Skip to content
2000
image of Computational Screening of Natural Compounds Targeting VEGFR-2 for Anti-Angiogenic Therapy

Abstract

Background

Angiogenesis is the growth of new capillaries from existing blood vessels that supply oxygen and nutrients and provide gateways for immune surveillance. Abnormal vessel growth in terms of excessive angiogenesis is a hallmark of cancer. VEGFR-2 (vascular endothelial growth factor receptor 2) dominating the process of angiogenesis has led to the approval of therapeutic inhibitors and is becoming a promising target for anti-angiogenic drugs. Notwithstanding these successes, the clinical use of current VEGFR-2 blockers is more challenging than anticipated.

Objective

In this study, we employed computer-aided approaches to elucidate the potential inhibitors of VEGFR2 in order to tackle angiogenesis in tumour.

Methods

The phytochemicals were retrieved from the Naturally Occurring Plant-based Anti-cancer Compound-Activity-Target (NPACT) database and were virtually screened with the help of molecular docking. The study employed the prediction of the pIC value and cytotoxic property of the phytochemical against various cancer cell lines. The preclinical efficacy was predicted using the ADME/T profile of the compounds. PASS analysis was performed to predict the biological activity of the phytochemicals.

Results

The compounds, namely liquiritigenin, acacetin, and D-delta-tocotrienol stand out among all screened phytochemicals. Liquiritigenin showed -38.24 total binding free energy (PBTOT/GBTOT), while acacetin and D-delta-tocotrienol exhibited -43.01 and -53.91 PBTOT/GBTOT, respectively. Furthermore, these three compounds showed promising RMSD, Rg, and SASA trajectories, which signifies their stability with the VEGFR2. Their ADME/T profile exhibited their preclinical safety.

Discussion

Liquiritigenin, acacetin, and D-delta-tocotrienol demonstrated strong binding to VEGFR-2, with binding free energies of -38.24, -43.01, and -53.91 PBTOT/GBTOT, respectively, suggesting potential as anti-angiogenic agents. Stable RMSD, Rg, and SASA trajectories and favorable ADME/T profiles support their preclinical safety. However, experimental validation is needed to confirm efficacy and specificity, as the study relies solely on computational methods. Future and studies are essential for clinical translation.

Conclusion

The results from various computational analyses suggest that these three phytochemicals, namely, liquiritigenin, acacetin, and D-delta-tocotrienol, could possibly serve as potent VEGFR2 inhibitors to control the development of angiogenesis and tumorigenesis. However, experimental validation is required to test their efficacy as the study is solely based on a computational approach.

Loading

Article metrics loading...

/content/journals/cset/10.2174/0122102981375849250623091708
2025-07-07
2025-12-15
Loading full text...

Full text loading...

References

  1. Lugano R. Ramachandran M. Dimberg A. Tumor angiogenesis: Causes, consequences, challenges and opportunities. Cell. Mol. Life Sci. 2020 77 9 1745 1770 10.1007/s00018‑019‑03351‑7 31690961
    [Google Scholar]
  2. Yehya A. Asif M. Petersen S. Subramaniam A. Kono K. Majid A. Oon C. Angiogenesis: Managing the culprits behind tumorigenesis and metastasis. Medicina (Kaunas) 2018 54 1 8 10.3390/medicina54010008 30344239
    [Google Scholar]
  3. Aguilar-Cazares D. Chavez-Dominguez R. Carlos-Reyes A. Lopez-Camarillo C. Hernadez de la Cruz O.N. Lopez-Gonzalez J.S. Contribution of angiogenesis to inflammation and cancer. Front. Oncol. 2019 9 1399 10.3389/fonc.2019.01399 31921656
    [Google Scholar]
  4. Shaik F. Cuthbert G. Homer-Vanniasinkam S. Muench S. Ponnambalam S. Harrison M. Structural basis for vascular endothelial growth factor receptor activation and implications for disease therapy. Biomolecules 2020 10 12 1673 10.3390/biom10121673 33333800
    [Google Scholar]
  5. Waltenberger J. Claesson-Welsh L. Siegbahn A. Shibuya M. Heldin C.H. Different signal transduction properties of KDR and Flt1, two receptors for vascular endothelial growth factor. J. Biol. Chem. 1994 269 43 26988 26995 10.1016/S0021‑9258(18)47116‑5 7929439
    [Google Scholar]
  6. Rahimi N. VEGFR-1 and VEGFR-2: Two non-identical twins with a unique physiognomy. Front. Biosci. 2006 11 1 11 10.2741/1839 16146773
    [Google Scholar]
  7. Li J. Zhou N. Luo K. Zhang W. Li X. Wu C. Bao J. In silico discovery of potential VEGFR-2 inhibitors from natural derivatives for anti-angiogenesis therapy. Int. J. Mol. Sci. 2014 15 9 15994 16011 10.3390/ijms150915994 25216334
    [Google Scholar]
  8. Zhang L. Zhou F. Han W. Shen B. Luo J. Shibuya M. He Y. VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res. 2010 20 12 1319 1331 10.1038/cr.2010.116 20697430
    [Google Scholar]
  9. Cragg G.M. Newman D.J. Natural products: A continuing source of novel drug leads. Biochim. Biophys. Acta, Gen. Subj. 2013 1830 6 3670 3695 10.1016/j.bbagen.2013.02.008 23428572
    [Google Scholar]
  10. Clardy J. Walsh C. Lessons from natural molecules. Nature 2004 432 7019 829 837 10.1038/nature03194 15602548
    [Google Scholar]
  11. Hong J. Role of natural product diversity in chemical biology. Curr. Opin. Chem. Biol. 2011 15 3 350 354 10.1016/j.cbpa.2011.03.004 21489856
    [Google Scholar]
  12. Shoichet B.K. Virtual screening of chemical libraries. Nature 2004 432 7019 862 865 10.1038/nature03197 15602552
    [Google Scholar]
  13. Lionta E. Spyrou G. Vassilatis D. Cournia Z. Structure-based virtual screening for drug discovery: principles, applications and recent advances. Curr. Top. Med. Chem. 2014 14 16 1923 1938 10.2174/1568026614666140929124445 25262799
    [Google Scholar]
  14. Lyu J. Irwin J.J. Shoichet B.K. Modeling the expansion of virtual screening libraries. Nat. Chem. Biol. 2023 19 6 712 718 10.1038/s41589‑022‑01234‑w 36646956
    [Google Scholar]
  15. Hollingsworth S.A. Dror R.O. Molecular dynamics simulation for all. Neuron 2018 99 6 1129 1143 10.1016/j.neuron.2018.08.011 30236283
    [Google Scholar]
  16. Adelusi T.I. Oyedele A.Q.K. Boyenle I.D. Ogunlana A.T. Adeyemi R.O. Ukachi C.D. Idris M.O. Olaoba O.T. Adedotun I.O. Kolawole O.E. Xiaoxing Y. Abdul-Hammed M. Molecular modeling in drug discovery. Inform. Med. Unlocked 2022 29 100880 10.1016/j.imu.2022.100880
    [Google Scholar]
  17. Salo-Ahen O.M.H. Alanko I. Bhadane R. Bonvin A.M.J.J. Honorato R.V. Hossain S. Juffer A.H. Kabedev A. Lahtela-Kakkonen M. Larsen A.S. Lescrinier E. Marimuthu P. Mirza M.U. Mustafa G. Nunes-Alves A. Pantsar T. Saadabadi A. Singaravelu K. Vanmeert M. Molecular dynamics simulations in drug discovery and pharmaceutical development. Processes (Basel) 2020 9 1 71 10.3390/pr9010071
    [Google Scholar]
  18. Hata H. Phuoc Tran D. Marzouk Sobeh M. Kitao A. Binding free energy of protein/ligand complexes calculated using dissociation parallel cascade selection molecular dynamics and Markov state model. Biophys. Physicobiol. 2021 18 0 305 316 10.2142/biophysico.bppb‑v18.037 35178333
    [Google Scholar]
  19. Romano J.D. Tatonetti N.P. Informatics and computational methods in natural product drug discovery: A review and perspectives. Front. Genet. 2019 10 368 10.3389/fgene.2019.00368 31114606
    [Google Scholar]
  20. Patel S.A. Nilsson M.B. Le X. Cascone T. Jain R.K. Heymach J.V. Molecular mechanisms and future implications of VEGF/VEGFR in cancer therapy. Clin. Cancer Res. 2023 29 1 30 39 10.1158/1078‑0432.CCR‑22‑1366 35969170
    [Google Scholar]
  21. Wang L. Liu W.Q. Broussy S. Han B. Fang H. Recent advances of anti-angiogenic inhibitors targeting VEGF/VEGFR axis. Front. Pharmacol. 2024 14 1307860 10.3389/fphar.2023.1307860 38239196
    [Google Scholar]
  22. Liu Z.L. Chen H.H. Zheng L.L. Sun L.P. Shi L. Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct. Target. Ther. 2023 8 1 198 10.1038/s41392‑023‑01460‑1 37169756
    [Google Scholar]
  23. Cao M. Wang Y. Lu G. Qi H. Li P. Dai X. Lu J. Classical angiogenic signaling pathways and novel anti-angiogenic strategies for colorectal cancer. Curr. Issues Mol. Biol. 2022 44 10 4447 4471 10.3390/cimb44100305 36286020
    [Google Scholar]
  24. Bakri S.J. Larson T.A. Edwards A.O. Intraocular inflammation following intravitreal injection of bevacizumab. Graefes Arch. Clin. Exp. Ophthalmol. 2008 246 5 779 781 10.1007/s00417‑007‑0754‑7 18204851
    [Google Scholar]
  25. Domagała-Haduch M. Cedrych I. Jasiówka M. Niemiec M. Skotnicki P. Analysis of adverse events of sunitinib in patients treated for advanced renal cell carcinoma. Arch. Med. Sci. 2016 2 2 360 364 10.5114/aoms.2016.59262 27186181
    [Google Scholar]
  26. Mangal M. Sagar P. Singh H. Raghava G.P.S. Agarwal S.M. NPACT: Naturally occurring plant-based anti-cancer compound-activity-target database. Nucleic Acids Res. 2013 41 D1 D1124 D1129 10.1093/nar/gks1047 23203877
    [Google Scholar]
  27. Pettersen E.F. Goddard T.D. Huang C.C. Couch G.S. Greenblatt D.M. Meng E.C. Ferrin T.E. UCSF Chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004 25 13 1605 1612 10.1002/jcc.20084 15264254
    [Google Scholar]
  28. Maier J.A. Martinez C. Kasavajhala K. Wickstrom L. Hauser K.E. Simmerling C. ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. J. Chem. Theory Comput. 2015 11 8 3696 3713 10.1021/acs.jctc.5b00255 26574453
    [Google Scholar]
  29. Rigsby R.E. Parker A.B. Using the P y MOL application to reinforce visual understanding of protein structure. Biochem. Mol. Biol. Educ. 2016 44 5 433 437 10.1002/bmb.20966 27241834
    [Google Scholar]
  30. Trott O. Olson A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010 31 2 455 461 10.1002/jcc.21334 19499576
    [Google Scholar]
  31. Dallakyan S. Olson A.J. Small-molecule library screening by docking with PyRx. Methods Mol. Biol. 2015 1263 243 250 10.1007/978‑1‑4939‑2269‑7_19 25618350
    [Google Scholar]
  32. O’Boyle N.M. Banck M. James C.A. Morley C. Vandermeersch T. Hutchison G.R. Open Babel: An open chemical toolbox. J. Cheminform. 2011 3 1 33 10.1186/1758‑2946‑3‑33 21982300
    [Google Scholar]
  33. Filimonov D.A. Lagunin A.A. Gloriozova T.A. Rudik A.V. Druzhilovskii D.S. Pogodin P.V. Poroikov V.V. Prediction of the biological activity spectra of organic compounds using the pass online web resource. Chem. Heterocycl. Compd. 2014 50 3 444 457 10.1007/s10593‑014‑1496‑1
    [Google Scholar]
  34. Molinspiration chemoinformatics software. Available from: (accessed on 17-3-2024). https://www.molinspiration.com/
  35. Fu L. Shi S. Yi J. Wang N. He Y. Wu Z. Peng J. Deng Y. Wang W. Wu C. Lyu A. Zeng X. Zhao W. Hou T. Cao D. ADMETlab 3.0: An updated comprehensive online ADMET prediction platform enhanced with broader coverage, improved performance, API functionality and decision support. Nucleic Acids Res. 2024 52 W1 W422 W431 10.1093/nar/gkae236 38572755
    [Google Scholar]
  36. Lipinski C.A. Lombardo F. Dominy B.W. Feeney P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings 1PII of original article: S0169-409X(96)00423-1. Adv. Drug Deliv. Rev. 2001 46 1-3 3 26 10.1016/S0169‑409X(00)00129‑0 11259830
    [Google Scholar]
  37. Jayaram B. Singh T. Mukherjee G. Mathur A. Shekhar S. Shekhar V. Sanjeevini: A freely accessible web-server for target directed lead molecule discovery. BMC Bioinformatics 2012 13 S17 S7 10.1186/1471‑2105‑13‑S17‑S7 23282245
    [Google Scholar]
  38. 2012 Molsoft Available from:(accessed on 17-3-2024). https://www.molsoft.com/
  39. Lagunin A.A. Dubovskaja V.I. Rudik A.V. Pogodin P.V. Druzhilovskiy D.S. Gloriozova T.A. Filimonov D.A. Sastry N.G. Poroikov V.V. CLC-Pred: A freely available web-service for in silico prediction of human cell line cytotoxicity for drug-like compounds. PLoS One 2018 13 1 e0191838 10.1371/journal.pone.0191838 29370280
    [Google Scholar]
  40. Yin X. Wang X. Li Y. Wang J. Wang Y. Deng Y. Hou T. Liu H. Luo P. Yao X. CODD-Pred: A web server for efficient target identification and bioactivity prediction of small molecules. J. Chem. Inf. Model. 2023 63 20 6169 6176 10.1021/acs.jcim.3c00685 37820365
    [Google Scholar]
  41. Banerjee P. Eckert A.O. Schrey A.K. Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018 46 W1 W257 W263 10.1093/nar/gky318 29718510
    [Google Scholar]
  42. Oostenbrink C. Villa A. Mark A.E. Van Gunsteren W.F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force‐field parameter sets 53A5 and 53A6. J. Comput. Chem. 2004 25 13 1656 1676 10.1002/jcc.20090 15264259
    [Google Scholar]
  43. Abraham M.J. Murtola T. Schulz R. Páll S. Smith J.C. Hess B. Lindahl E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015 1-2 19 25 10.1016/j.softx.2015.06.001
    [Google Scholar]
  44. Bjelkmar P. Larsson P. Cuendet M.A. Hess B. Lindahl E. Implementation of the CHARMM force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput. 2010 6 2 459 466 10.1021/ct900549r 26617301
    [Google Scholar]
  45. Biovia. Discovery studio modeling environment. 2015 Available from: (accessed on 17-3-2024). https://www.3ds.com/products/biovia/discovery-studio
  46. Genheden S. Ryde U. The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opin. Drug Discov. 2015 10 5 449 461 10.1517/17460441.2015.1032936 25835573
    [Google Scholar]
  47. Wang Z. Pan H. Sun H. Kang Y. Liu H. Cao D. Hou T. fastDRH: a webserver to predict and analyze protein–ligand complexes based on molecular docking and MM/PB(GB)SA computation. Brief. Bioinform. 2022 23 5 bbac201 10.1093/bib/bbac201 35580866
    [Google Scholar]
  48. Xu T. Pang Q. Wang Y. Yan X. Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells. Int. J. Mol. Med. 2017 40 6 1669 1678 10.3892/ijmm.2017.3163 29039440
    [Google Scholar]
  49. Zuco V. Supino R. Righetti S.C. Cleris L. Marchesi E. Gambacorti-Passerini C. Formelli F. Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett. 2002 175 1 17 25 10.1016/S0304‑3835(01)00718‑2 11734332
    [Google Scholar]
  50. Jiang W. Li X. Dong S. Zhou W. Betulinic acid in the treatment of tumour diseases: Application and research progress. Biomed. Pharmacother. 2021 142 111990 10.1016/j.biopha.2021.111990 34388528
    [Google Scholar]
  51. Xu Y. Li J. Li Q.J. Feng Y.L. Pan F. Betulinic acid promotes TRAIL function on liver cancer progression inhibition through p53/Caspase-3 signaling activation. Biomed. Pharmacother. 2017 88 349 358 10.1016/j.biopha.2017.01.034 28119237
    [Google Scholar]
  52. Ali-Seyed M. Jantan I. Vijayaraghavan K. Bukhari S.N.A. betulinic acid: Recent advances in chemical modifications, effective delivery, and molecular mechanisms of a promising anticancer therapy. Chem. Biol. Drug Des. 2016 87 4 517 536 10.1111/cbdd.12682 26535952
    [Google Scholar]
  53. Wang H. Dong F. Wang Y. Wang X. Hong D. Liu Y. Zhou J. Betulinic acid induces apoptosis of gallbladder cancer cells via repressing SCD1. Acta Biochim. Biophys. Sin. (Shanghai) 2020 52 2 200 206 10.1093/abbs/gmz148 31915810
    [Google Scholar]
  54. Chen K. Gao Z. Acacetin, a natural flavone with potential in improving liver disease based on its anti-inflammation, anti-cancer, anti-infection and other effects. Molecules 2024 29 20 4872 10.3390/molecules29204872 39459239
    [Google Scholar]
  55. Pan M.H. Lai C.S. Wang Y.J. Ho C.T. Acacetin suppressed LPS-induced up-expression of iNOS and COX-2 in murine macrophages and TPA-induced tumor promotion in mice. Biochem. Pharmacol. 2006 72 10 1293 1303 10.1016/j.bcp.2006.07.039 16949556
    [Google Scholar]
  56. Lim Y.P. Ma C.Y. Liu C.L. Lin Y.H. Hu M.L. Chen J.J. Hung D.Z. Hsieh W.T. Huang J.D. Sesamin: A naturally occurring lignan inhibits cyp3a4 by antagonizing the pregnane x receptor activation. Evid. Based Complement. Alternat. Med. 2012 2012 1 15 10.1155/2012/242810 22645625
    [Google Scholar]
  57. Prajapati R. Seong S.H. Park S.E. Paudel P. Jung H.A. Choi J.S. Isoliquiritigenin, a potent human monoamine oxidase inhibitor, modulates dopamine D1, D3, and vasopressin V1A receptors. Sci. Rep. 2021 11 1 23528 10.1038/s41598‑021‑02843‑6 34876600
    [Google Scholar]
/content/journals/cset/10.2174/0122102981375849250623091708
Loading
/content/journals/cset/10.2174/0122102981375849250623091708
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: tumour ; cancer ; in silico ; VEGFR ; MD simulation ; Angiogenesis
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test