Skip to content
2000
image of Qishen Yiqi Dropping Pills Combined with Exosomes Alleviate Myocardial I/R Injury by Regulating Macrophage Polarization via miRNA-155-5P

Abstract

Introduction

To investigate the protective mechanism of Qishen Yiqi Dropping Pills (Qishen) and its key active ingredients in combination with exosomes from bone marrow mesenchymal stem cells (BMSCs) against myocardial ischemia/reperfusion (I/R) injury.

Methods

Infarct area was assessed by Evan's Blue/TTC double staining, myocardial apoptosis was analyzed by TUNEL staining, content and ratio were detected biochemically, macrophage phenotype of myocardial tissues was detected by flow cytometry, activation of the pathway was detected by Western blotting, and expression was detected by qRT-PCR. 155-5p expression. Exo were given to identify the M1/M2 phenotypic transition by immunofluorescence, and the molecular mechanism was verified as in the experiments.

Results

Compared with the model group, the Qishen, ginsenoside, and Exo group significantly reduced the infarcted area of the heart and promoted M2 and M2 phenotypic conversion, promoted M2-type macrophage infiltration, up-regulated the ratio, and inhibited the expression of , but the combination therapy group did not show a synergistic effect, but the above protective effects were significantly weakened by the removal of macrophages. Ginsenoside and Exo synergistically promoted M2 polarization, activated the pathway and upregulated expression.

Discussion

Qishen, particularly its active component ginsenoside, synergizes with BMSC-Exo to alleviate myocardial I/R injury by modulating macrophage polarization the miR-155-5p/mTOR/PI3K/Akt signaling axis.

Conclusion

Qishen synergistically regulates the / signaling axis through ginsenoside components in BMSCs exosomes, promoting macrophage polarization toward M2-type, improving myocardial energy metabolism and attenuating I/R injury, and this protective effect is macrophage-dependent.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X408846251007045430
2025-10-27
2026-01-03
Loading full text...

Full text loading...

References

  1. Bugger H. Pfeil K. Mitochondrial ROS in myocardial ischemia reperfusion and remodeling. Biochim. Biophys. Acta Mol. Basis Dis. 2020 1866 7 165768 10.1016/j.bbadis.2020.165768 32173461
    [Google Scholar]
  2. Lin J. Li Q. Jin T. Cardiomyocyte IL-1R2 protects heart from ischemia/reperfusion injury by attenuating IL-17RA-mediated cardiomyocyte apoptosis. Cell Death Dis. 2022 13 1 90 10.1038/s41419‑022‑04533‑1 35087030
    [Google Scholar]
  3. Gu S. Tan J. Li Q. Downregulation of LAPTM4B contributes to the impairment of the autophagic flux via unopposed activation of mTORC1 signaling during myocardial ischemia/reperfusion injury. Circ. Res. 2020 127 7 e148 e165 10.1161/CIRCRESAHA.119.316388 32693673
    [Google Scholar]
  4. Kingma J.G. Contribution of myocyte apoptosis to myocardial injury in an in vivo rabbit preparation of ischemia-reperfusion. World J. Cardiovasc. Dis. 2022 12 8 426 438 10.4236/wjcd.2022.128044
    [Google Scholar]
  5. Zhang M. Liu Q. Meng H. Ischemia-reperfusion injury: Molecular mechanisms and therapeutic targets. Signal Transduct. Target. Ther. 2024 9 1 12 10.1038/s41392‑023‑01688‑x 38185705
    [Google Scholar]
  6. Chen N. Guo L. Wang L. Dai S. Zhu X. Wang E. Sleep fragmentation exacerbates myocardial ischemia‒reperfusion injury by promoting copper overload in cardiomyocytes. Nat. Commun. 2024 15 1 3834 10.1038/s41467‑024‑48227‑y 38714741
    [Google Scholar]
  7. Moreira Lopes T.C. Mosser D.M. Gonçalves R. Macrophage polarization in intestinal inflammation and gut homeostasis. Inflamm. Res. 2020 69 12 1163 1172 10.1007/s00011‑020‑01398‑y 32886145
    [Google Scholar]
  8. Ju C. Shen Y. Ma G. Transplantation of cardiac mesenchymal stem cell-derived exosomes promotes repair in ischemic myocardium. J. Cardiovasc. Transl. Res. 2018 11 5 420 428 10.1007/s12265‑018‑9822‑0 30232729
    [Google Scholar]
  9. Xiong J. Hu H. Guo R. Wang H. Jiang H. Mesenchymal stem cell exosomes as a new strategy for the treatment of diabetes complications. Front. Endocrinol. 2021 12 646233 10.3389/fendo.2021.646233 33995278
    [Google Scholar]
  10. Li X. Cao Y. Xu X. Sleep deprivation promotes endothelial inflammation and atherogenesis by reducing exosomal miR-182-5p. Arterioscler. Thromb. Vasc. Biol. 2023 43 6 995 1014 10.1161/ATVBAHA.123.319026 37021573
    [Google Scholar]
  11. Sohrabi B. Dayeri B. Zahedi E. Mesenchymal stem cell (MSC)-derived exosomes as novel vehicles for delivery of miRNAs in cancer therapy. Cancer Gene Ther. 2022 29 8-9 1105 1116 10.1038/s41417‑022‑00427‑8 35082400
    [Google Scholar]
  12. Huang Z. Huang H. Shen M. MicroRNA-155-5p modulates the progression of acute respiratory distress syndrome by targeting interleukin receptors. Bioengineered 2022 13 5 11732 11741 10.1080/21655979.2022.2071020 35506298
    [Google Scholar]
  13. Wang X. Liu Y. Hou H. miRNA-29 aggravates myocardial infarction via inhibiting the PI3K/mTOR/HIF1α/VEGF pathway. Aging (Albany NY) 2022 14 7 3129 3142 10.18632/aging.203997 35378513
    [Google Scholar]
  14. Liu L.W. Tang M. Zhang Z.B. A stepwise integrated strategy to explore quality markers of Qishen Yiqi dripping pills against myocardial ischemia. Phytomedicine 2024 135 156182 10.1016/j.phymed.2024.156182 39488103
    [Google Scholar]
  15. Zhang Y. Chen B. Silencing circ_0062389 alleviates cardiomyocyte apoptosis in heart failure rats via modulating TGF-β1/Smad3 signaling pathway. Gene 2021 766 145154 10.1016/j.gene.2020.145154 32949699
    [Google Scholar]
  16. Han S.J. Xu Q.Q. Pan H. Network pharmacology and molecular docking prediction, combined with experimental validation to explore the potential mechanism of Qishen Yiqi pills against HF-related cognitive dysfunction. J. Ethnopharmacol. 2023 314 116570 10.1016/j.jep.2023.116570 37187360
    [Google Scholar]
  17. Ait-Oufella H. Sage A.P. The sunlight: A new immunomodulatory approach of atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2017 37 1 7 9 10.1161/ATVBAHA.116.308637 28062456
    [Google Scholar]
  18. Bei Y. Zhu Y. Zhou J. Inhibition of Hmbox1 promotes cardiomyocyte survival and glucose metabolism through Gck activation in ischemia/reperfusion injury. Circulation 2024 150 11 848 866 10.1161/CIRCULATIONAHA.123.067592 38708602
    [Google Scholar]
  19. Chen M. Zhong G. Liu M. Integrating network analysis and experimental validation to reveal the mitophagy-associated mechanism of Yiqi Huoxue (YQHX) prescription in the treatment of myocardial ischemia/reperfusion injury. Pharmacol. Res. 2023 189 106682 10.1016/j.phrs.2023.106682 36736970
    [Google Scholar]
  20. Chen Q. Liu Y. Ding X. Bone marrow mesenchymal stem cell-secreted exosomes carrying microRNA-125b protect against myocardial ischemia reperfusion injury via targeting SIRT7. Mol. Cell. Biochem. 2020 465 1-2 103 114 10.1007/s11010‑019‑03671‑z 31858380
    [Google Scholar]
  21. Zhao J. Li X. Hu J. Mesenchymal stromal cell-derived exosomes attenuate myocardial ischaemia-reperfusion injury through miR-182-regulated macrophage polarization. Cardiovasc. Res. 2019 115 7 1205 1216 10.1093/cvr/cvz040 30753344
    [Google Scholar]
  22. Liu X. Zhang M. Liu H. Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes. Exp. Neurol. 2021 341 113700 10.1016/j.expneurol.2021.113700 33741350
    [Google Scholar]
  23. Pang L.X. Cai W.W. Li Q. Bone marrow-derived mesenchymal stem cells attenuate myocardial ischemia–reperfusion injury via upregulation of splenic regulatory T cells. BMC Cardiovasc. Disord. 2021 21 1 215 10.1186/s12872‑021‑02007‑4 33906602
    [Google Scholar]
  24. Li P. Hao Z. Wu J. Comparative proteomic analysis of polarized human THP-1 and mouse RAW264.7 macrophages. Front. Immunol. 2021 12 700009 10.3389/fimmu.2021.700009 34267761
    [Google Scholar]
  25. Shen L.H. Zhou L. Wang B.Y. Oxidized low-density lipoprotein induces differentiation of RAW264.7 murine macrophage cell line into dendritic-like cells. Atherosclerosis 2008 199 2 257 264 10.1016/j.atherosclerosis.2007.12.002 18191861
    [Google Scholar]
  26. Nazish I. Arber C. Piers T.M. Abrogation of LRRK2 dependent Rab10 phosphorylation with TLR4 activation and alterations in evoked cytokine release in immune cells. Neurochem. Int. 2021 147 105070 10.1016/j.neuint.2021.105070 34004238
    [Google Scholar]
  27. Leonard J.D. Gilmore D.C. Dileepan T. Identification of natural regulatory T cell epitopes reveals convergence on a dominant autoantigen. Immunity 2017 47 1 107 117.e8 10.1016/j.immuni.2017.06.015 28709804
    [Google Scholar]
  28. Zhang Q. Chen L. Huang L. CD44 promotes angiogenesis in myocardial infarction through regulating plasma exosome uptake and further enhancing FGFR2 signaling transduction. Mol. Med. 2022 28 1 145 10.1186/s10020‑022‑00575‑5 36463112
    [Google Scholar]
  29. Zhang W. Zhou B. Yang X. Exosomal circEZH2_005, an intestinal injury biomarker, alleviates intestinal ischemia/reperfusion injury by mediating Gprc5a signaling. Nat. Commun. 2023 14 1 5437 10.1038/s41467‑023‑41147‑3 37673874
    [Google Scholar]
  30. He X.R. Han S.Y. Li X.H. Chinese medicine Bu-Fei decoction attenuates epithelial-mesenchymal transition of non-small cell lung cancer via inhibition of transforming growth factor β1 signaling pathway in vitro and in vivo. J. Ethnopharmacol. 2017 204 45 57 10.1016/j.jep.2017.04.008 28412214
    [Google Scholar]
  31. Li H. Wang Y.J. Geng X.N. Kang Y.R. Wang Y.L. Qiu X.J. Pharmacokinetics of herb-drug interactions of plumbagin and tazemetostat in rats by UPLC-MS/MS. Drug Des. Devel. Ther. 2022 16 3385 3394 10.2147/DDDT.S384156 36199632
    [Google Scholar]
  32. Tsugawa H. Ikeda K. Takahashi M. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020 38 10 1159 1163 10.1038/s41587‑020‑0531‑2 32541957
    [Google Scholar]
  33. Kind T. Tsugawa H. Cajka T. Identification of small molecules using accurate mass MS/MS search. Mass Spectrom. Rev. 2018 37 4 513 532 10.1002/mas.21535 28436590
    [Google Scholar]
  34. Wishart D.S. Guo A. Oler E. HMDB 5.0: The human metabolome database for 2022. Nucleic Acids Res. 2022 50 D1 D622 D631 10.1093/nar/gkab1062 34986597
    [Google Scholar]
  35. Lee T.L. Lai T.C. Lin S.R. Conditioned medium from adipose-derived stem cells attenuates ischemia/reperfusion-induced cardiac injury through the microRNA-221/222/PUMA/ETS-1 pathway. Theranostics 2021 11 7 3131 3149 10.7150/thno.52677 33537078
    [Google Scholar]
  36. Ganz W. Watanabe I. Kanamasa K. Yano J. Han D.S. Fishbein M.C. Does reperfusion extend necrosis? A study in a single territory of myocardial ischemia--half reperfused and half not reperfused. Circulation 1990 82 3 1020 1033 10.1161/01.CIR.82.3.1020 2393986
    [Google Scholar]
  37. Janelidze S. Stomrud E. Palmqvist S. Plasma β-amyloid in Alzheimer’s disease and vascular disease. Sci. Rep. 2016 6 1 26801 10.1038/srep26801 27241045
    [Google Scholar]
  38. Gao F. Liang T. Lu Y.W. Reduced mitochondrial protein translation promotes cardiomyocyte proliferation and heart regeneration. Circulation 2023 148 23 1887 1906 10.1161/CIRCULATIONAHA.122.061192 37905452
    [Google Scholar]
  39. Chen Y.H. Lin S. Jin S.Y. Gao T.M. Extracellular ATP is a homeostatic messenger that mediates cell–cell communication in physiological processes and psychiatric diseases. Biol. Psychiatry 2025 97 1 41 53 10.1016/j.biopsych.2024.04.013 38679359
    [Google Scholar]
  40. Weiss-Sadan T. Ge M. Hayashi M. NRF2 activation induces NADH-reductive stress, providing a metabolic vulnerability in lung cancer. Cell Metab. 2023 35 3 487 503.e7 10.1016/j.cmet.2023.01.012 36841242
    [Google Scholar]
  41. Ying W. NAD+/NADH and NADP+/NADPH in cellular functions and cell death: Regulation and biological consequences. Antioxid. Redox Signal. 2008 10 2 179 206 10.1089/ars.2007.1672 18020963
    [Google Scholar]
  42. Rio D C Ares M Hannon G J Nilsen T W Purification of RNA using TRIzol (TRI reagent) Cold Spring Harb Protoc 2010 2010 6 pdb.prot5439 10.1101/pdb.prot5439 20516177
    [Google Scholar]
  43. Le Ru E.C. Böttger R. Andrews D. Rapid and accurate quantification of RNA in lipid nanoparticles by scatter-free UV/visible spectroscopy. Nano Lett. 2025 25 16 6813 6819 10.1021/acs.nanolett.5c01491 40199736
    [Google Scholar]
  44. Welt F.G.P. Batchelor W. Spears J.R. Reperfusion injury in patients with acute myocardial infarction. J. Am. Coll. Cardiol. 2024 83 22 2196 2213 10.1016/j.jacc.2024.02.056 38811097
    [Google Scholar]
  45. Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic. Biol. Med. 2018 117 76 89 10.1016/j.freeradbiomed.2018.01.024 29373843
    [Google Scholar]
  46. Yan L. Wang J. Cai X. Macrophage plasticity: Signaling pathways, tissue repair, and regeneration. MedComm 2024 5 8 e658 10.1002/mco2.658 39092292
    [Google Scholar]
  47. Prabhu S.D. Frangogiannis N.G. The biological basis for cardiac repair after myocardial infarction. Circ. Res. 2016 119 1 91 112 10.1161/CIRCRESAHA.116.303577 27340270
    [Google Scholar]
  48. Toldo S. Abbate A. The NLRP3 inflammasome in acute myocardial infarction. Nat. Rev. Cardiol. 2018 15 4 203 214 10.1038/nrcardio.2017.161 29143812
    [Google Scholar]
  49. Epelman S. Lavine K.J. Randolph G.J. Origin and functions of tissue macrophages. Immunity 2014 41 1 21 35 10.1016/j.immuni.2014.06.013 25035951
    [Google Scholar]
  50. Murray P.J. Macrophage Polarization. Annu. Rev. Physiol. 2017 79 1 541 566 10.1146/annurev‑physiol‑022516‑034339 27813830
    [Google Scholar]
  51. Li P. Liu J. Wang Y. Spatiotemporal targeted delivery of biomimetic bacterial outer membrane nanoparticles for enhanced spinal cord injury repair. Adv. Mater. 2025 37 30 2502795 10.1002/adma.202502795 40391641
    [Google Scholar]
  52. Wang Q. Guo W. Niu L. 3D‐hUMSCs exosomes ameliorate vitiligo by simultaneously potentiating treg cells‐mediated immunosuppression and suppressing oxidative stress‐induced melanocyte damage. Adv. Sci. 2024 11 31 2404064 10.1002/advs.202404064 38887870
    [Google Scholar]
  53. Song H. Jiang H. Hu W. Cervical extracellular matrix hydrogel optimizes tumor heterogeneity of cervical squamous cell carcinoma organoids. Sci. Adv. 2024 10 20 eadl3511 10.1126/sciadv.adl3511 38748808
    [Google Scholar]
  54. Guo J. Liu H.B. Sun C. MicroRNA-155 promotes myocardial infarction-induced apoptosis by targeting RNA-binding protein QKI. Oxid. Med. Cell. Longev. 2019 2019 1 14 10.1155/2019/4579806 31191799
    [Google Scholar]
  55. Ma Q. Huang S. Li M. Dihydromyricetin regulates the miR-155-5p/SIRT1/VDAC1 pathway to promote liver regeneration and improve alcohol-induced liver injury. Phytomedicine 2025 139 156522 10.1016/j.phymed.2025.156522 39986231
    [Google Scholar]
  56. Wen Q. Wang Y. Pan Q. MicroRNA-155-5p promotes neuroinflammation and central sensitization via inhibiting SIRT1 in a nitroglycerin-induced chronic migraine mouse model. J. Neuroinflammation 2021 18 1 287 10.1186/s12974‑021‑02342‑5 34893074
    [Google Scholar]
  57. Manning B.D. Toker A. AKT/PKB signaling: Navigating the network. Cell 2017 169 3 381 405 10.1016/j.cell.2017.04.001 28431241
    [Google Scholar]
  58. Qiu L. Gao Q. Liao Y. Li X. Li C. Targeted inhibition of the PTEN/PI3K/AKT pathway by YSV induces cell cycle arrest and apoptosis in oral squamous cell carcinoma. J. Transl. Med. 2025 23 1 145 10.1186/s12967‑025‑06169‑z 39901205
    [Google Scholar]
  59. Song J.R. Niu Z.P. Yang K. A natural acylphloroglucinol exerts anti-erythroleukemia effects via targeting STAT3 and p38-MAPK, and inhibiting PI3K/AKT/mTOR signaling pathway. Biomed. Pharmacother. 2024 180 117424 10.1016/j.biopha.2024.117424 39303451
    [Google Scholar]
  60. Li Y.H. Fu H.L. Tian M.L. Neuron-derived FGF10 ameliorates cerebral ischemia injury via inhibiting NF-κB-dependent neuroinflammation and activating PI3K/Akt survival signaling pathway in mice. Sci. Rep. 2016 6 1 19869 10.1038/srep19869 26813160
    [Google Scholar]
  61. Dong L. Li R. Li D. FGF10 enhances peripheral nerve regeneration via the preactivation of the PI3K/Akt signaling-mediated antioxidant response. Front. Pharmacol. 2019 10 1224 10.3389/fphar.2019.01224 31680984
    [Google Scholar]
  62. Bera A. Das F. Ghosh-Choudhury N. Kasinath B.S. Abboud H.E. Choudhury G.G. microRNA-21-induced dissociation of PDCD4 from rictor contributes to Akt-IKKβ-mTORC1 axis to regulate renal cancer cell invasion. Exp. Cell Res. 2014 328 1 99 117 10.1016/j.yexcr.2014.06.022 25016284
    [Google Scholar]
  63. Khan H. Singh A. Singh Y. Pharmacological modulation of PI3K/PTEN/Akt/mTOR/ERK signaling pathways in ischemic injury: A mechanistic perspective. Metab. Brain Dis. 2025 40 3 131 10.1007/s11011‑025‑01543‑8 40009091
    [Google Scholar]
  64. Yu C. Liu Y. Yu X. Garlic-derived exosome-like nanovesicles: A promising natural nanotherapy for periodontitis via PHGDH/PI3K/AKT-mediated metabolic and inflammatory Regulation. Int. J. Nanomedicine 2025 20 5551 5572 10.2147/IJN.S510417 40321804
    [Google Scholar]
  65. Zhai P. Sciarretta S. Galeotti J. Volpe M. Sadoshima J. Differential roles of GSK-3β during myocardial ischemia and ischemia/reperfusion. Circ. Res. 2011 109 5 502 511 10.1161/CIRCRESAHA.111.249532 21737790
    [Google Scholar]
  66. Maciel L. de Oliveira D.F. Mesquita F. New cardiomyokine reduces myocardial ischemia/reperfusion injury by PI3K‐AKT pathway via a putative kdel‐receptor binding. J. Am. Heart Assoc. 2021 10 1 019685 10.1161/JAHA.120.019685 33372525
    [Google Scholar]
  67. Kim J.H. Pharmacological and medical applications of Panax ginseng and ginsenosides: A review for use in cardiovascular diseases. J. Ginseng Res. 2018 42 3 264 269 10.1016/j.jgr.2017.10.004 29983607
    [Google Scholar]
  68. Pu X. Zhang Q. Liu J. Ginsenoside Rb1 ameliorates heart failure through DUSP-1-TMBIM-6-mediated mitochondrial quality control and gut flora interactions. Phytomedicine 2024 132 155880 10.1016/j.phymed.2024.155880 39053246
    [Google Scholar]
  69. Gao Z. Du Z. Hou Y. A microfluidic coculture model for mapping signaling perturbations and precise drug screening against macrophage-mediated dynamic myocardial injury. Acta Pharm. Sin. B 2024 14 12 5393 5406 10.1016/j.apsb.2024.11.004 39807320
    [Google Scholar]
  70. Chen D. Sheng X. Li H. Biodegradable copper-containing mesoporous microspheres loaded with ginsenoside Rb1 for infarcted heart repair. Biomater. Adv. 2025 169 214172 10.1016/j.bioadv.2024.214172 39756092
    [Google Scholar]
  71. Jiang L. Yin X. Chen Y.H. Proteomic analysis reveals ginsenoside Rb1 attenuates myocardial ischemia/reperfusion injury through inhibiting ROS production from mitochondrial complex I. Theranostics 2021 11 4 1703 1720 10.7150/thno.43895 33408776
    [Google Scholar]
  72. Dai X. Hu Y. Sun C. Qizhu Jianwei decoction triggers ferroptosis by exosome-mediated miR-199–3p/ACSL4 signaling pathways. J. Ethnopharmacol. 2025 344 119529 10.1016/j.jep.2025.119529 39986356
    [Google Scholar]
  73. Gao Y. Meng X. Zhu H. Exosomes derived from the serum of mice that received a Huoxue Yiqi recipe promote angiogenesis following myocardial infarction. ACS Appl. Mater. Interfaces 2025 17 21 30546 30558 10.1021/acsami.5c02784 40358553
    [Google Scholar]
  74. Guo X. Zheng B. Wang J. Zhao T. Zheng Y. Exploring the mechanism of action of Chinese medicine in regulating liver fibrosis based on the alteration of glucose metabolic pathways. Phytother. Res. 2024 38 10 4865 4876 10.1002/ptr.7667 36433866
    [Google Scholar]
  75. Deng Z Sun S Zhou N PNPO‐mediated oxidation of DVL3 promotes multiple myeloma malignancy and osteoclastogenesis by activating the Wnt/β‐Catenin pathway. adv sci 2025 12 5 2407681 10.1002/advs.202407681 39656865
    [Google Scholar]
  76. Xia Y. Han B. Zhang F. Pae/exo@PF-127 promote diabetic wound healing through miR-424–5p. Phytomedicine 2025 142 156688 10.1016/j.phymed.2025.156688 40347888
    [Google Scholar]
  77. Yang Q. Chen Q. Zhang K.B. Sinomenine alleviates neuroinflammation in chronic cerebral hypoperfusion by promoting M2 microglial polarization and inhibiting neuronal pyroptosis via exosomal miRNA-223-3p. Acta Neuropathol. Commun. 2025 13 1 48 10.1186/s40478‑025‑01950‑z 40045356
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X408846251007045430
Loading
/content/journals/cscr/10.2174/011574888X408846251007045430
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test