Skip to content
2000
Volume 11, Issue 2
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background

Visceral leishmaniasis is a vector-borne immune-related disease that manifests mainly by lowering of immune protective T-helper-1 cells and onset of disease-promoting T-helper-2 cells therefore the treatment of visceral leishmaniasis depends on boosting the immune status of the host.

Methods

In this study, two traditional medicinal plants and were selected, and their whole plant extracts were used for treating visceral leishmaniasis-infected BALB/c mice. Observing the case of immune suppression and balance of Th-1/Th-2 dichotomy during visceral leishmaniasis in mind, the efficacy of these combined herbal drugs against visceral leishmaniasis infected mice was evaluated by monitoring the restoration of T-helper-1 type protective immune response.

Results

To evaluate the effectiveness of these drugs against visceral leishmaniasis, reactive nitrogen species and reactive oxygen species were measured. Biochemical parameters were also performed from blood serum samples during this study, and normalized results were obtained in visceral leishmaniasis-infected mice treated with and subgroup. The Amphotericin B treated subgroup was considered as standard positive control during the experiment.

Conclusion

A combination of herbal drugs resulted in a successful clearance of parasite as well as increased immune protective T-helper-1 cells, suggesting these drugs as efficient antileishmanial agents.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838268529231122053927
2024-01-23
2025-09-17
Loading full text...

Full text loading...

References

  1. GeneticsI. DeyA. CadilaZ. SinghS. Genetic heterogeneity among visceral and post-Kala-Azar dermal leishmaniasis strains from eastern India.Infect. Genet. Evol.200772219210.1016/j.meegid.2006.09.001
    [Google Scholar]
  2. BurzaS. CroftS.L. BoelaertM. Leishmaniasis.Lancet20183921015195197010.1016/S0140‑6736(18)31204‑2 https://pubmed.ncbi.nlm.nih.gov/30126638/
    [Google Scholar]
  3. KaurS. ChauhanK. SachdevaH. Protection against experimental visceral leishmaniasis by immunostimulation with herbal drugs derived from Withania somnifera and Asparagus racemosus.J. Med. Microbiol.201463101328133810.1099/jmm.0.072694‑0 25082945
    [Google Scholar]
  4. CotaG. ErberA.C. SchernhammerE. SimõesT.C. Inequalities of visceral leishmaniasis case-fatality in Brazil: A multilevel modeling considering space, time, individual and contextual factors.PLoS Negl. Trop. Dis.2021157e000956710.1371/journal.pntd.0009567 34197454
    [Google Scholar]
  5. Torres-GuerreroE. Quintanilla-CedilloM.R. Ruiz-EsmenjaudJ. ArenasR. Leishmaniasis: A review.F1000 Res.20176May75010.12688/f1000research.11120.1 28761456
    [Google Scholar]
  6. DebR.M. StantonM.C. FosterG.M. Visceral leishmaniasis cyclical trends in Bihar, India – implications for the elimination programme.Gates Open Res.201821010.12688/gatesopenres.12793.1 30234191
    [Google Scholar]
  7. SinghV.P. PandeyK. RanjanA. Estimation of under-reporting of visceral leishmaniasis cases in Bihar, India.Am. J. Trop. Med. Hyg.201082191110.4269/ajtmh.2010.09‑0235 20064987
    [Google Scholar]
  8. Ponte-SucreA. GamarroF. DujardinJ.C. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge.PLoS Negl. Trop. Dis.20171112e000605210.1371/journal.pntd.0006052 29240765
    [Google Scholar]
  9. ParvezS. YadagiriG. GeddaM.R. Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: An effective oral combination against experimental murine visceral leishmaniasis.Sci. Rep.20201011224310.1038/s41598‑020‑69276‑5 32699361
    [Google Scholar]
  10. SundarS. ChakravartyJ. Liposomal amphotericin B and leishmaniasis: Dose and response.J. Glob. Infect. Dis.20102215916610.4103/0974‑777X.62886 20606972
    [Google Scholar]
  11. de SouzaA. MarinsD.S.S. MathiasS.L. Promising nanotherapy in treating leishmaniasis.Int. J. Pharm.20185471-242143110.1016/j.ijpharm.2018.06.018 29886097
    [Google Scholar]
  12. SpäthG.F. BeverleyS.M. A lipophosphoglycan-independent method for isolation of infective Leishmania metacyclic promastigotes by density gradient centrifugation.Exp. Parasitol.20019929710310.1006/expr.2001.4656 11748963
    [Google Scholar]
  13. AhmedG ThakurAK Pushpanjali Modulation of the immune response and infection pattern to Leishmania donovani in visceral leishmaniasis due to arsenic exposure: An in vitro study.PLoS One2019142e021073710.1371/journal.pone.0210737 30721235
    [Google Scholar]
  14. Pushpanjali ThakurAK PurkaitB Direct evidence for role of anti-saliva antibodies against salivary gland homogenate of P. argentipes in modulation of protective Th1-immune response against Leishmania donovani. Cytokine201686798510.1016/j.cyto.2016.07.017 27484246
    [Google Scholar]
  15. KumarA. DasS. MandalA. Retracted: Leishmania infection activates host mTOR for its survival by M2 macrophage polarization.Parasite Immunol.20184011e1258610.1111/pim.12586 30187512
    [Google Scholar]
  16. JamalF. AltafI. AhmedG. Amphotericin B nano-assemblies circumvent intrinsic toxicity and ensure superior protection in experimental visceral leishmaniasis with feeble toxic manifestation.Vaccines (Basel)202311110010.3390/vaccines11010100 36679946
    [Google Scholar]
  17. Silva-SantanaG. BaxJ.C. FernandesD.C.S. Clinical hematological and biochemical parameters in Swiss, BALB/c, C57BL/6 and B6D2F1 Mus musculus.Animal Model. Exp. Med.20203430431510.1002/ame2.12139 33532705
    [Google Scholar]
  18. SilvaF.B. SilvaJ.F. BezerraR.S. SantosP.J.P. Are biochemical composition parameters of sediment good tools for assessing the environmental quality of estuarine areas in tropical systems?J. Mar. Biol. Assoc. U. K.201999191810.1017/S0025315417001795
    [Google Scholar]
  19. ShadabM. JhaB. AsadM. DeepthiM. KamranM. AliN. Apoptosis-like cell death in Leishmania donovani treated with KalsomeTM10, a new liposomal amphotericin B.PLoS One2017122e017130610.1371/journal.pone.0171306 28170432
    [Google Scholar]
  20. AgarwalR. DiwanayS. PatkiP. PatwardhanB. Studies on immunomodulatory activity of Withania somnifera (Ashwagandha) extracts in experimental immune inflammation.J. Ethnopharmacol.1999671273510.1016/S0378‑8741(99)00065‑3 10616957
    [Google Scholar]
  21. KushwahaS. RoyS. MaityR. Chemotypical variations in Withania somnifera lead to differentially modulated immune response in BALB/c mice.Vaccine20123061083109310.1016/j.vaccine.2011.12.031 22182427
    [Google Scholar]
  22. ManjrekarP.N. JollyC.I. NarayananS. Comparative studies of the immunomodulatory activity of Tinospora cordifolia and Tinospora sinensis.Fitoterapia200071325425710.1016/S0367‑326X(99)00167‑7 10844163
    [Google Scholar]
  23. AfrinF. ChouhanG. IslamuddinM. WantM.Y. OzbakH.A. HemegH.A. Cinnamomum cassia exhibits antileishmanial activity against Leishmania donovani infection in vitro and in vivo.PLoS Negl. Trop. Dis.2019135e000722710.1371/journal.pntd.0007227 31071090
    [Google Scholar]
  24. DikhitM.R. KumarA. DasS. Identification of potential MHC class-II-restricted epitopes derived from Leishmania donovani antigens by reverse vaccinology and evaluation of their CD4+ T-cell responsiveness against visceral leishmaniasis.Front. Immunol.20178176310.3389/fimmu.2017.01763 29312304
    [Google Scholar]
  25. Laniado-LaborínR. Cabrales-VargasM.N. AmphotericinB. Side effects and toxicity.Rev. Iberoam. Micol.200926422322710.1016/j.riam.2009.06.003 19836985
    [Google Scholar]
  26. SawayaB.P. BriggsJ.P. SchnermannJ. Amphotericin B nephrotoxicity.J. Am. Soc. Nephrol.19956215416410.1681/ASN.V62154 7579079
    [Google Scholar]
  27. ZiaQ. MohammadO. RaufM.A. KhanW. ZubairS. Biomimetically engineered Amphotericin B nano-aggregates circumvent toxicity constraints and treat systemic fungal infection in experimental animals.Sci. Rep.2017711187310.1038/s41598‑017‑11847‑0 28928478
    [Google Scholar]
  28. HamillR.J. Amphotericin B formulations: A comparative review of efficacy and toxicity.Drugs201373991993410.1007/s40265‑013‑0069‑4 23729001
    [Google Scholar]
  29. KhanM.A. OwaisM. Toxicity, stability and pharmacokinetics of amphotericin B in immunomodulator tuftsin-bearing liposomes in a murine model.J. Antimicrob. Chemother.200658112513210.1093/jac/dkl177 16709592
    [Google Scholar]
  30. KumarP. KumarP. SinghN. Limitations of current chemotherapy and future of nanoformulation-based AmB delivery for visceral leishmaniasis-An updated review.Front. Bioeng. Biotechnol.202210101692510.3389/fbioe.2022.1016925 36588956
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838268529231122053927
Loading
/content/journals/ctm/10.2174/0122150838268529231122053927
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test