Skip to content
2000
Volume 11, Issue 2
  • ISSN: 2215-0838
  • E-ISSN: 2215-0846

Abstract

Pneumonia is defined as an inflammation of the lung parenchyma, and is caused by different factors resulting in varied manifestations and sequelae. Pneumonia has a great impact on an individual well-being and quality of life, and has brought a heavy economic burden to society. Pneumonia can be classified based on etiologies, lesion sites, extent of involvement, mode of acquisition, duration of the disease, pathological characteristics, among others. Based on the classification of etiologies, this article briefly reviewed pneumonia from pathogenic characteristics, pathogenic mechanisms, epidemiology, diagnosis and Chinese medicine treatment. It is found that pneumonia is mainly caused by pathogens various mechanisms, often outbreaks in winter and early spring, especially in areas with poor medical conditions, and predominantly affects immunocompromised individuals, such as children under 5 years of age and the elderly and its diagnosis is based mainly on clinical features and chest CT. Up to now, almost all types of pneumonia can be accurately diagnosed and effectively improved by different traditional medicines, especially Chinese medicines, while the fast diagnostic technology that is specific to its corresponding pathogen urgently needs to be developed.

Loading

Article metrics loading...

/content/journals/ctm/10.2174/0122150838255055230919074231
2023-10-05
2025-09-26
Loading full text...

Full text loading...

References

  1. TorresA. CillonizC. NiedermanM.S. Pneumonia.Nat. Rev. Dis. Primers2021712510.1038/s41572‑021‑00259‑0 33833230
    [Google Scholar]
  2. MackenzieG. The definition and classification of pneumonia.Pneumonia (Nathan)201681410.1186/s41479‑016‑0012‑z
    [Google Scholar]
  3. LiF. FangZ. Classification of pneumonia.Chin Community Doc1993112
    [Google Scholar]
  4. JainV. VashishtR. YilmazG. Pneumonia pathology. StatPearls StatPearls Publishing Copyright © 2022.Treasure Island, FLStatPearls Publishing LLC2022
    [Google Scholar]
  5. DunnL. Pneumonia: Classification, diagnosis and nursing management.Nurs. Stand.20051942505410.7748/ns2005.06.19.42.50.c3901 16013205
    [Google Scholar]
  6. GriefS.N. LozaJ.K. Guidelines for the evaluation and treatment of pneumonia.Prim. Care201845348550310.1016/j.pop.2018.04.001 30115336
    [Google Scholar]
  7. GroupC.C.C.T. A randomized trial of diagnostic techniques for ventilator-associated pneumonia.N. Engl. J. Med.2006355252619263010.1056/NEJMoa052904 17182987
    [Google Scholar]
  8. KalilA.C. MeterskyM.L. KlompasM. Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of america and the american thoracic society.Clin. Infect. Dis.2016635e61e11110.1093/cid/ciw353 27418577
    [Google Scholar]
  9. MandellLA WunderinkRG AnzuetoA Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults.Clin Infect Dis200744 Suppl. 2 (Suppl 2)S277210.1086/51115917278083https://pubmed.ncbi.nlm.nih.gov/17278083/
    [Google Scholar]
  10. DongL.H. QiuX.Y. NingM.G. Study on porcine circovirus disease and porcine reproductive and respiratory syndrome natural co-infected to pigs.J Gansu Agric Uni20132
    [Google Scholar]
  11. HageC.A. KnoxK.S. WheatL.J. Endemic mycoses: Overlooked causes of community acquired pneumonia.Respir. Med.2012106676977610.1016/j.rmed.2012.02.004 22386326
    [Google Scholar]
  12. TangF. YuJ. Progress in epidemiological study on pathogens of community acquired pneumonia in children.Clinical Res Pract2022754
    [Google Scholar]
  13. LU M. Etiology of bacterial pneumonia in children.Zhongguo Shiyong Erke Zazhi20183395
    [Google Scholar]
  14. SchneiderR.F. Bacterial pneumonia.Semin. Respir. Infect.1999144327332 10638512
    [Google Scholar]
  15. JainS. SelfW.H. WunderinkR.G. Community-acquired pneumonia requiring hospitalization among U.S. adults.N. Engl. J. Med.2015373541542710.1056/NEJMoa1500245 26172429
    [Google Scholar]
  16. FengL. LiZ. ZhaoS. Viral etiologies of hospitalized acute lower respiratory infection patients in China, 2009-2013.PLoS One201496e9941910.1371/journal.pone.0099419 24945280
    [Google Scholar]
  17. BegomA. ChoudhuryA.M. IslamM.N. Clinical and radiological evaluation of children aged 2 months to 5 years with severe pneumonia according to WHO guideline.Mymensingh Med. J.2018274702709 30487483
    [Google Scholar]
  18. ForsythB.R. ChanockR.M. Mycoplasma pneumonia.Annu. Rev. Med.196617137138210.1146/annurev.me.17.020166.002103 5327164
    [Google Scholar]
  19. ArnoldF.W. WiemkenT.L. PeyraniP. RamirezJ.A. BrockG.N. Mortality differences among hospitalized patients with community-acquired pneumonia in three world regions: Results from the Community-Acquired Pneumonia Organization (CAPO) International Cohort Study.Respir. Med.201310771101111110.1016/j.rmed.2013.04.003 23660396
    [Google Scholar]
  20. RamirezJ.A. WiemkenT.L. PeyraniP. Adults hospitalized with pneumonia in the united states: incidence, epidemiology, and mortality.Clin. Infect. Dis.201765111806181210.1093/cid/cix647 29020164
    [Google Scholar]
  21. PanH. CuiB. HuangY. YangJ. Ba-TheinW. Nasal carriage of common bacterial pathogens among healthy kindergarten children in Chaoshan region, southern China: A cross-sectional study.BMC Pediatr.201616116110.1186/s12887‑016‑0703‑x 27741941
    [Google Scholar]
  22. IngJ. MasonE.O. KaplanS.L. Characterization of nontypeable and atypical Streptococcus pneumoniae pediatric isolates from 1994 to 2010.J. Clin. Microbiol.20125041326133010.1128/JCM.05182‑11 22238440
    [Google Scholar]
  23. MauffreyF. FournierÉ. DemczukW. Comparison of sequential multiplex PCR, sequetyping and whole genome sequencing for serotyping of Streptococcus pneumoniae.PLoS One20171212e018916310.1371/journal.pone.0189163 29236737
    [Google Scholar]
  24. WenZ.H. Diagnosis and prevention of Streptococcus pneumoniae pneumonia in children.Chin J New Clinical Med20212021
    [Google Scholar]
  25. MitchellA.M. MitchellT.J. Streptococcus pneumoniae: Virulence factors and variation.Clin. Microbiol. Infect.201016541141810.1111/j.1469‑0691.2010.03183.x 20132250
    [Google Scholar]
  26. KimG.L. SeonS.H. RheeD.K. Pneumonia and Streptococcus pneumoniae vaccine.Arch. Pharm. Res.201740888589310.1007/s12272‑017‑0933‑y 28735461
    [Google Scholar]
  27. WizemannT.M. HeinrichsJ.H. AdamouJ.E. Use of a whole genome approach to identify vaccine molecules affording protection against Streptococcus pneumoniae infection.Infect. Immun.20016931593159810.1128/IAI.69.3.1593‑1598.2001 11179332
    [Google Scholar]
  28. van den BoogaardF.E. van GisbergenK.P.J.M. VernooyJ.H. Granzyme A impairs host defense during Streptococcus pneumoniae pneumonia.Am. J. Physiol. Lung Cell. Mol. Physiol.20163112L507L51610.1152/ajplung.00116.2016 27343190
    [Google Scholar]
  29. McCullersJ.A. Insights into the interaction between influenza virus and pneumococcus.Clin. Microbiol. Rev.200619357158210.1128/CMR.00058‑05 16847087
    [Google Scholar]
  30. SubramanianK. Henriques-NormarkB. NormarkS. Emerging concepts in the pathogenesis of the Streptococcus pneumoniae: From nasopharyngeal colonizer to intracellular pathogen.Cell. Microbiol.20192111e1307710.1111/cmi.13077 31251447
    [Google Scholar]
  31. DionC.F. AshurstJ.V. Streptococcus pneumoniae.Treasure IslandStatPearls Publishing2023https://www.ncbi.nlm.nih.gov/books/NBK470537/
    [Google Scholar]
  32. ChidiacC. AderF. Pneumococcal vaccine in the elderly: A useful but forgotten vaccine.Aging Clin. Exp. Res.200921322222810.1007/BF03324905 19571646
    [Google Scholar]
  33. WeiserJ.N. FerreiraD.M. PatonJ.C. Streptococcus pneumoniae: Transmission, colonization and invasion.Nat. Rev. Microbiol.201816635536710.1038/s41579‑018‑0001‑8 29599457
    [Google Scholar]
  34. MenterT. Giefing-KroellC. Grubeck-LoebensteinB. TzankovA. Characterization of the inflammatory infiltrate in Streptococcus pneumoniae pneumonia in young and elderly patients.Pathobiology201481316016710.1159/000360165 24751977
    [Google Scholar]
  35. FileT.M. Clinical implications and treatment of multiresistant Streptococcus pneumoniae pneumonia.Clin. Microbiol. Infect.2006123314110.1111/j.1469‑0691.2006.01395.x
    [Google Scholar]
  36. von HovenG. QinQ. NeukirchC. HusmannM. HellmannN. Staphylococcus aureus α-toxin: Small pore, large consequences.Biol. Chem.2019400101261127610.1515/hsz‑2018‑0472 30951494
    [Google Scholar]
  37. HeH. WunderinkR.G. Staphylococcus aureus Pneumonia in the Community.Semin. Respir. Crit. Care Med.202041447047910.1055/s‑0040‑1709992 32521547
    [Google Scholar]
  38. SelfW.H. WunderinkR.G. WilliamsD.J. Staphylococcus aureus community-acquired pneumonia: Prevalence, clinical characteristics, and outcomes.Clin. Infect. Dis.201663330030910.1093/cid/ciw300 27161775
    [Google Scholar]
  39. ClarkS.B. HicksM.A. Staphylococcal pneumonia.Treasure islandStatPearls Publishing2023https://www.ncbi.nlm.nih.gov/books/NBK559152/
    [Google Scholar]
  40. ObedM. García-VidalC. PessacqP. Clinical features and outcome of community-acquired methicillin-resistant Staphylococcus aureus pneumonia.Enferm. Infecc. Microbiol. Clin.2014321232710.1016/j.eimc.2013.01.006 23473825
    [Google Scholar]
  41. WangL. YangR. YuanB. LiuY. LiuC. The antiviral and antimicrobial activities of licorice, a widely-used Chinese herb.Acta Pharm. Sin. B20155431031510.1016/j.apsb.2015.05.005 26579460
    [Google Scholar]
  42. TianL. WuX. YuH. Isovitexin protects mice from methicillin-resistant Staphylococcus aureus-induced pneumonia by targeting sortase A.J. Microbiol. Biotechnol.202232101284129110.4014/jmb.2206.06007 36224754
    [Google Scholar]
  43. LancefieldR.C. Current knowledge of type-specific M antigens of group A streptococci.J. Immunol.19628910307131
    [Google Scholar]
  44. TamayoE. MontesM. VicenteD. Pérez-TralleroE. Streptococcus pyogenes pneumonia in adults: Clinical presentation and molecular characterization of isolates 2006-2015.PLoS One2016113e015264010.1371/journal.pone.0152640 27027618
    [Google Scholar]
  45. Vallalta MoralesM. Soriano NavarroC.J. Salavert LletíM. Group A streptococcal bacteremia: Outcome and prognostic factors.Rev. Esp. Quimioter.2006194367375 17235407
    [Google Scholar]
  46. HuangY.C. HuangY.C. ChiuC.H. ChangL.Y. LeuH.S. LinT.Y. Characteristics of group A Streptococcal bacteremia with comparison between children and adults.J. Microbiol. Immunol. Infect.2001343195200 11605811
    [Google Scholar]
  47. LiuA.H. MengJ.H. Clinical analysis of eight children with invasive Streptococcus pyogenes infection.Zhongguo Yaowu Yu Linchuang20212153
    [Google Scholar]
  48. RoyS. KaplanE.L. RodriguezB. A family cluster of five cases of group A streptococcal pneumonia.Pediatrics20031121e61e6510.1542/peds.112.1.e61 12837907
    [Google Scholar]
  49. NamH.H. IsonM.G. Respiratory syncytial virus infection in adults.BMJ2019366l502110.1136/bmj.l5021
    [Google Scholar]
  50. DamasioG.A.C. PereiraL.A. MoreiraS.D.R. Duarte dos SantosC.N. Dalla-CostaL.M. RaboniS.M. Does virus-bacteria coinfection increase the clinical severity of acute respiratory infection?J. Med. Virol.20158791456146110.1002/jmv.24210 25976175
    [Google Scholar]
  51. RuuskanenO. OgraP.L. Respiratory syncytial virus.Curr. Probl. Pediatr.1993232507910.1016/0045‑9380(93)90003‑U 7681743
    [Google Scholar]
  52. HallC.B. WeinbergG.A. IwaneM.K. The burden of respiratory syncytial virus infection in young children.N. Engl. J. Med.2009360658859810.1056/NEJMoa0804877 19196675
    [Google Scholar]
  53. KrarupA. TruanD. Furmanova-HollensteinP. A highly stable prefusion RSV F vaccine derived from structural analysis of the fusion mechanism.Nat. Commun.20156814310.1038/ncomms9143
    [Google Scholar]
  54. XieZ.B. DuanX.J. GuoJ.Y. Epidemiological characteristics of respiratory syncytial virus in Luohe City, Henan Province, 2017-2020.Chin. J. Virol.20213737
    [Google Scholar]
  55. BianchiniS SilvestriE ArgentieroA FainardiV PisiG EspositoS. role of Respiratory syncytial virus in pediatric pneumonia. microorganisms 2020812204810.3390/microorganisms812204833371276
    [Google Scholar]
  56. LynchJ.III FishbeinM. EchavarriaM. Adenovirus.Semin. Respir. Crit. Care Med.201132449451110.1055/s‑0031‑1283287 21858752
    [Google Scholar]
  57. QianQ.M. ZhouH. Progress in diagnosis and treatment of adenovirus pneumonia in children.Zhejiang Med J20204293
    [Google Scholar]
  58. LionT. Adenovirus infections in immunocompetent and immunocompromised patients.Clin. Microbiol. Rev.201427344146210.1128/CMR.00116‑13 24982316
    [Google Scholar]
  59. RussellK.L. BroderickM.P. FranklinS.E. Transmission dynamics and prospective environmental sampling of adenovirus in a military recruit setting.J. Infect. Dis.2006194787788510.1086/507426 16960774
    [Google Scholar]
  60. GinsbergH.S. Adenoviruses.Am. J. Clin. Pathol.197257677177610.1093/ajcp/57.6.771 4337370
    [Google Scholar]
  61. ZhangP. LiuM. ZhangL. Clinical and CT findings of adenovirus pneumonia in immunocompetent adults.Clin. Respir. J.202115121343135110.1111/crj.13439 34505348
    [Google Scholar]
  62. YuX. MaY. GaoY. Epidemiology of adenovirus pneumonia and risk factors for bronchiolitis obliterans in children during an outbreak in jilin, China.Front Pediatr.202128972288510.3389/fped.2021.722885
    [Google Scholar]
  63. XieL. ZhangB. XiaoN. Epidemiology of human adenovirus infection in children hospitalized with lower respiratory tract infections in Hunan, China.J. Med. Virol.201991339240010.1002/jmv.25333 30286268
    [Google Scholar]
  64. HuZ.W. LinJ.H. ChenJ.T. Overview of viral pneumonia associated with influenza virus, Respiratory syncytial virus, and coronavirus, and therapeutics based on natural products of medicinal plants.Front. Pharmacol.20211263083410.3389/fphar.2021.630834
    [Google Scholar]
  65. XuJ. YuJ. YangL. ZhouF. LiH. CaoB. Influenza virus in community-acquired pneumonia: Current understanding and knowledge gaps.Semin. Respir. Crit. Care Med.202041455556710.1055/s‑0040‑1710584 32521548
    [Google Scholar]
  66. DaiZ. FanK. ZhangL. Risk factors for influenza B virus–associated pneumonia in adults.Am. J. Infect. Control202048219419810.1016/j.ajic.2019.07.010 31431289
    [Google Scholar]
  67. YuH. AlonsoW.J. FengL. Characterization of regional influenza seasonality patterns in China and implications for vaccination strategies: Spatio-temporal modeling of surveillance data.PLoS Med.20131011e100155210.1371/journal.pmed.1001552 24348203
    [Google Scholar]
  68. PeteranderlC. SchmoldtC. HeroldS. Human Influenza virus infections.Semin. Respir. Crit. Care Med.201637448750010.1055/s‑0036‑1584801 27486731
    [Google Scholar]
  69. LinY.H. LuoW. WuD.H. Comparison of clinical, laboratory, and radiological characteristics between SARS-CoV-2 infection and community-acquired pneumonia caused by influenza virus.Medicine (Baltimore)20209944e2306410.1097/MD.0000000000023064 33126398
    [Google Scholar]
  70. LiG. FanY. LaiY. Coronavirus infections and immune responses.J. Med. Virol.202092442443210.1002/jmv.25685 31981224
    [Google Scholar]
  71. ChilamakuriR. AgarwalS. COVID-19: Characteristics and Therapeutics.Cells202110220610.3390/cells10020206 33494237
    [Google Scholar]
  72. ZhaoS.T. MaoQ. Clinical characteristics of patients with severe pneumonia caused by the SARS-CoV-2 in wuhan, China.Respiration2020202019
    [Google Scholar]
  73. WhittakerE. BamfordA. KennyJ. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2.JAMA2020324325926910.1001/jama.2020.10369 32511692
    [Google Scholar]
  74. WaitesK.B. TalkingtonD.F. Mycoplasma pneumoniae and its role as a human pathogen.Clin. Microbiol. Rev.200417469772810.1128/CMR.17.4.697‑728.2004
    [Google Scholar]
  75. JiangZ. LiS. ZhuC. ZhouR. LeungP.H.M. Mycoplasma pneumoniae infections: Pathogenesis and vaccine development.Pathogens202110211910.3390/pathogens10020119 33503845
    [Google Scholar]
  76. KrafftC. ChristyC. Mycoplasma pneumonia in children and adolescents.Pediatr. Rev.2020411121910.1542/pir.2018‑0016 31894069
    [Google Scholar]
  77. PorrittR.A. CrotherT.R. Chlamydia pneumoniae Infection and inflammatory diseases.For. Immunopathol. Dis. Therap.201673-423725410.1615/ForumImmunDisTher.2017020161 30687565
    [Google Scholar]
  78. LiF.J. YuanX. ChenC. Clinical analysis of severe radiation pneumonia.Int. J. Gen. Med.2021142581258810.2147/IJGM.S311569
    [Google Scholar]
  79. GiridharP. MallickS. RathG.K. JulkaP.K. Radiation induced lung injury: Prediction, assessment and management.Asian Pac. J. Cancer Prev.20151672613261710.7314/APJCP.2015.16.7.2613 25854336
    [Google Scholar]
  80. PanT. MasonR.J. WestcottJ.Y. ShannonJ.M. Rat alveolar type II cells inhibit lung fibroblast proliferation in vitro.Am. J. Respir. Cell Mol. Biol.200125335336110.1165/ajrcmb.25.3.4004 11588014
    [Google Scholar]
  81. BledsoeT.J. NathS.K. DeckerR.H. Radiation Pneumonitis.Clin. Chest Med.201738220120810.1016/j.ccm.2016.12.004 28477633
    [Google Scholar]
  82. DongL.H. JiangY.Y. LiuY.J. The anti-fibrotic effects of mesenchymal stem cells on irradiated lungs via stimulating endogenous secretion of HGF and PGE2.Sci. Rep.20155871310.1038/srep08713
    [Google Scholar]
  83. ChenY. RubinP. WilliamsJ. HernadyE. SmudzinT. OkunieffP. Circulating IL-6 as a predictor of radiation pneumonitis.Int. J. Radiat. Oncol. Biol. Phys.200149364164810.1016/S0360‑3016(00)01445‑0 11172944
    [Google Scholar]
  84. StenmarkM.H. CaiX.W. SheddenK. Combining physical and biologic parameters to predict radiation-induced lung toxicity in patients with non-small-cell lung cancer treated with definitive radiation therapy.Int. J. Radiat. Oncol. Biol. Phys.2012842e217e22210.1016/j.ijrobp.2012.03.067 22935395
    [Google Scholar]
  85. KimJ.Y. KimY.S. KimY.K. The TGF-beta1 dynamics during radiation therapy and its correlation to symptomatic radiation pneumonitis in lung cancer patients.Radiat. Oncol.200945910.1186/1748‑717X‑4‑59
    [Google Scholar]
  86. TsujinoK. HirotaS. EndoM. Predictive value of dose-volume histogram parameters for predicting radiation pneumonitis after concurrent chemoradiation for lung cancer.Int. J. Radiat. Oncol. Biol. Phys.200355111011510.1016/S0360‑3016(02)03807‑5 12504042
    [Google Scholar]
  87. LvM.Y. QiuG.G. Progress in diagnosis and treatment of radiation pneumonia.Chin Mod Dr20215966
    [Google Scholar]
  88. MandellL.A. NiedermanM.S. Aspiration pneumonia.N. Engl. J. Med.2019380765166310.1056/NEJMra1714562 30763196
    [Google Scholar]
  89. LuQ.Q. LiP.J. WangX.Q. Study on biomarkers of aspiration pneumonia. 2015;4):5 J Southeast University Med.Sci. Ed.201545
    [Google Scholar]
  90. Nuche-CabreraE. Mendelson syndrome.Treasure IslandStatPearls Publishing2006https://www.ncbi.nlm.nih.gov/books/NBK539764/
    [Google Scholar]
  91. MarikP.E. Aspiration pneumonitis and aspiration pneumonia.N. Engl. J. Med.2001344966567110.1056/NEJM200103013440908 11228282
    [Google Scholar]
  92. XuY.J. XuL.N. HaoC.L. Progress in diagnosis and treatment of aspiration pneumonia in children.Zhongguo Shiyong Erke Zazhi20223734
    [Google Scholar]
  93. HaciomerogluO. EkinciG.H. OngelE.A. Pneumonia caused by diesel fuel aspiration.J. Coll. Physicians Surg. Pak.2014243S272S274
    [Google Scholar]
  94. QuirceS. VandenplasO. CampoP. Occupational hypersensitivity pneumonitis: An EAACI position paper.Allergy201671676577910.1111/all.12866 26913451
    [Google Scholar]
  95. CostabelU. MiyazakiY. PardoA. Hypersensitivity pneumonitis.Nat. Rev. Dis. Primers2020616510.1038/s41572‑020‑0191‑z 32764620
    [Google Scholar]
  96. SunLN ZhangY MaWH Research progress of allergic pneumonia2020
    [Google Scholar]
  97. SpagnoloP. WellsA.U. CollardH.R. Pharmacological treatment of idiopathic pulmonary fibrosis: An update.Drug Discov. Today201520551452410.1016/j.drudis.2015.01.001 25613790
    [Google Scholar]
  98. LiuY. LiuY. DaiJ. Klebsiella pneumoniae pneumonia in patients with rheumatic autoimmune diseases: Clinical characteristics, antimicrobial resistance and factors associated with extended-spectrum β-lactamase production.BMC Infect. Dis.202121136610.1186/s12879‑021‑06055‑1 33865323
    [Google Scholar]
  99. FengJ. DaiW. ZhangC. Shen-ling-bai-zhu-san ameliorates inflammation and lung injury by increasing the gut microbiota in the murine model of Streptococcus pneumonia-induced pneumonia.BMC Complement. Med. Ther.202020115910.1186/s12906‑020‑02958‑9 32460745
    [Google Scholar]
  100. XuY. WeiL. WangY. Inhibitory effect of the traditional chinese medicine Ephedra sinica granules on Streptococcus pneumoniae pneumolysin.Biol. Pharm. Bull.202043699499910.1248/bpb.b20‑00034 32475921
    [Google Scholar]
  101. NikhatS. FazilM. Overview of Covid-19; its prevention and management in the light of Unani medicine.Sci. Total Environ.202072813885910.1016/j.scitotenv.2020.138859
    [Google Scholar]
  102. ZengJ. ChenD. LvC. Antimicrobial and anti-biofilm activity of Polygonum chinense L.aqueous extract against Staphylococcus aureus.Sci. Rep.20221212198810.1038/s41598‑022‑26399‑1 36539472
    [Google Scholar]
  103. ZhengX. ChenL. ZengW. Antibacterial and anti-biofilm efficacy of chinese dragon’s blood against Staphylococcus aureus isolated From infected wounds.Front. Microbiol.20211267294310.3389/fmicb.2021.672943
    [Google Scholar]
  104. MkaddemM. BouajilaJ. EnnajarM. LebrihiA. MathieuF. RomdhaneM. Chemical composition and antimicrobial and antioxidant activities of Mentha (longifolia L. and viridis) essential oils.J. Food Sci.2009747M358M36310.1111/j.1750‑3841.2009.01272.x 19895481
    [Google Scholar]
  105. KareemA. Herbo-mineral based Schiff base ligand and its metal complexes: Synthesis, characterization, catalytic potential and biological applications.J. Photochem. Photobiol. B20161607163M7110.1016/j.jphotobiol.2016.03.030
    [Google Scholar]
  106. El-Latif HeshamA. AlrummanS.A. Antibacterial activity of Miswak Salvadora persica extracts against isolated and genetically identified oral cavity pathogens.Technol. Health Care 201624Suppl. 2S841S84810.3233/THC‑161214
    [Google Scholar]
  107. JouybariL. AzimiM. MoghadamS. Antimicrobial effects of chlorhexidine, matrica drop mouthwash (chamomile extract), and normal saline on hospitalized patients with endotracheal tubes.Iran. J. Nurs. Midwifery Res.201621545846310.4103/1735‑9066.193390 27904627
    [Google Scholar]
  108. ChassagneF HuangX LylesJT Validation of a 16th Century Traditional Chinese Medicine Use of Ginkgo biloba as a Topical Antimicrobial Front Microbiol20191077510.3389/fmicb.2019.00775
    [Google Scholar]
  109. YamadaT. WajimaT. NakaminamiH. KobayashiK. IkoshiH. NoguchiN. The modified Gingyo-san, a Chinese herbal medicine, has direct antibacterial effects against respiratory pathogens.BMC Complement. Altern. Med.201616146310.1186/s12906‑016‑1431‑3 27842538
    [Google Scholar]
  110. MirzaA.U. KareemA. NamiS.A.A. Malus pumila and Juglen regia plant species mediated zinc oxide nanoparticles: Synthesis, spectral characterization, antioxidant and antibacterial studies.Microb. Pathog.201912923324110.1016/j.micpath.2019.02.020
    [Google Scholar]
  111. OkudaK. AdachiM. IijimaK. The efficacy of antimicrobial mouth rinses in oral health care.Bull. Tokyo Dent. Coll.1998391714 9663026
    [Google Scholar]
  112. Feng YehC. Chih WangK. Chai ChiangL. ShiehD.E. Hong YenM. San ChangJ. Water extract of licorice had anti-viral activity against human respiratory syncytial virus in human respiratory tract cell lines.J. Ethnopharmacol.2013148246647310.1016/j.jep.2013.04.040 23643542
    [Google Scholar]
  113. LiT. PengT. Traditional Chinese herbal medicine as a source of molecules with antiviral activity.Antiviral Res.20139711910.1016/j.antiviral.2012.10.006 23153834
    [Google Scholar]
  114. LuN YangY LiuH Inhibition of respiratory syncytial virus replication and suppression of RSV-induced airway inflammation in neonatal rats by colchicine. 3 Biotech201991139210.1007/s13205‑019‑1917‑z
    [Google Scholar]
  115. DengY.P. LiuY.Y. LiuZ. Antiviral activity of Folium isatidis derived extracts in vitro and in vivo.Am. J. Chin. Med.201341495796910.1142/S0192415X1350064X 23895163
    [Google Scholar]
  116. DengL. ShiY. LiuP. 2021; GeGen QinLian decoction alleviate influenza virus infectious pneumonia through intestinal flora.Biomed. Pharmacother.202114111189610.1016/j.biopha.2021.111896
    [Google Scholar]
  117. LiuH. YouL. WuJ. Berberine suppresses influenza virus-triggered NLRP3 inflammasome activation in macrophages by inducing mitophagy and decreasing mitochondrial ROS.J. Leukoc. Biol.2020108125326610.1002/JLB.3MA0320‑358RR 32272506
    [Google Scholar]
  118. YangY. IslamM.S. WangJ. LiY. ChenX. Traditional chinese medicine in the treatment of patients infected with 2019-new coronavirus (SARS-CoV-2): A review and perspective.Int. J. Biol. Sci.202016101708171710.7150/ijbs.45538 32226288
    [Google Scholar]
  119. KhannaK. KohliS.K. KaurR. Herbal immune-boosters: Substantial warriors of pandemic COVID-19 battle.Phytomedicine20218515336110.1016/j.phymed.2020.153361
    [Google Scholar]
  120. MengY. HuoJ. LuW. WangX. ZhangJ. WangW. Modulation of P1 and EGF expression by Baicalin.Int. J. Mol. Sci.201214114615710.3390/ijms14010146 23344025
    [Google Scholar]
  121. MengY.L. WangW.M. LvD.D. The effect of Platycodin D on the expression of cytoadherence proteins P1 and P30 in Mycoplasma pneumoniae models.Environ. Toxicol. Pharmacol.20174918819310.1016/j.etap.2017.01.001
    [Google Scholar]
  122. QiZ.Y. WuW. HuangY.S. Study of baicalin against Chlamydia pneumoniae.Chin J Microecology200502878810.13381/j.cnki.cjm.2005.02.003
    [Google Scholar]
  123. QiuY.S. ZhengW.T. SunJ.M. Clinical observation of invigorating qi tonic lung decoction in children with chlamydia pneumoniae infection.Guangming J. Chin. Med.20233803423425
    [Google Scholar]
  124. ZhangX. QiuH. LiC. CaiP. QiF. The positive role of traditional Chinese medicine as an adjunctive therapy for cancer.Biosci. Trends202115528329810.5582/bst.2021.01318 34421064
    [Google Scholar]
  125. XieC.H. ZhangM.S. ZhouY.F. Chinese medicine Angelica sinensis suppresses radiation-induced expression of TNF-alpha and TGF-beta1 in mice.Oncol. Rep.200615614291436 16685376
    [Google Scholar]
  126. GhewareA. DholakiaD. KannanS. Adhatoda Vasica attenuates inflammatory and hypoxic responses in preclinical mouse models: Potential for repurposing in COVID-19-like conditions.Respir. Res.20212219910.1186/s12931‑021‑01698‑9 33823870
    [Google Scholar]
  127. DaviesH.R. RicheldiL. WaltersE.H. Immunomodulatory agents for idiopathic pulmonary fibrosis.Cochrane Database Syst. Rev.20033Cd00313410.1002/14651858.CD003134
    [Google Scholar]
  128. MantaniN. KasaharaY. KamataT. Effect of Seihai-to, a Kampo medicine, in relapsing aspiration pneumonia an open-label pilot study.Phytomedicine20029319520110.1078/0944‑7113‑00111 12046858
    [Google Scholar]
  129. IwasakiK. KatoS. MonmaY. A pilot study of banxia houpu tang, a traditional Chinese medicine, for reducing pneumonia risk in older adults with dementia.J. Am. Geriatr. Soc.200755122035204010.1111/j.1532‑5415.2007.01448.x 17944889
    [Google Scholar]
  130. LinJ.Y. ChenM.L. ChiangB.L. LinB.F. Ganoderma tsugae supplementation alleviates bronchoalveolar inflammation in an airway sensitization and challenge mouse model.Int. Immunopharmacol.20066224125110.1016/j.intimp.2005.08.009 16399629
    [Google Scholar]
  131. BiJ. ZhangX. XieJ. A clinical study of 75 cases of “fangxian soup” combined with conventional western medicine for the treatment of rheumatic pneumonia.Jiangsu J Tradit Chin Med201951123234
    [Google Scholar]
/content/journals/ctm/10.2174/0122150838255055230919074231
Loading
/content/journals/ctm/10.2174/0122150838255055230919074231
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test