Skip to content
2000
Volume 3, Issue 1
  • ISSN: 2213-2759
  • E-ISSN: 1874-4796

Abstract

Model order selection of an Autoregressive Moving Average (ARMA) process is an important problem. This paper presents a new algorithm for the estimation of an ARMA and autoregressive with exogenous input (ARX) model orders based on a rounding approach which uses the floor and the ceiling functions. The rounding approach is implemented to deal with the precision of binary words. The proposed algorithm is based on selecting a sequence of pivot cells from an MEV matrix which is based on the minimum eigenvalue of a covariance matrix computed from the observed data. It searches for the corner that contains the estimates of the true orders using the floor and the ceiling functions of the pivot cell values and the values of its neighbors. The proposed algorithm is an expansion of the algorithm proposed by Liang et al. (IEEE Transaction on Signal Processing, 1993; 41(10): 3003-3009). Recent patents and research advances aim to apply eigenvalue decomposition in estimation and prediction. Among the patents discussed is a method that describes estimation of uncertainty of a measuring machine where covariance matrix is subjected to eigenvalue decomposition.

Loading

Article metrics loading...

/content/journals/cseng/10.2174/2213275911003010033
2010-01-01
2025-09-02
Loading full text...

Full text loading...

/content/journals/cseng/10.2174/2213275911003010033
Loading
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test