanoparticles by sodium alginate to obtain silver-loaded composite wound dressing with enhanced mechanical and antimicrobial property.Int. J. Biol. Macromol.202014850150910.1016/j.ijbiomac.2020.01.156 31958554
    [Google Scholar]
  34. DengH. YuZ. ChenS. Facile and eco-friendly fabrication of polysaccharides-based nanocomposite hydrogel for photothermal treatment of wound infection.Carbohydr. Polym.202023011556510.1016/j.carbpol.2019.115565 31887966
    [Google Scholar]
  35. LloydL.L. KennedyJ.F. MethacanonP. PatersonM. KnillC.J. Carbohydrate polymers as wound management aids.Carbohydr. Polym.199837331532210.1016/S0144‑8617(98)00077‑0
    [Google Scholar]
  36. HiltonJ.R. WilliamsD.T. BeukerB. MillerD.R. HardingK.G. Wound dressings in diabetic foot disease.Clin. Infect. Dis.200439Suppl. 2S100S10310.1086/383270 15306987
    [Google Scholar]
  37. FletcherJ. MooreZ. AndersonI. MatsuzakiK. Pressure ulcers and hydrocolloids.Wound Int2011216
    [Google Scholar]
  38. DumvilleJ.C. DeshpandeS. O’MearaS. SpeakK. Hydrocolloid dressings for healing diabetic foot ulcers.Cochrane Database Syst. Rev.20122CD00909910.1002/14651858.CD009099.pub2 22336859
    [Google Scholar]
  39. JeffcoateW.J. PriceP. HardingK.G. Wound healing and treatments for people with diabetic foot ulcers.Diabetes Metab. Res. Rev.200420S1S78S8910.1002/dmrr.476 15150819
    [Google Scholar]
  40. McIntoshC. Are hydrocolloid dressings suitable for diabetic foot ulcers?Wound Essenci20072170
    [Google Scholar]
  41. Skórkowska-TelichowskaK. CzemplikM. KulmaA. SzopaJ. The local treatment and available dressings designed for chronic wounds.J. Am. Acad. Dermatol.2013684e117e12610.1016/j.jaad.2011.06.028 21982060
    [Google Scholar]
  42. WellerC. SussmanG. Wound dressings update.J. Pharm. Pract. Res.200636431832410.1002/j.2055‑2335.2006.tb00640.x
    [Google Scholar]
  43. FonderM.A. LazarusG.S. CowanD.A. Aronson-CookB. KohliA.R. MamelakA.J. Treating the chronic wound: A practical approach to the care of nonhealing wounds and wound care dressings.J. Am. Acad. Dermatol.200858218520610.1016/j.jaad.2007.08.048 18222318
    [Google Scholar]
  44. HardingK.G. JonesV. PriceP. Topical treatment: Which dressing to choose.Diabetes Metab. Res. Rev.200016S1S47S5010.1002/1520‑7560(200009/10)16:1+<:AID‑DMRR133>3.0.CO;2‑Q 11054888
    [Google Scholar]
  45. CasconeS. LambertiG. Hydrogel-based commercial products for biomedical applications: A review.Int. J. Pharm.202057311880310.1016/j.ijpharm.2019.118803 31682963
    [Google Scholar]
  46. ZhengY. ChengY. ChenJ. Injectable hydrogel–microsphere construct with sequential degradation for locally synergistic chemotherapy.ACS Appl. Mater. Interfaces2017943487349610.1021/acsami.6b15245 28067493
    [Google Scholar]
  47. SchäferM. WernerS. Oxidative stress in normal and impaired wound repair.Pharmacol. Res.200858216517110.1016/j.phrs.2008.06.004 18617006
    [Google Scholar]
  48. ChangM. NguyenT.T. Strategy for treatment of infected diabetic foot ulcers.Acc. Chem. Res.20215451080109310.1021/acs.accounts.0c00864 33596041
    [Google Scholar]
  49. MartinP. Wound healing--aiming for perfect skin regeneration.Science19972765309758110.1126/science.276.5309.75 9082989
    [Google Scholar]
  50. EmingS.A. MartinP. Tomic-CanicM. Wound repair and regeneration: Mechanisms, signaling, and translation.Sci. Transl. Med.20146265265sr610.1126/scitranslmed.3009337 25473038
    [Google Scholar]
  51. MatooriS. VevesA. MooneyD.J. Advanced bandages for diabetic wound healing.Sci. Transl. Med.202113585eabe483910.1126/scitranslmed.abe4839 33731435
    [Google Scholar]
  52. TellecheaA. LealE.C. KafanasA. Mast cells regulate wound healing in diabetes.Diabetes20166572006201910.2337/db15‑0340 27207516
    [Google Scholar]
  53. NguyenT.T. DingD. WolterW.R. Validation of matrix metalloproteinase-9 (MMP-9) as a novel target for treatment of diabetic foot ulcers in humans and discovery of a potent and selective small-molecule MMP-9 inhibitor that accelerates healing.J. Med. Chem.201861198825883710.1021/acs.jmedchem.8b01005 30212201
    [Google Scholar]
  54. ReinkeJ.M. SorgH. Wound repair and regeneration.Eur. Surg. Res.2012491354310.1159/000339613 22797712
    [Google Scholar]
  55. LongG. LiuD. HeX. A dual functional collagen scaffold coordinates angiogenesis and inflammation for diabetic wound healing.Biomater. Sci.20208226337634910.1039/D0BM00999G 33025970
    [Google Scholar]
  56. AhmadT. McGrathS. SirafimC. Correction: Development of wound healing scaffolds with precisely-triggered sequential release of therapeutic nanoparticles.Biomater. Sci.2021951888810.1039/D0BM90105A 33226390
    [Google Scholar]
  57. Marin-EstebanV. TurbicaI. DufourG. Afa/Dr diffusely adhering Escherichia coli strain C1845 induces neutrophil extracellular traps that kill bacteria and damage human enterocyte-like cells.Infect. Immun.20128051891189910.1128/IAI.00050‑12 22371374
    [Google Scholar]
  58. KaurT. DumogaS. KoulV. SinghN. Modulating neutrophil extracellular traps for wound healing.Biomater. Sci.20208113212322310.1039/D0BM00355G 32374321
    [Google Scholar]
  59. FrykbergR.G. BanksJ. Challenges in the treatment of chronic wounds.Adv. Wound Care20154956058210.1089/wound.2015.0635 26339534
    [Google Scholar]
  60. PhillipsonM. KubesP. The healing power of neutrophils.Trends Immunol.201940763564710.1016/j.it.2019.05.001 31160208
    [Google Scholar]
  61. HosteE. MaueröderC. van HoveL. Epithelial HMGB1 delays skin wound healing and drives tumor initiation by priming neutrophils for NET formation.Cell Rep.201929926892701.e410.1016/j.celrep.2019.10.104 31775038
    [Google Scholar]
  62. BonaventuraA. VecchiéA. AbbateA. MontecuccoF. Neutrophil Extracellular traps and cardiovascular diseases: An update.Cells20209123110.3390/cells9010231 31963447
    [Google Scholar]
  63. YangS. GuZ. LuC. Neutrophil Extracellular traps are markers of wound healing impairment in patients with diabetic foot ulcers treated in a multidisciplinary setting.Adv. Wound Care202091162710.1089/wound.2019.0943 31871827
    [Google Scholar]
  64. DunnillC. PattonT. BrennanJ. Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS‐modulating technologies for augmentation of the healing process.Int. Wound J.2017141899610.1111/iwj.12557 26688157
    [Google Scholar]
  65. HuangJ. ChenL. GuZ. WuJ. Red jujube-incorporated gelatin Methacryloyl (GelMA) Hydrogels with anti-oxidation and Immunoregulation activity for wound healing.J. Biomed. Nanotechnol.20191571357137010.1166/jbn.2019.2815 31196343
    [Google Scholar]
  66. KantV. GopalA. PathakN.N. KumarP. TandanS.K. KumarD. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats.Int. Immunopharmacol.201420232233010.1016/j.intimp.2014.03.009 24675438
    [Google Scholar]
  67. WilkinsonH.N. HardmanM.J. Wound senescence: A functional link between diabetes and ageing?Exp. Dermatol.2021301687310.1111/exd.14082 32009254
    [Google Scholar]
  68. BitarM.S. The GSK-3β/Fyn/Nrf2 pathway in fibroblasts and wounds of type 2 diabetes.Adipocyte20121316116310.4161/adip.20235 23700526
    [Google Scholar]
  69. KarkkainenM.J. HaikoP. SainioK. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins.Nat. Immunol.200451748010.1038/ni1013 14634646
    [Google Scholar]
  70. MaruyamaK. AsaiJ. IiM. ThorneT. LosordoD.W. D’AmoreP.A. Decreased macrophage number and activation lead to reduced lymphatic vessel formation and contribute to impaired diabetic wound healing.Am. J. Pathol.200717041178119110.2353/ajpath.2007.060018 17392158
    [Google Scholar]
  71. KhanM. LiuH. WangJ. SunB. Inhibitory effect of phenolic compounds and plant extracts on the formation of advance glycation end products: A comprehensive review.Food Res. Int.202013010893310.1016/j.foodres.2019.108933 32156381
    [Google Scholar]
  72. ZhangX. SongY. HanX. Liquiritin attenuates advanced glycation end products-induced endothelial dysfunction via RAGE/NF-κB pathway in human umbilical vein endothelial cells.Mol. Cell. Biochem.20133741-219120110.1007/s11010‑012‑1519‑0 23229233
    [Google Scholar]
  73. HanY. SunT. TaoR. HanY. LiuJ. Clinical application prospect of umbilical cord-derived mesenchymal stem cells on clearance of advanced glycation end products through autophagy on diabetic wound.Eur. J. Med. Res.20172211110.1186/s40001‑017‑0253‑1 28340602
    [Google Scholar]
  74. DaiJ. ChenH. ChaiY. Advanced Glycation end products (AGEs) induce Apoptosis of fibroblasts by activation of NLRP3 Inflammasome via reactive oxygen species (ROS) signaling pathway.Med. Sci. Monit.2019257499750810.12659/MSM.915806 31587010
    [Google Scholar]
  75. WangQ. CaoX. ZhuG. XieT. GeK. NiuY. Blockade of receptor for advanced glycation end products improved essential response of inflammation in diabetic wound healing.Int. J. Diabetes Dev. Ctries.202040228328910.1007/s13410‑019‑00778‑3
    [Google Scholar]
  76. SchremlS. SzeimiesR-M. KarrerS. HeinlinJ. LandthalerM. BabilasP. The impact of the pH value on skin integrity and cutaneous wound healing.J. Eur. Acad. Dermatol. Venereol.201024437337810.1111/j.1468‑3083.2009.03413.x 19703098
    [Google Scholar]
  77. CuiT. YuJ. WangC.F. Micro‐gel ensembles for accelerated healing of chronic wound via pH regulation.Adv. Sci.2022922220125410.1002/advs.202201254 35596608
    [Google Scholar]
  78. ZhangL. OuyangM. ZhangY. The fluorescence imaging and precise suppression of bacterial infections in chronic wounds by porphyrin-based metal–organic framework nanorods.J. Mater. Chem. B Mater. Biol. Med.20219388048805510.1039/D1TB01649K 34486642
    [Google Scholar]
  79. WallaceL.A. GwynneL. JenkinsT. Challenges and opportunities of pH in chronic wounds.Ther. Deliv.2019101171973510.4155/tde‑2019‑0066 31789109
    [Google Scholar]
  80. SimP. StrudwickX.L. SongY. CowinA.J. GargS. Influence of acidic pH on wound healing in vivo : A novel perspective for wound treatment.Int. J. Mol. Sci.202223211365510.3390/ijms232113655 36362441
    [Google Scholar]
  81. SchneiderL.A. KorberA. GrabbeS. DissemondJ. Influence of pH on wound-healing: A new perspective for wound-therapy?Arch. Dermatol. Res.2007298941342010.1007/s00403‑006‑0713‑x 17091276
    [Google Scholar]
  82. GonzalezJ.S. LudueñaL.N. PonceA. AlvarezV.A. Poly(vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings.Mater. Sci. Eng. C201434546110.1016/j.msec.2013.10.006 24268233
    [Google Scholar]
  83. CapanemaN.S.V. MansurA.A.P. de JesusA.C. CarvalhoS.M. de OliveiraL.C. MansurH.S. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications.Int. J. Biol. Macromol.20181061218123410.1016/j.ijbiomac.2017.08.124 28851645
    [Google Scholar]
  84. CalóE. KhutoryanskiyV.V. Biomedical applications of hydrogels: A review of patents and commercial products.Eur. Polym. J.20156525226710.1016/j.eurpolymj.2014.11.024
    [Google Scholar]
  85. BrunnerM. DehghanyarP. SeigfriedB. MartinW. MenkeG. MüllerM. Favourable dermal penetration of diclofenac after administration to the skin using a novel spray gel formulation.Br. J. Clin. Pharmacol.200560557357710.1111/j.1365‑2125.2005.02484.x 16236050
    [Google Scholar]
  86. MiyatakeS. IchiyamaH. KondoE. YasudaK. Randomized clinical comparisons of diclofenac concentration in the soft tissues and blood plasma between topical and oral applications.Br. J. Clin. Pharmacol.200967112512910.1111/j.1365‑2125.2008.03333.x 19133062
    [Google Scholar]
  87. WangH. XuZ. ZhaoM. LiuG. WuJ. Advances of hydrogel dressings in diabetic wounds.Biomaterials Science2021951530154610.1039/d0bm01747g
    [Google Scholar]
  88. ChenH. ChangX. DuD. LiJ. XuH. YangX. Microemulsion-based hydrogel formulation of ibuprofen for topical delivery.Int. J. Pharm.20063151-2525810.1016/j.ijpharm.2006.02.015 16600540
    [Google Scholar]
  89. VelascoD. DanouxC.B. RedondoJ.A. pH-sensitive polymer hydrogels derived from morpholine to prevent the crystallization of ibuprofen.J. Control. Release2011149214014510.1016/j.jconrel.2010.10.015 20971143
    [Google Scholar]
  90. MauriE. RossettiA. MozeticP. Ester coupling of ibuprofen in hydrogel matrix: A facile one-step strategy for controlled anti-inflammatory drug release.Eur. J. Pharm. Biopharm.202014614314910.1016/j.ejpb.2019.11.002 31726217
    [Google Scholar]
  91. BaoZ. XianC. YuanQ. LiuG. WuJ. Natural polymer‐based Hydrogels with enhanced mechanical performances: Preparation, structure, and property.Adv. Healthc. Mater.2019817190067010.1002/adhm.201900670 31364824
    [Google Scholar]
  92. YiT. HuangJ. ChenX. XiongH. KangY. WuJ. Synthesis, characterization, and formulation of poly-puerarin as a biodegradable and biosafe drug delivery platform for anti-cancer therapy.Biomater. Sci.2019752152216410.1039/C9BM00111E 30896685
    [Google Scholar]
  93. WathoniN. MotoyamaK. HigashiT. OkajimaM. KanekoT. ArimaH. Physically crosslinked-sacran hydrogel films for wound dressing application.Int. J. Biol. Macromol.20168946547010.1016/j.ijbiomac.2016.05.006 27151668
    [Google Scholar]
  94. Mohd ZohdiR. Abu Bakar ZakariaZ. YusofN. Mohamed MustaphaN. AbdullahM.N.H. Gelam (Melaleucaspp.) honey-based Hydrogel as burn wound dressing.Evid. Based Complement. Alternat. Med.201220121710.1155/2012/843025 21941590
    [Google Scholar]
  95. AminM.A. Abdel-RaheemI.T. Accelerated wound healing and anti-inflammatory effects of physically cross linked polyvinyl alcohol–chitosan hydrogel containing honey bee venom in diabetic rats.Arch. Pharm. Res.20143781016103110.1007/s12272‑013‑0308‑y 24293065
    [Google Scholar]
  96. MominM. KurhadeS. KhanekarP. MhatreS. Novel biodegradable hydrogel sponge containing curcumin and honey for wound healing.J. Wound Care201625636437210.12968/jowc.2016.25.6.364 27286671
    [Google Scholar]
  97. OnoderaY. TeramuraT. TakeharaT. FukudaK. Hyaluronic acid regulates a key redox control factor Nrf2 via phosphorylation of Akt in bovine articular chondrocytes.FEBS Open Bio20155147648410.1016/j.fob.2015.05.007 26106522
    [Google Scholar]
  98. WuJ. LiuY. MaX. LiuP. GuC. DaiB. Inside back cover: Cu(ii)-catalyzed ligand-free oxidation of Diarylmethanes and second alcohols in water.Chin. J. Chem.20173591477710.1002/cjoc.201770094
    [Google Scholar]
  99. SinghB. DhimanA. Designing bio-mimetic moxifloxacin loaded hydrogel wound dressing to improve antioxidant and pharmacology properties.RSC Advances2015555446664467810.1039/C5RA06857F
    [Google Scholar]
  100. ZhangS. HouJ. YuanQ. Arginine derivatives assist dopamine-hyaluronic acid hybrid hydrogels to have enhanced antioxidant activity for wound healing.Chem. Eng. J.202039212377510.1016/j.cej.2019.123775
    [Google Scholar]
  101. YangL. ZengY. WuH. ZhouC. TaoL. An antioxidant self-healing hydrogel for 3D cell cultures.J. Mater. Chem. B Mater. Biol. Med.2020871383138810.1039/C9TB02792K 31976515
    [Google Scholar]
  102. QiY. QianK. ChenJ. A thermoreversible antibacterial zeolite-based nanoparticles loaded hydrogel promotes diabetic wound healing via detrimental factor neutralization and ROS scavenging.J. Nanobiotechnology202119141410.1186/s12951‑021‑01151‑5 34895257
    [Google Scholar]
  103. ZhaoH. HuangJ. LiY. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds.Biomaterials202025812028610.1016/j.biomaterials.2020.120286 32798744
    [Google Scholar]
  104. ZhangJ. HuJ. ChenB. ZhaoT. GuZ. Superabsorbent poly(acrylic acid) and antioxidant poly(ester amide) hybrid hydrogel for enhanced wound healing.Regen. Biomater.202182rbaa05910.1093/rb/rbaa059 33927886
    [Google Scholar]
  105. MaoL. WangL. ZhangM. In situ synthesized selenium nanoparticles‐decorated bacterial cellulose/Gelatin Hydrogel with enhanced antibacterial, antioxidant, and anti‐inflammatory capabilities for facilitating skin wound healing.Adv. Healthc. Mater.20211014210040210.1002/adhm.202100402 34050616
    [Google Scholar]
  106. AhmedH.E. IqbalY. AzizM.H. Green synthesis of CeO2 nanoparticles from the Abelmoschus esculentus extract: Evaluation of antioxidant, Anticancer, antibacterial, and wound-healing activities.Molecules20212615465910.3390/molecules26154659 34361812
    [Google Scholar]
  107. PengY. HeD. GeX. Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition.Bioact. Mater.20216103109312410.1016/j.bioactmat.2021.02.006 33778192
    [Google Scholar]
  108. GongC. WuQ. WangY. A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing.Biomaterials201334276377638710.1016/j.biomaterials.2013.05.005 23726229
    [Google Scholar]
  109. CirilloG. CurcioM. SpizzirriU.G. Carbon nanotubes hybrid hydrogels for electrically tunable release of Curcumin.Eur. Polym. J.20179011210.1016/j.eurpolymj.2017.03.011
    [Google Scholar]
  110. di LucaM. CurcioM. ValliE. Combining antioxidant hydrogels with self-assembled microparticles for multifunctional wound dressings.J. Mater. Chem. B Mater. Biol. Med.20197274361437010.1039/C9TB00871C
    [Google Scholar]
  111. ComottoM. SaghazadehS. BagherifardS. Breathable hydrogel dressings containing natural antioxidants for management of skin disorders.J. Biomater. Appl.20193391265127610.1177/0885328218816526 30961462
    [Google Scholar]
  112. ThiP.L. LeeY. TranD.L. In situ forming and reactive oxygen species-scavenging gelatin hydrogels for enhancing wound healing efficacy.Acta Biomater.202010314215210.1016/j.actbio.2019.12.009 31846801
    [Google Scholar]
  113. WeiQ. DuanJ. MaG. ZhangW. WangQ. HuZ. Enzymatic crosslinking to fabricate antioxidant peptide-based supramolecular hydrogel for improving cutaneous wound healing.J. Mater. Chem. B Mater. Biol. Med.20197132220222510.1039/C8TB03147A 32073581
    [Google Scholar]
  114. QiuX. ZhangJ. CaoL. Antifouling antioxidant Zwitterionic dextran Hydrogels as wound dressing materials with excellent healing activities.ACS Appl. Mater. Interfaces20211367060706910.1021/acsami.0c17744 33543622
    [Google Scholar]
  115. LiuS. ZhaoY. WeiH. Injectable hydrogels based on silk fibroin peptide grafted hydroxypropyl chitosan and oxidized microcrystalline cellulose for scarless wound healing.Colloids Surf. A Physicochem. Eng. Asp.202264712906210.1016/j.colsurfa.2022.129062
    [Google Scholar]
  116. LiuM. ChenY. ZhuQ. Antioxidant thermogelling formulation for burn wound healing.Chem. Asian J.20221716e20220039610.1002/asia.202200396 35792100
    [Google Scholar]
  117. NorowskiP.A.Jr BumgardnerJ.D. Biomaterial and antibiotic strategies for peri‐implantitis: A review.J. Biomed. Mater. Res. B Appl. Biomater.200988B253054310.1002/jbm.b.31152 18698626
    [Google Scholar]
  118. ManjuS. AntonyM. SreenivasanK. Synthesis and evaluation of a hydrogel that binds glucose and releases ciprofloxacin.J. Mater. Sci.201045154006401210.1007/s10853‑010‑4474‑8
    [Google Scholar]
  119. MarchesanS. QuY. WaddingtonL.J. Self-assembly of ciprofloxacin and a tripeptide into an antimicrobial nanostructured hydrogel.Biomaterials201334143678368710.1016/j.biomaterials.2013.01.096 23422591
    [Google Scholar]
  120. ShiY. TruongV.X. KulkarniK. Light-triggered release of ciprofloxacin from an In situ forming click hydrogel for antibacterial wound dressings.J. Mater. Chem. B Mater. Biol. Med.20153458771877410.1039/C5TB01820J 32263472
    [Google Scholar]
  121. PerinelliD.R. FagioliL. CampanaR. Chitosan-based nanosystems and their exploited antimicrobial activity.Eur. J. Pharm. Sci.201811782010.1016/j.ejps.2018.01.046 29408419
    [Google Scholar]
  122. LiJ. FengY. ChenW. Electroactive materials: Innovative antibacterial platforms for biomedical applications.Prog. Mater. Sci.202313210104510.1016/j.pmatsci.2022.101045
    [Google Scholar]
  123. WuJ. ChenT. WangY. Piezoelectric effect of antibacterial Biomimetic Hydrogel promotes Osteochondral defect repair.Biomedicines2022105116510.3390/biomedicines10051165 35625903
    [Google Scholar]
  124. LiP. ZhaoJ. ChenY. Preparation and characterization of chitosan physical hydrogels with enhanced mechanical and antibacterial properties.Carbohydr. Polym.20171571383139210.1016/j.carbpol.2016.11.016 27987847
    [Google Scholar]
  125. ViezzerC. MazzucaR. MachadoD.C. de Camargo ForteM.M. Gómez RibellesJ.L. A new waterborne chitosan-based polyurethane hydrogel as a vehicle to transplant bone marrow mesenchymal cells improved wound healing of ulcers in a diabetic rat model.Carbohydr. Polym.202023111573410.1016/j.carbpol.2019.115734 31888801
    [Google Scholar]
  126. WeiL. TanJ. LiL. Chitosan/alginate hydrogel dressing loaded FGF/VE-cadherin to accelerate full-thickness skin regeneration and more normal skin repairs.Int. J. Mol. Sci.2022233124910.3390/ijms23031249 35163172
    [Google Scholar]
  127. LiangY. ZhaoX. HuT. Adhesive hemostatic conducting injectable composite hydrogels with sustained drug release and photothermal antibacterial activity to promote full‐thickness skin regeneration during wound healing.Small20191512190004610.1002/smll.201900046 30786150
    [Google Scholar]
  128. LiuD. LiL. ShiB.L. Ultrasound-triggered piezocatalytic composite hydrogels for promoting bacterial-infected wound healing.Bioact. Mater.2023249611110.1016/j.bioactmat.2022.11.023 36582346
    [Google Scholar]
  129. HuangX. ChenC. MaX. In situ forming dual‐conductive Hydrogels enable conformal, self‐adhesive and antibacterial epidermal electrodes.Adv. Funct. Mater.20233338230284610.1002/adfm.202302846
    [Google Scholar]
  130. BrownJ. GrzeskowiakL. WilliamsonK. DownieM.R. CrowtherC.A. Insulin for the treatment of women with gestational diabetes.Cochrane Libr.20171111CD01203710.1002/14651858.CD012037.pub2 29103210
    [Google Scholar]
  131. TienK.J. HungY.J. ChenJ.F. Basal insulin therapy: Unmet medical needs in Asia and the new insulin glargine in diabetes treatment.J. Diabetes Investig.201910356057010.1111/jdi.12984 30520564
    [Google Scholar]
  132. ZhaoL. NiuL. LiangH. TanH. LiuC. ZhuF. PH and glucose dual-responsive injectable Hydrogels with insulin and fibroblasts as Bioactive dressings for diabetic wound healing.ACS Appl. Mater. Interfaces2017943375633757410.1021/acsami.7b09395 28994281
    [Google Scholar]
  133. ChenS. MatsumotoH. Moro-okaY. Glucose-responsive insulin delivery: Microneedle-array patch fabricated with enzyme-free polymeric components capable of on-demand insulin delivery (Adv. Funct. Mater. 7/2019).Adv. Funct. Mater.2019297197004410.1002/adfm.201970044
    [Google Scholar]
  134. ZhangS. XinP. OuQ. HollettG. GuZ. WuJ. Poly(ester amide)-based hybrid hydrogels for efficient transdermal insulin delivery.J. Mater. Chem. B Mater. Biol. Med.20186426723673010.1039/C8TB01466C 32254689
    [Google Scholar]
  135. AbdelkaderD.H. OsmanM.A. El-GizawyS.A. HawthorneS.J. FaheemA.M. McCarronP.A. Effect of poly(ethylene glycol) on insulin stability and cutaneous cell proliferation in vitro following cytoplasmic delivery of insulin-loaded nanoparticulate carriers - A potential topical wound management approach.Eur. J. Pharm. Sci.201811437238410.1016/j.ejps.2017.12.018 29288081
    [Google Scholar]
  136. AbdelkaderD.H. TambuwalaM.M. MitchellC.A. Enhanced cutaneous wound healing in rats following topical delivery of insulin-loaded nanoparticles embedded in poly(vinyl alcohol)-borate hydrogels.Drug Deliv. Transl. Res.2018851053106510.1007/s13346‑018‑0554‑0 29971752
    [Google Scholar]
  137. MouthuyP.A. SnellingS.J.B. DakinS.G. Biocompatibility of implantable materials: An oxidative stress viewpoint.Biomaterials2016109556810.1016/j.biomaterials.2016.09.010 27669498
    [Google Scholar]
  138. FangQ. GuoS. ZhouH. HanR. WuP. HanC. Astaxanthin protects against early burn-wound progression in rats by attenuating oxidative stress-induced inflammation and mitochondria-related apoptosis.Sci. Rep.2017714144010.1038/srep41440 28128352
    [Google Scholar]
  139. PianissoliLG SilvaJPR PenteadoEA LopesDRC MengalVF Oxidative stress and inflammation in wound repair: Molecular and cellular mechanisms. FASEB J201933S1542.310.1096/fasebj.2019.33.1_supplement.542.3
    [Google Scholar]
  140. WlaschekM. Scharffetter-KochanekK. Oxidative stress in chronic venous leg ulcers.Wound Repair Regen.200513545246110.1111/j.1067‑1927.2005.00065.x 16176453
    [Google Scholar]
  141. SahariahP. MássonM. Antimicrobial Chitosan and Chitosan derivatives: A review of the structure-activity relationship.Biomacromolecules201718113846386810.1021/acs.biomac.7b01058 28933147
    [Google Scholar]
  142. DragostinO.M. SamalS.K. DashM. New antimicrobial chitosan derivatives for wound dressing applications.Carbohydr. Polym.2016141284010.1016/j.carbpol.2015.12.078 26876993
    [Google Scholar]
  143. Puertas-BartoloméM. Benito-GarzónL. FungS. KohnJ. Vázquez-LasaB. San RománJ. Bioadhesive functional hydrogels: Controlled release of catechol species with antioxidant and antiinflammatory behavior.Mater. Sci. Eng. C201910511004010.1016/j.msec.2019.110040 31546368
    [Google Scholar]
  144. MoeiniA. PedramP. MakvandiP. MalinconicoM. Gomez d’AyalaG. Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: A review.Carbohydr. Polym.202023311583910.1016/j.carbpol.2020.115839 32059889
    [Google Scholar]
  145. HuberD GrzelakA BaumannM Anti-inflammatory and anti-oxidant properties of laccase-synthesized phenolic-Ocarboxymethyl chitosan hydrogels. N Biotechnol201840Pt B2364410.1016/j.nbt.2017.09.004 28935560
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838277241231206051011
Loading
/content/journals/ctm/10.2174/0122150838277241231206051011
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test