Skip to content
2000
Volume 1, Issue 3
  • ISSN: 1574-888X
  • E-ISSN: 2212-3946

Abstract

Recruitment of neural stem cells (NSCs) represents an elegant strategy for replacing adult central nervous system (CNS) cells lost to injury or disease. However, except in the rostral migratory stream to the olfactory bulb, the adult CNS harbors a relatively non permissive environment for motility of neural stem cells. This opens the possibility of therapeutic enhancement of NSC motility towards sites of CNS injury or disease. The Epidermal Growth Factor Receptor (EGFR) is involved in the activation of a number of downstream pathways that regulate the phenotype of progenitor cells. Activated EGFR tyrosine kinase activity enhances NSC migration, proliferation, and survival. However, EGFR signaling is also known to play a role in the most malignant and highly invasive of human tumors, glioblastoma multiforme (GBM). Recent evidence supports the theory that GBM derives from a ‘cancer stem cell’ and that EGFR signals are commonly altered in these precursor cells. This article will review the role of EGFR signaling as it relates to neural stem cell motility and invasion. The duality of altered EGFR signaling in neural progenitor cells is discussed and opportunities for enhancing the recruitment of adult progenitors, and consequences of altering EGFR signaling in progenitor cells will be highlighted.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/157488806778226849
2006-09-01
2025-10-09
Loading full text...

Full text loading...

/content/journals/cscr/10.2174/157488806778226849
Loading

  • Article Type:
    Research Article
Keyword(s): Brain tumor initiating cell; EGFR; EGFRvIII; Glioblastoma; Neural stem cell
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test