Skip to content
2000
Volume 3, Issue 2
  • ISSN: 2211-5420
  • E-ISSN: 2211-5439

Abstract

The authors have previously implemented Green Fluorescent Protein (GFP) transfection as a marker to assess viability both in vitro and in vivo following freezing injury, with loss of GFP fluorescence following treatment indicating cell death. Although excellent correlations with conventional vital dyes and staining methods (membrane integrity, histology) were observed following injurious freezing, until now the basis for the loss of GFP fluorescence was not comprehensively explored. In this work it was hypothesized that membrane breach caused by freezing causes leakage of GFP. Diffusion of GFP into the extra-cellular space then causes a loss of intracellular and average fluorescent signal as the GFP is diluted and its fluorescent signal attenuated (diffusion-dilution hypothesis). A simple one-dimensional (1-D) mass diffusion equation implementing literature values of GFP diffusivity was found to adequately account for the observed time scale of GFP fluorescence attenuation in vitro. Conservation of mass was established by monitoring extracellular solution fluorescence before and after cell lysis, which is consistent with the hypothesis of simple diffusion of a stable GFP molecule from the intracellular to extracellular space. The effect of freezing on the protein, external to the cellular environment, was investigated by repeated freezing of aqueous solutions of purified recombinant protein. A significant difference (p < 0.01) in fluorescence intensity between control samples and the frozen protein solutions was not observed until the third freezethaw cycle. These results suggest that cold denaturation of the protein is not a major contributor to GFP fluorescence loss following lethal freezing of cells and that the diffusion and dilution of the fluorophore is the basis of fluorescence loss. The intracellular GFP thus functions as a membrane integrity indicator following low temperature freezing injury.

Loading

Article metrics loading...

/content/journals/cte/10.2174/221154200302150120144136
2014-10-01
2025-11-05
Loading full text...

Full text loading...

/content/journals/cte/10.2174/221154200302150120144136
Loading

  • Article Type:
    Research Article
Keyword(s): Cell injury; fluorescent signal; freezing injury; gene transfer; GFP; protein
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test