Skip to content
2000
Volume 11, Issue 4
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Background

L. (Family - Rubiaceae) is a common herb found available in the temperate and tropical Asia. The ethnomedicinal applications of this plant are widely elaborated In Chinese Traditional Medicine, Ayurveda, and other ancient scriptures throughout the world. Different ethnic groups use this plant in the treatment of alimentary and digestive disorders, bone related diseases like rheumatoid arthritis, bone fractures as well as in the ailments of diabetes, coughs, asthma, itches, wounds, body ache, toothache, cancer .

Objectives

This comprehensive review aims to provide an insightful understanding of traditional uses, chemical composition, and pharmacological properties of (from 1976 up to 2023), which may provide a foundation for further study and for the proper utilization of resources.

Methods

Literature survey was conducted using known databases and the relevant keywords.

Results

has been widely used in Chinese traditional medicine (CTM) for the treatment of dyspepsia, jaundice, pains, diarrhea and others. Several ethnic groups throughout the world used this plant to cure common health complaints namely, abdominal pain, gastritis, dysentery, diarrhoea, constipation, joint pain, . A total of 24 bioactive phytocompounds, such as asperuloside, paederosidic acid, sitosterols, stigmasterol, campesterol, ellagic acid, iridoids, ursolic acid, epifriedelinol, and others are reported to possess antiulcer, antidiarrheal, antihyperglycemic, antioxidant, antitussive, anthelmintic, and hepatoprotective activities.

Conclusion

The present review not only summarizes the alternative approaches using this herb by ethnic people for treating various disorders, but also focuses on the latest scientific investigations to elucidate different bioactivities of this plant, thereby facilitating the understanding of its correlation with contemporary pharmacology. However, till date, very few studies elucidated the biological properties of these phytochemicals that were isolated exclusively from this particular plant. Moreover, the correlation between phytocompounds from and its pharmacological activities aiming towards clinical drug development is still lacking. Finally, further research should be oriented towards determining the optimal dosage and toxicological limits, and thereby providing guidance for clinical applications.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838266756231121075211
2024-02-27
2025-11-06
Loading full text...

Full text loading...

References

  1. SofoworaA. OgunbodedeE. OnayadeA. The role and place of medicinal plants in the strategies for disease prevention.Afr. J. Tradit. Complement. Altern. Med.201310521022910.4314/ajtcam.v10i5.2 24311829
    [Google Scholar]
  2. World Health Organization (WHO) Traditional medicine strategy: 2014-2023. Geneva; traditional.J. Complement. Integr. Med.2013
    [Google Scholar]
  3. SharmaN. PaliaP. ChaudharyA. Shalini, Verma K, Kumar I. A review on pharmacological activities of lupeol and its triterpene derivatives.J. Drug Deliv. Ther.202010532533210.22270/jddt.v10i5.4280
    [Google Scholar]
  4. SarmaM.K. SahaD. DasB.K. DasT. AzizovS. KumarD. A delve into the pharmacological targets and biological mechanisms of Paederia foetida Linn.: A rather invaluable traditional medicinal plant.Naunyn Schmiedebergs Arch. Pharmacol.2023396102217224010.1007/s00210‑023‑02496‑4 37099165
    [Google Scholar]
  5. XiaoM. YingL. LiS. FuX. DuG. Progress and research on development on Paederia scandens as a natural medicine.Int. J. Clin. Exp. Med.2019121158167
    [Google Scholar]
  6. LiuY. ZheW. ZhangR. Ultrasonic-assisted extraction of polyphenolic compounds from Paederia scandens (Lour.) Merr. Using deep eutectic solvent: Optimization, identification, and comparison with traditional methods.Ultrason. Sonochem.20228610600510.1016/j.ultsonch.2022.106005 35429898
    [Google Scholar]
  7. ZhuW. PangM. DongL. HuangX. WangS. ZhouL. Anti-inflammatory and immunomodulatory effects of iridoid glycosides from Paederia scandens (LOUR.) MERRILL (Rubiaceae) on uric acid nephropathy rats.Life Sci.20129111-1236937610.1016/j.lfs.2012.08.013 22910180
    [Google Scholar]
  8. DuttaP.P. MarbaniangK. SenS. DeyB.K. TalukdarN.C. A review on phytochemistry of Paederia foetida Linn.Phytomed. Plus20233110041110.1016/j.phyplu.2023.100411
    [Google Scholar]
  9. WaeonukulR. LaothongS. Composition of phenolic compounds and antibacterial activities of Paederia pilifera Hook. f. leaf extract.Naresuan Phayao Journal2022151310
    [Google Scholar]
  10. RamanampamaharanaR.H. Randriamavo SoloH.N.A. RasoamananjaraJ.A. RafatroH. Combination of phytotherapy by using herbal medicine from Paederia thouarsiana leaf crude extract and conventional therapy for the care of painful oral conditions in a clinical dentistry practice.Int Res J Med Biomed Sci20227111510.15739/irjmbs.22.001
    [Google Scholar]
  11. ChandaS. SarethyI.P. DeB. SinghK. Paederia foetida - a promising ethno-medicinal tribal plant of northeastern India.J. For. Res.201324480180810.1007/s11676‑013‑0369‑2
    [Google Scholar]
  12. DasP. Wild tribal plants of Tripura tribes.AgartalaTribal Research Institute1997
    [Google Scholar]
  13. ReddyK.N. PattanaikC. ReddyC.S. RajuV.S. Traditional knowledge on wild food plants in Andhra Pradesh.Indian J. Tradit. Knowl.20076223229
    [Google Scholar]
  14. ChauhanK. PatelA. PatelM. MacwanC. SolankiR. Paederia foetida Linn. As a potential medicinal plant: A review.J. Pharm. Res.20101231353137
    [Google Scholar]
  15. AhmedA. Thrombolytic, cytotoxic and antidiabetic effects of Paederia foetida L. leaf extracts.Br. J. Med. Med. Res.2014451244125610.9734/BJMMR/2014/5142
    [Google Scholar]
  16. UpadhyayaS. KhatiworaE. SaikiaL.R. Mineral elements analysis of selected ethnomedicinally valued plants from Assam, India.Asian J. Chem.20102243304334
    [Google Scholar]
  17. ShuklaY.N. LloydH.A. MortonJ.F. KapadiaG.J. Iridoid glycosides and other constituents of Paederia foetida.Phytochemistry197615121989199010.1016/S0031‑9422(00)88867‑6
    [Google Scholar]
  18. DeS. RavishankarB. BhavsarG.C. Investigation of the anti-inflammatory effects of Paederia foetida.J. Ethnopharmacol.1994431313810.1016/0378‑8741(94)90113‑9 7967647
    [Google Scholar]
  19. OsmanH. RahimA. IsaN. BakhirN. Antioxidant activity and phenolic content of Paederia foetida and Syzygium aqueum.Molecules200914397097810.3390/molecules14030970 19305354
    [Google Scholar]
  20. OjhaS. RajA. RoyA. RoyS. Extraction of total phenolics, flavonoids and tannins from Paederia foetida L. Leaves and their relation with antioxidant activity.Pharmacogn. J.201810354154710.5530/pj.2018.3.88
    [Google Scholar]
  21. UddinB. NaharT. BasuniaA.M. HossainS. Paederia foetida protects liver against hepatotoxin- induced oxidative damage.Adv. Biol. Res.20115267272
    [Google Scholar]
  22. SumithraM. ChitraV. AnbuJ. Suman RayS. NithyaS. Hepatoprotective activity of leaf extract of Paederia foetida in experimental liver cirrhosis.Inventi Rapid Ethnopharmacol2014216
    [Google Scholar]
  23. KumarV. Al-AbbasiF.A. AhmedD. VermaA. MujeebM. AnwarF. Paederia foetida Linn. inhibits adjuvant induced arthritis by suppression of PGE2 and COX-2 expression via nuclear factor-κB.Food Funct.2015651652166610.1039/C5FO00178A 25893742
    [Google Scholar]
  24. ChandaS. AhmadS. SinghK. Gastroprotective mechanism of Paederia foetida leaf extract.Int J Drug Dev Res201562105109
    [Google Scholar]
  25. SinghH. KrishnaG. BaskeP.K. Plants used in the treatment of joint diseases (rheumatism, arthritis, gout and lumbago) in Mayurbhanj district of Odisha, India.Rep. Opinion201022226
    [Google Scholar]
  26. Anonymous The wealth of India Raw material. New Delhi.National Institute of Science Communication Council of Scientific and Industrial Research2001VII210211
    [Google Scholar]
  27. KagyungR. GajurelP.R. RethyP. SinghB. Ethnomedicinal plants used for gastrointestinal disease by Adi tribes of Dehang-Debang Biosphere Reserve in Arunachal Pradesh.Indian J. Tradit. Knowl.20109496501
    [Google Scholar]
  28. HuR. LinC. XuW. LiuY. LongC. Ethnobotanical study on medicinal plants used by Mulam people in Guangxi, China.J. Ethnobiol. Ethnomed.20201614010.1186/s13002‑020‑00387‑z 32616044
    [Google Scholar]
  29. LiuS. ZhangB. LeiQ. ZhouJ. AliM. LongC. Diversity and traditional knowledge of medicinal plants used by Shui people in Southwest China.J. Ethnobiol. Ethnomed.20231912010.1186/s13002‑023‑00594‑4 37254191
    [Google Scholar]
  30. ChhetriD.R. ParajuliP. SubbaG.C. Antidiabetic plants used by Sikkim and Darjeeling Himalayan tribes, India.J. Ethnopharmacol.200599219920210.1016/j.jep.2005.01.058 15894127
    [Google Scholar]
  31. SrivastavaR.C. SinghR.K. MukherjeeT.K. Indigenous biodiversity of apatani plateau: Learning on biocultural knowledge of apatani tribe of arunachal pradesh for sustainable live hoods.Indian J. Tradit. Knowl.20109432442
    [Google Scholar]
  32. CarterO.A. PetersR.J. CroteauR. Monoterpene biosynthesis pathway construction in Escherichia coli.Phytochemistry200364242543310.1016/S0031‑9422(03)00204‑8 12943759
    [Google Scholar]
  33. WongK.C. TanG.L. Steam volatile constituents of the aerial parts of Paederia foetida L.Flavour Fragrance J.199491252810.1002/ffj.2730090106
    [Google Scholar]
  34. ElisabetskyE. Silva BrumL.F. SouzaD.O. Anticonvulsant properties of linalool in glutamate-related seizure models.Phytomedicine19996210711310.1016/S0944‑7113(99)80044‑0 10374249
    [Google Scholar]
  35. CherngJ.M. ShiehD.E. ChiangW. ChangM.Y. ChiangL.C. Chemopreventive effects of minor dietary constituents in common foods on human cancer cells.Biosci. Biotechnol. Biochem.20077161500150410.1271/bbb.70008 17587681
    [Google Scholar]
  36. AnQ. RenJ.N. LiX. Recent updates on bioactive properties of linalool.Food Funct.20211221103701038910.1039/D1FO02120F 34611674
    [Google Scholar]
  37. BhattamisraS.K. Yean YanV.L. Koh LeeC. Protective activity of geraniol against acetic acid and Helicobacter pylori- induced gastric ulcers in rats.J. Tradit. Complement. Med.20199320621410.1016/j.jtcme.2018.05.001 31193983
    [Google Scholar]
  38. JiP. SiM.S. PodnosY. ImagawaD.K. Monoterpene geraniol prevents acute allograft rejection.Transplant. Proc.20023451418141910.1016/S0041‑1345(02)02910‑X 12176421
    [Google Scholar]
  39. BurkeY.D. StarkM.J. RoachS.L. SenS.E. CrowellP.L. Inhibition of pancreatic cancer growth by the dietary isoprenoids farnesol and geraniol.Lipids199732215115610.1007/s11745‑997‑0019‑y 9075204
    [Google Scholar]
  40. YuH. LiuY. YangF. The combination of hexanal and geraniol in sublethal concentrations synergistically inhibits quorum sensing in Pseudomonas fluorescens- In vitro and in silico approaches.J. Appl. Microbiol.202213342122213610.1111/jam.15446 35007388
    [Google Scholar]
  41. OdodoM.M. ChoudhuryM.K. DekeboA.H. Structure elucidation of β-sitosterol with antibacterial activity from the root bark of Malva parviflora.Springerplus201651121010.1186/s40064‑016‑2894‑x 27516948
    [Google Scholar]
  42. NakamuraA. YokoyamaY. TanakaK. Asperuloside improves obesity and Type 2 diabetes through modulation of gut microbiota and metabolic signaling.iScience202023910152210.1016/j.isci.2020.101522
    [Google Scholar]
  43. HeJ. LuX. WeiT. Asperuloside and Asperulosidic acid exert an anti-inflammatory effect via suppression of the NF-κB and MAPK signaling pathways in LPS-induced RAW 264.7 macrophages.Int. J. Mol. Sci.2018197202710.3390/ijms19072027 30002289
    [Google Scholar]
  44. KapadiaG.J. SharmaS.C. TokudaH. NishinoH. UedaS. Inhibitory effect of iridoids on Epstein-Barr virus activation by a short-term in vitro assay for anti-tumor promoters.Cancer Lett.19961021-222322610.1016/0304‑3835(96)04184‑5 8603374
    [Google Scholar]
  45. LiuL. WuQ. ChenY. Updated pharmacological effects, molecular mechanisms, and therapeutic potential of natural product geniposide.Molecules20222710331910.3390/molecules27103319 35630796
    [Google Scholar]
  46. LibyK.T. YoreM.M. SpornM.B. Triterpenoids and rexinoids as multifunctional agents for the prevention and treatment of cancer.Nat. Rev. Cancer20077535736910.1038/nrc2129 17446857
    [Google Scholar]
  47. SoniR.K. IrchhaiyaR. DixitV. AlokS. Paederia foetida linn: Phytochemistry, pharmacological and traditional uses.Int. J. Pharm. Sci. Res.201041245254530
    [Google Scholar]
  48. PhillipsD.R. RasberyJ.M. BartelB. MatsudaS.P.T. Biosynthetic diversity in plant triterpene cyclization.Curr. Opin. Plant Biol.20069330531410.1016/j.pbi.2006.03.004 16581287
    [Google Scholar]
  49. YangH. SonJ.K. JungB. ZhengM. KimJ.R. Epifriedelanol from the root bark of Ulmus davidiana inhibits cellular senescence in human primary cells.Planta Med.201177544144910.1055/s‑0030‑1250458 21049397
    [Google Scholar]
  50. YangJ. FaJ. LiB. Apoptosis induction of epifriedelinol on human cervical cancer cell line.Afr. J. Tradit. Complement. Altern. Med.2017144808610.21010/ajtcam.v14i4.10 28638870
    [Google Scholar]
  51. PrasadS. YadavV.R. SungB. Ursolic acid inhibits growth and metastasis of human colorectal cancer in an orthotopic nude mouse model by targeting multiple cell signaling pathways: Chemosensitization with capecitabine.Clin. Cancer Res.201218184942495310.1158/1078‑0432.CCR‑11‑2805 22832932
    [Google Scholar]
  52. LewinskaA. Adamczyk-GrochalaJ. KwasniewiczE. DeregowskaA. WnukM. Ursolic acid-mediated changes in glycolytic pathway promote cytotoxic autophagy and apoptosis in phenotypically different breast cancer cells.Apoptosis201722680081510.1007/s10495‑017‑1353‑7 28213701
    [Google Scholar]
  53. LiW. ZhangH. NieM. Ursolic acid derivative FZU-03,010 inhibits STAT3 and induces cell cycle arrest and apoptosis in renal and breast cancer cells.Acta Biochim. Biophys. Sin.201749436737310.1093/abbs/gmx012 28338932
    [Google Scholar]
  54. AhmadS.F. KhanB. BaniS. SuriK.A. SattiN.K. QaziG.N. Amelioration of adjuvant-induced arthritis by ursolic acid through altered Th1/Th2 cytokine production.Pharmacol. Res.200653323324010.1016/j.phrs.2005.11.005 16406805
    [Google Scholar]
  55. Al-kuraishyH.M. Al-GareebA.I. NegmW.A. AlexiouA. BatihaG.E.S. Ursolic acid and SARS-CoV-2 infection: A new horizon and perspective.Inflammopharmacology20223051493150110.1007/s10787‑022‑01038‑3 35922738
    [Google Scholar]
  56. Oliveira-JuniorM.S. PereiraE.P. de AmorimV.C.M. Lupeol inhibits LPS-induced neuroinflammation in cerebellar cultures and induces neuroprotection associated to the modulation of astrocyte response and expression of neurotrophic and inflammatory factors.Int. Immunopharmacol.20197030231210.1016/j.intimp.2019.02.055 30852286
    [Google Scholar]
  57. PitchaiD. RoyA. IgnatiusC. In vitro evaluation of anticancer potentials of lupeol isolated from Elephantopus scaber L. on MCF-7 cell line.J. Adv. Pharm. Technol. Res.20145417918410.4103/2231‑4040.143037 25364696
    [Google Scholar]
  58. SudhaharV. KumarS.A. SudharsanP.T. VaralakshmiP. Protective effect of lupeol and its ester on cardiac abnormalities in experimental hypercholesterolemia.Vascul. Pharmacol.200746641241810.1016/j.vph.2006.12.005 17336164
    [Google Scholar]
  59. BorgatiT. PereiraG. BrandãoG. Synthesis by click reactions and antiplasmodial activity of lupeol 1,2,3-triazole derivatives.J. Braz. Chem. Soc.20172017001310.21577/0103‑5053.20170013
    [Google Scholar]
  60. GuptaR. SharmaA.K. SharmaM.C. DobhalM.P. GuptaR.S. Evaluation of antidiabetic and antioxidant potential of lupeol in experimental hyperglycaemia.Nat. Prod. Res.201226121125112910.1080/14786419.2011.560845 22043924
    [Google Scholar]
  61. MathiasS.N. AbubakarK. OctoberN. AbubakarM.S. MsheliaH.E. Anti-venom potentials of friedelin isolated from hexane extract fraction of Albizia chevalieri Hams (Mimosaceae).J Sci Ife2016182473481
    [Google Scholar]
  62. LimW.Y. ChanE.W.C. PhanC.W. WongC.W. Potent melanogenesis inhibition by friedelin isolated from Hibiscus tiliaceus leaves.Eur. J. Integr. Med.202255Oct10218110.1016/j.eujim.2022.102181
    [Google Scholar]
  63. Çeli̇kler KasimoğullariS. OranS. AriF. Genotoxic, cytotoxic, and apoptotic effects of crude extract of Usnea filipendula Stirt. in vitro .Turk. J. Biol.20143894094710.3906/biy‑1405‑23
    [Google Scholar]
  64. MaliniT. VanithakumariG. Antifertility effects of β-sitosterol in male albino rats.J. Ethnopharmacol.199135214915310.1016/0378‑8741(91)90066‑M 1809820
    [Google Scholar]
  65. KumarS. KumarV. PrakashO. Enzymes inhibition and antidiabetic effect of isolated constituents from Dillenia indica.BioMed Res. Int.201320131710.1155/2013/382063 24307994
    [Google Scholar]
  66. ValerioM. AwadA.B. β-Sitosterol down-regulates some pro-inflammatory signal transduction pathways by increasing the activity of tyrosine phosphatase SHP-1 in J774A.1 murine macrophages.Int. Immunopharmacol.20111181012101710.1016/j.intimp.2011.02.018 21356343
    [Google Scholar]
  67. JangJ.H. LeeT.J. Mechanisms of phytochemicals in anti-inflammatory and anti-cancer.Int. J. Mol. Sci.2023249786310.3390/ijms24097863 37175569
    [Google Scholar]
  68. KalitaD. DebB. Folk medicines for some diseases prevalent in Lakhimpur district of Brahmaputra valley, Assam.Nat. Prod. Radiance20065319322
    [Google Scholar]
  69. FarhaA.K. GanR.Y. LiH.B. The anticancer potential of the dietary polyphenol rutin: Current status, challenges, and perspectives.Crit. Rev. Food Sci. Nutr.202262383285910.1080/10408398.2020.1829541 33054344
    [Google Scholar]
  70. DewiB.E. RatningpoetiE. DestiH. AngelinaM. In vitro and in-silico study to evaluate the effectiveness of quercitrin as antiviral drug to dengue virus.Proceedings of the international symposium of biomedical engineering (ISBE). AIP Conference Proceedings,201910.1063/1.5139341
    [Google Scholar]
  71. MeneguzzoF. CiriminnaR. ZabiniF. PagliaroM. Pagliaro MReview of evidence available on hesperidin-rich products as potential tools against COVID-19 and hydrodynamic cavitation-based extraction as a method of increasing their production.Processes20208554910.3390/pr8050549
    [Google Scholar]
  72. ZariA.T. ZariT.A. HakeemK.R. Anticancer properties of eugenol: A review.Molecules20212623740710.3390/molecules26237407 34885992
    [Google Scholar]
  73. NarayananB.A. GeoffroyO. WillinghamM.C. ReG.G. NixonD.W. p53/p21(WAF1/CIP1) expression and its possible role in G1 arrest and apoptosis in ellagic acid treated cancer cells.Cancer Lett.1999136221522110.1016/S0304‑3835(98)00323‑1 10355751
    [Google Scholar]
  74. ChangY. ChenW.F. LinK.H. Novel bioactivity of ellagic Acid in inhibiting human platelet activation.Evid. Based Complement. Alternat. Med.201320131910.1155/2013/595128 23533502
    [Google Scholar]
  75. HanD. ZhangG.L. LiuW.Z. YuanZ.J. Effect of an active component of Paederia scandens dimethyl disulfide on epiletiform discharges in rats.Acta Acad Med Hubei199415312315
    [Google Scholar]
  76. ZhangD. LiuR. SunL. Anti-inflammatory activity of methyl salicylate glycosides isolated from Gaultheria yunnanensis (Franch.) Rehder.Molecules20111653875388410.3390/molecules16053875 21555977
    [Google Scholar]
  77. OloyedeG.K. Toxicity, antimicrobial and antioxidant activities of methyl salicylate dominated essential oils of Laportea aestuans (Gaud).Arab. J. Chem.20169S840S84510.1016/j.arabjc.2011.09.019
    [Google Scholar]
  78. Kosik-BogackaD.I. Baranowska-BosiackaI. MarchlewiczM. The effect of L-ascorbic acid and/or tocopherol supplementation on electrophysiological parameters of the colon of rats chronically exposed to lead.Med. Sci. Monit.2011171BR16BR2610.12659/MSM.881323 21169903
    [Google Scholar]
  79. YangG. GaoH. LuoC. Palmitic acid-conjugated radiopharmaceutical for integrin αvβ3-targeted radionuclide therapy.Pharmaceutics2022147132710.3390/pharmaceutics14071327 35890224
    [Google Scholar]
  80. MayJ.M. QuZ. Transport and intracellular accumulation of vitamin C in endothelial cells: Relevance to collagen synthesis.Arch. Biochem. Biophys.2005434117818610.1016/j.abb.2004.10.023 15629121
    [Google Scholar]
  81. ChambialS. DwivediS. ShuklaK.K. JohnP.J. SharmaP. Vitamin C in disease prevention and cure: An overview.Indian J. Clin. Biochem.201328431432810.1007/s12291‑013‑0375‑3 24426232
    [Google Scholar]
  82. KhanS. SaharA. TariqT. SameenA. TariqF. Essential oils in plants: Plant physiology, the chemical composition of the oil, and natural variation of the oils (chemotaxonomy and environmental effects, etc.).Essent Oils Extr Char Appl20231-3610.1016/B978‑0‑323‑91740‑7.00016‑5
    [Google Scholar]
  83. HüsnüK. BaşerC. DemirciF. Chemistry of essential oils.Flavours and fragrances Berlin. BergerR.G. HeidelbergSpringer200710.1007/978‑3‑540‑49339‑6_4
    [Google Scholar]
  84. SadgroveN. Padilla-GonzálezG. PhumthumM. Fundamental chemistry of essential oils and volatile organic compounds, methods of analysis and authentication.Plants202211678910.3390/plants11060789 35336671
    [Google Scholar]
  85. WuQ. YangF. TangH. Based on network pharmacology method to discovered the targets and therapeutic mechanism of Paederia scandens against nonalcoholic fatty liver disease in chicken.Poult. Sci.20211001556310.1016/j.psj.2020.09.087 33357707
    [Google Scholar]
  86. DeyY.N. PalM.K. Evaluation of anthelmintic activity of leaves of Paederia foetida.Int. J. Pharm. Biol. Sci.20112227231
    [Google Scholar]
  87. RoychoudhuryG.K. ChakrabartyA.K. DuttaB. A preliminary observation on the effects of Paederia foetida on gastro-intestinal helminths in bovines.Indian Vet. J.1970479767769 5530299
    [Google Scholar]
  88. KarmakarU.K. AkterS. SulatanaS. Investigation of antioxidant, analgesic, antimicrobial, and anthelmintic activity of the aerial parts of Paederia foetida (Family: Rubiaceaea).Jordan J. Pharm. Sci.202013131136
    [Google Scholar]
  89. MollickM.M.R. BhowmickB. MaityD. Green Synthesis of Silver Nanoparticles using Paederia foetida L. leaf extract and assessment of their antimicrobial activities.Int Jf Green Nanotechnol20124323023910.1080/19430892.2012.706103
    [Google Scholar]
  90. MorshedH. Antimicrobial and cytotoxic activity of the methanol extract of Paederia foetida Linn. (Rubiaceae).J. Appl. Pharm. Sci.2012027780
    [Google Scholar]
  91. NamsenaP. ManeetapJ. PhongphengD. NgamsaneW. Comparative study of antibacterial activity and phytochemical analysis of stem, root and leaf extracts of Paederia foetida L. against phytopathogenic bacteria.Agric. Nat. Resour.201953395401
    [Google Scholar]
  92. UddinB. NaharT. KhalilM.I. HossainS. In vitro antibacterial activity of the ethanol extract of Paederia foetida L. (Rubiaceae) leaves.Bangladesh J Life Sci2007192141143
    [Google Scholar]
  93. RamadhanA. WardaniA.K. DlaminiB.S. ChangC.I. Anthraquinone derivatives and its antibacterial properties from Paederia foetida stems.Nat. Prod. J.202111219319910.2174/2210315510666191224103057
    [Google Scholar]
  94. VicencioMCG Antibacterial efficacy of leaf extracts of Paederia foetida Linnaeus. J Chem Res Adv20212015
    [Google Scholar]
  95. GhoshT.K. HusnaT. MerajZ.A. NazranA. Antioxidative and antidiabetic properties of Skunk vine (Paederia foetida L.).Bangladesh J. Agric. Res.202346111210.3329/bjar.v46i1.63309
    [Google Scholar]
  96. DuttaJ. KalitaM.C. In vitro hypoglycaemic evaluation of seven culinary plants of North East India against type 2 diabetes.Asian J. Pharm. Clin. Res.20169209212
    [Google Scholar]
  97. AfrozS. AlamgirM. KhanM.T. JabbarS. NaharN. ChoudhuriM.S. Antidiarrhoeal activity of the ethanol extract of Paederia foetida Linn. (Rubiaceae).J. Ethnopharmacol.20061051-212513010.1016/j.jep.2005.10.004
    [Google Scholar]
  98. NosáľováG. MokrýJ. AtherA. KhanM.T.H. Antitussive activity of the ethanolic extract of Paederia foetida (Rubiaceae family) in non-anaesthetized cats.Acta Vet. Brno2007761273310.2754/avb200776010027
    [Google Scholar]
  99. SharkerS.M. Antinociceptive activity of crude ethanolic extract of Paederia foetida, Butea monosperma, Bombex ceiba.Pharmacologyonline20092862866
    [Google Scholar]
  100. LiN. ZhouH. ChenX. ChenH. TangH. YaoY. Potential chemoprotective effect of Paederia foetida Linn on Benzyo [a] pyrene induced gastric cancer.Lat. Am. J. Pharm.202140834843
    [Google Scholar]
  101. PradhanN. ParbinS. KausarC. Paederia foetida induces anticancer activity by modulating chromatin modification enzymes and altering pro-inflammatory cytokine gene expression in human prostate cancer cells.Food Chem. Toxicol.201913016117310.1016/j.fct.2019.05.016 31112703
    [Google Scholar]
  102. ChenB.C. HeH.Y. NiuK. Network pharmacology-based approach uncovers the JAK/STAT signaling mechanism underlying paederia scandens extract treatment of rheumatoid arthritis.Am. J. Transl. Res.202214852955307 36105044
    [Google Scholar]
  103. ChungY.C. LeeJ.N. KimB.S. HyunC.G. Anti-melanogenic effects of Paederia foetida L. extract via MAPK signaling-mediated MITF downregulation.Cosmetics2021812210.3390/cosmetics8010022
    [Google Scholar]
  104. BurraT. BairiR. KusumaV.K. Evaluation of cardiotonic and cardioprotective effects of Paederia foetida.Inet J Res Pharmacol Pharmacother201542231244
    [Google Scholar]
  105. TangjangS. NamsaN.D. AranC. LitinA. An ethnobotanical survey of medicinal plants in the Eastern Himalayan zone of Arunachal Pradesh, India.J. Ethnopharmacol.20111341182510.1016/j.jep.2010.11.053 21129478
    [Google Scholar]
  106. PurkayasthaJ. NathS.C. Biological activities of Ethnomedicinal claims of some plant species of Assam.Indian J. Tradit. Knowl.20065229236
    [Google Scholar]
  107. BorahP.K. GogoiP. PhukanA.C. MahantaJ. Traditional medicine in the treatment of gastrointestinal diseases in upper Assam.Indian J. Tradit. Knowl.20065510512
    [Google Scholar]
  108. BasumataryS.K. AhmedM. DekaS.P. Some medicinal plant leaves used by Boro (Tribal) people of Goalpara district, Assam.Nat. Prod. Radiance200438890
    [Google Scholar]
  109. KalitaD. PhukanB. Some ethnomedicine used by the tai Ahom of Dibrugarh district, Assam India.Indian J. Nat. Prod. Resour.20101507511
    [Google Scholar]
  110. HossainM.M. AliM.S. SahaA. AlimuzzamanM. Antinociceptive activity of whole plant extracts of Paederia foetida.Dhaka Univ J Pharmaceut Sci197051676910.3329/dujps.v5i1.232
    [Google Scholar]
  111. GaoL. WeiN. YangG. ZhangZ. LiuG. CaiC. Ethnomedicine study on traditional medicinal plants in the Wuliang Mountains of Jingdong, Yunnan, China.J. Ethnobiol. Ethnomed.20191514110.1186/s13002‑019‑0316‑1 31426826
    [Google Scholar]
  112. van ZylRL SeatlholoST van VuurenSF ViljoenAM The biological activities of 20 nature identical essential oil. J Essent Oil Res200618sup11293310.1080/10412905.2006.12067134
    [Google Scholar]
  113. QuangD. HashimotoT. TanakaM. DungN.X. AsakawaY. Iridoid glucosides from roots of Vietnamese Paederia scandens.Phytochemistry200260550551410.1016/S0031‑9422(02)00096‑1 12052517
    [Google Scholar]
  114. ItohM. HiwatashiK. AbeY. Lupeol reduces triglyceride and cholesterol synthesis in human hepatoma cells.Phytochem. Lett.20092417617810.1016/j.phytol.2009.06.001
    [Google Scholar]
  115. EmsenB. EnginT. TurkezH. In vitro investigation of the anticancer activity of friedelin in glioblastoma multiforme. AKU-J.Afyon Kocatepe Univ J Sci Eng201818376377310.5578/fmbd.67733
    [Google Scholar]
  116. CliftonP. Lowering cholesterol - a review on the role of plant sterols.Aust. Fam. Physician2009384218221 19350071
    [Google Scholar]
  117. TanD.C. KassimN.K. IsmailI.S. HamidM. Ahamad BustamamM.S. Identification of antidiabetic metabolites from Paederia foetida L. twigs by gas chromatography-mass spectrometry-based metabolomics and molecular docking study.BioMed Res. Int.2019201911410.1155/2019/7603125 31275982
    [Google Scholar]
  118. PrakashD. SuriS. UpadhyayG. SinghB.N. Total phenol, antioxidant and free radical scavenging activities of some medicinal plants.Int. J. Food Sci. Nutr.2007581182810.1080/09637480601093269 17415953
    [Google Scholar]
  119. CaoG. SoficE. PriorR.L. Antioxidant and prooxidant behavior of flavonoids: Structure-activity relationships.Free Radic. Biol. Med.199722574976010.1016/S0891‑5849(96)00351‑6 9119242
    [Google Scholar]
  120. CushnieT.P.T. LambA.J. Antimicrobial activity of flavonoids.Int. J. Antimicrob. Agents200526534335610.1016/j.ijantimicag.2005.09.002 16323269
    [Google Scholar]
  121. BadshahS.L. FaisalS. MuhammadA. PoulsonB.G. EmwasA.H. JaremkoM. Antiviral activities of flavonoids.Biomed. Pharmacother.2021140Apr11159610.1016/j.biopha.2021.111596 34126315
    [Google Scholar]
  122. GardiniF. LanciottiR. CaccioniD.R.L. GuerzoniM.E. Antifungal activity of hexanal as dependent on its vapor pressure.J. Agric. Food Chem.199745114297430210.1021/jf970347u
    [Google Scholar]
  123. HaradaH. YamashitaU. KuriharaH. FukushiE. KawabataJ. KameiY. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga.Anticancer Res.200222525872590 12529968
    [Google Scholar]
  124. GhaniA. Medicinal plants of Bangladesh.Chemical constituents and uses.2nd edDhaka, BangladeshAsiatic Society of Bangladesh2003331332
    [Google Scholar]
  125. ReangJ. SharmaP.C. ThakurV.K. MajeedJ. Understanding the therapeutic potential of ascorbic acid in the battle to overcome cancer.Biomolecules2021118113010.3390/biom11081130 34439796
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838266756231121075211
Loading
/content/journals/ctm/10.2174/0122150838266756231121075211
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test