Skip to content
2000
image of Revisiting Hematopoietic Hierarchy: Emerging Insights into Megakaryocyte-biased Differentiation Pathways of Hematopoietic Stem Cells

Abstract

Hematopoietic stem cells (HSCs) represent the most primitive cell population endowed with the ability for self-renewal and differentiation. They possess the capacity to differentiate into all types of blood cells, each serving unique functions. Traditional theories have established a clear hierarchical relationship between HSCs, their progenitors, and mature blood cells. The identification of distinct cell populations within the hematopoietic system forms the foundation of the hematopoietic differentiation model. However, recent research has led to a constant evolution of our understanding of the hierarchical structure of hematopoietic differentiation, particularly in the context of megakaryocyte differentiation pathways. Megakaryocytes are essential for platelet production, a critical process in hemostasis and thrombosis. Understanding the mechanisms underlying megakaryocyte-biased HSCs differentiation holds significance for both basic research and clinical applications. In this review, we consolidate the latest research progress concerning the evidence supporting these nonclassical pathways of megakaryocytic differentiation. Furthermore, we delve into the alterations observed in these pathways under conditions of steady state, transplantation, stress, and aging.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X395136250908045533
2025-09-25
2025-12-28
Loading full text...

Full text loading...

References

  1. Orkin S.H. Zon L.I. Hematopoiesis: An evolving paradigm for stem cell biology. Cell 2008 132 4 631 644 10.1016/j.cell.2008.01.025 18295580
    [Google Scholar]
  2. Yamamoto R. Wilkinson A.C. Nakauchi H. Changing concepts in hematopoietic stem cells. Science 2018 362 6417 895 896 10.1126/science.aat7873 30467158
    [Google Scholar]
  3. Akashi K. Traver D. Miyamoto T. Weissman I.L. A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 2000 404 6774 193 197 10.1038/35004599 10724173
    [Google Scholar]
  4. Kondo M. Weissman I.L. Akashi K. Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 1997 91 5 661 672 10.1016/S0092‑8674(00)80453‑5 9393859
    [Google Scholar]
  5. Kucinski I. Campos J. Barile M. A time- and single-cell-resolved model of murine bone marrow hematopoiesis. Cell Stem Cell 2024 31 2 244 259.e10 10.1016/j.stem.2023.12.001 38183977
    [Google Scholar]
  6. Dong F. Hao S. Zhang S. Differentiation of transplanted haematopoietic stem cells tracked by single-cell transcriptomic analysis. Nat. Cell Biol. 2020 22 6 630 639 10.1038/s41556‑020‑0512‑1 32367048
    [Google Scholar]
  7. Muller-Sieburg C.E. Cho R.H. Karlsson L. Huang J.F. Sieburg H.B. Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 2004 103 11 4111 4118 10.1182/blood‑2003‑10‑3448 14976059
    [Google Scholar]
  8. Beerman I. Bhattacharya D. Zandi S. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. Proc. Natl. Acad. Sci. USA 2010 107 12 5465 5470 10.1073/pnas.1000834107 20304793
    [Google Scholar]
  9. Nishikii H. Kanazawa Y. Umemoto T. Unipotent megakaryopoietic pathway bridging hematopoietic stem cells and mature megakaryocytes. Stem Cells 2015 33 7 2196 2207 10.1002/stem.1985 25753067
    [Google Scholar]
  10. Vainchenker W. Raslova H. The megakaryocyte: A cell with 3 faces as a mythic god? Blood 2021 138 14 1199 1200 10.1182/blood.2021012760 34618001
    [Google Scholar]
  11. Pariser D.N. Hilt Z.T. Ture S.K. Lung megakaryocytes are immune modulatory cells. J. Clin. Invest. 2021 131 1 137377 10.1172/JCI137377 33079726
    [Google Scholar]
  12. Yeung A.K. Villacorta-Martin C. Hon S. Rock J.R. Murphy G.J. Lung megakaryocytes display distinct transcriptional and phenotypic properties. Blood Adv. 2020 4 24 6204 6217 10.1182/bloodadvances.2020002843 33351116
    [Google Scholar]
  13. Adolfsson J. Månsson R. Buza-Vidas N. Identification of Flt3+ lympho-myeloid stem cells lacking erythro-megakaryocytic potential a revised road map for adult blood lineage commitment. Cell 2005 121 2 295 306 10.1016/j.cell.2005.02.013 15851035
    [Google Scholar]
  14. Forsberg E.C. Serwold T. Kogan S. Weissman I.L. Passegué E. New evidence supporting megakaryocyte-erythrocyte potential of flk2/flt3+ multipotent hematopoietic progenitors. Cell 2006 126 2 415 426 10.1016/j.cell.2006.06.037 16873070
    [Google Scholar]
  15. Sanjuan-Pla A. Macaulay I.C. Jensen C.T. Platelet-biased stem cells reside at the apex of the haematopoietic stem-cell hierarchy. Nature 2013 502 7470 232 236 10.1038/nature12495 23934107
    [Google Scholar]
  16. Shin J.Y. Hu W. Naramura M. Park C.Y. High c-Kit expression identifies hematopoietic stem cells with impaired self-renewal and megakaryocytic bias. J. Exp. Med. 2014 211 2 217 231 10.1084/jem.20131128 24446491
    [Google Scholar]
  17. Grinenko T. Arndt K. Portz M. Clonal expansion capacity defines two consecutive developmental stages of long-term hematopoietic stem cells. J. Exp. Med. 2014 211 2 209 215 10.1084/jem.20131115 24446490
    [Google Scholar]
  18. Yamamoto R. Morita Y. Ooehara J. Clonal analysis unveils self-renewing lineage-restricted progenitors generated directly from hematopoietic stem cells. Cell 2013 154 5 1112 1126 10.1016/j.cell.2013.08.007 23993099
    [Google Scholar]
  19. Carrelha J. Meng Y. Kettyle L.M. Hierarchically related lineage-restricted fates of multipotent haematopoietic stem cells. Nature 2018 554 7690 106 111 10.1038/nature25455 29298288
    [Google Scholar]
  20. Benz C. Copley M.R. Kent D.G. Hematopoietic stem cell subtypes expand differentially during development and display distinct lymphopoietic programs. Cell Stem Cell 2012 10 3 273 283 10.1016/j.stem.2012.02.007 22385655
    [Google Scholar]
  21. Sun J. Ramos A. Chapman B. Clonal dynamics of native haematopoiesis. Nature 2014 514 7522 322 327 10.1038/nature13824 25296256
    [Google Scholar]
  22. Rodriguez-Fraticelli A.E. Wolock S.L. Weinreb C.S. Clonal analysis of lineage fate in native haematopoiesis. Nature 2018 553 7687 212 216 10.1038/nature25168 29323290
    [Google Scholar]
  23. Shlush L.I. Zandi S. Mitchell A. Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 2014 506 7488 328 333 10.1038/nature13038 24522528
    [Google Scholar]
  24. Rossi D.J. Jamieson C.H.M. Weissman I.L. Stems cells and the pathways to aging and cancer. Cell 2008 132 4 681 696 10.1016/j.cell.2008.01.036 18295583
    [Google Scholar]
  25. Haas S. Hansson J. Klimmeck D. Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 2015 17 4 422 434 10.1016/j.stem.2015.07.007 26299573
    [Google Scholar]
  26. Grover A. Sanjuan-Pla A. Thongjuea S. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat. Commun. 2016 7 1 11075 10.1038/ncomms11075 27009448
    [Google Scholar]
  27. Gekas C. Graf T. CD41 expression marks myeloid-biased adult hematopoietic stem cells and increases with age. Blood 2013 121 22 4463 4472 10.1182/blood‑2012‑09‑457929 23564910
    [Google Scholar]
  28. Janzen V. Forkert R. Fleming H.E. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 2006 443 7110 421 426 10.1038/nature05159 16957735
    [Google Scholar]
  29. Rossi D.J. Bryder D. Zahn J.M. Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc. Natl. Acad. Sci. USA 2005 102 26 9194 9199 10.1073/pnas.0503280102 15967997
    [Google Scholar]
  30. Florian M.C. Dörr K. Niebel A. Cdc42 activity regulates hematopoietic stem cell aging and rejuvenation. Cell Stem Cell 2012 10 5 520 530 10.1016/j.stem.2012.04.007 22560076
    [Google Scholar]
  31. Poscablo D.M. Worthington A.K. Smith-Berdan S. An age-progressive platelet differentiation path from hematopoietic stem cells causes exacerbated thrombosis. Cell 2024 187 12 3090 3107.e21 10.1016/j.cell.2024.04.018 38749423
    [Google Scholar]
  32. Ross J.B. Myers L.M. Noh J.J. Depleting myeloid-biased haematopoietic stem cells rejuvenates aged immunity. Nature 2024 628 8006 162 170 10.1038/s41586‑024‑07238‑x 38538791
    [Google Scholar]
  33. Wang J. Xie J. Wang D. CXCR4high megakaryocytes regulate host-defense immunity against bacterial pathogens. eLife 2022 11 78662 10.7554/eLife.78662 35904250
    [Google Scholar]
  34. Koupenova M. Livada A.C. Morrell C.N. Platelet and megakaryocyte roles in innate and adaptive immunity. Circ. Res. 2022 130 2 288 308 10.1161/CIRCRESAHA.121.319821 35050690
    [Google Scholar]
  35. Morcos M.N.F. Li C. Munz C.M. Fate mapping of hematopoietic stem cells reveals two pathways of native thrombopoiesis. Nat. Commun. 2022 13 1 4504 10.1038/s41467‑022‑31914‑z 35922411
    [Google Scholar]
  36. Li J.J. Liu J. Li Y.E. Differentiation route determines the functional outputs of adult megakaryopoiesis. Immunity 2024 57 3 478 494.e6 10.1016/j.immuni.2024.02.006 38447571
    [Google Scholar]
  37. Wang H. He J. Xu C. Decoding human megakaryocyte development. Cell Stem Cell 2021 28 3 535 549.e8 10.1016/j.stem.2020.11.006 33340451
    [Google Scholar]
  38. Yoshihara H. Arai F. Hosokawa K. Thrombopoietin/MPL signaling regulates hematopoietic stem cell quiescence and interaction with the osteoblastic niche. Cell Stem Cell 2007 1 6 685 697 10.1016/j.stem.2007.10.020 18371409
    [Google Scholar]
  39. Qian H. Buza-Vidas N. Hyland C.D. Critical role of thrombopoietin in maintaining adult quiescent hematopoietic stem cells. Cell Stem Cell 2007 1 6 671 684 10.1016/j.stem.2007.10.008 18371408
    [Google Scholar]
  40. Ceresa I.F. Noris P. Ambaglio C. Pecci A. Balduini C.L. Thrombopoietin is not uniquely responsible for thrombocytosis in inflammatory disorders. Platelets 2007 18 8 579 582 10.1080/09537100701593601 18041648
    [Google Scholar]
  41. Cerutti A. Custodi P Mduranti, Cazzola M, Balduini CL. Circulating thrombopoietin in reactive conditions behaves like an acute phase reactant. Clin. Lab. Haematol. 1999 21 4 271 275 10.1046/j.1365‑2257.1999.00226.x 10583330
    [Google Scholar]
  42. Walter D. Lier A. Geiselhart A. Exit from dormancy provokes DNA-damage-induced attrition in haematopoietic stem cells. Nature 2015 520 7548 549 552 10.1038/nature14131 25707806
    [Google Scholar]
  43. Kovtonyuk L.V. Manz M.G. Takizawa H. Enhanced thrombopoietin but not G-CSF receptor stimulation induces self-renewing hematopoietic stem cell divisions in vivo. Blood 2016 127 25 3175 3179 10.1182/blood‑2015‑09‑669929 27146433
    [Google Scholar]
  44. Kaushansky K. Thrombopoietin and its receptor in normal and neoplastic hematopoiesis. Thromb. J. 2016 14 Suppl. 1 40 10.1186/s12959‑016‑0095‑z 27766065
    [Google Scholar]
  45. Nakamura-Ishizu A. Matsumura T. Stumpf P.S. Thrombopoietin metabolically primes hematopoietic stem cells to megakaryocyte-lineage differentiation. Cell Rep. 2018 25 7 1772 1785.e6 10.1016/j.celrep.2018.10.059 30428347
    [Google Scholar]
  46. Meng Y. Carrelha J. Drissen R. Epigenetic programming defines haematopoietic stem cell fate restriction. Nat. Cell Biol. 2023 25 6 812 822 10.1038/s41556‑023‑01137‑5 37127714
    [Google Scholar]
  47. Pinho S. Marchand T. Yang E. Wei Q. Nerlov C. Frenette P.S. Lineage-Biased hematopoietic stem cells are regulated by distinct niches. Dev. Cell 2018 44 5 634 641.e4 10.1016/j.devcel.2018.01.016 29456137
    [Google Scholar]
  48. Gulati G.S. Zukowska M. Noh J.J. Neogenin-1 distinguishes between myeloid-biased and balanced Hoxb5+ mouse long-term hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 2019 116 50 25115 25125 10.1073/pnas.1911024116 31754028
    [Google Scholar]
  49. Novershtern N. Subramanian A. Lawton L.N. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 2011 144 2 296 309 10.1016/j.cell.2011.01.004 21241896
    [Google Scholar]
  50. Matsuoka Y. Sumide K. Kawamura H. Human cord blood-derived primitive CD34-negative hematopoietic stem cells (HSCs) are myeloid-biased long-term repopulating HSCs. Blood Cancer J. 2015 5 3 290 10.1038/bcj.2015.22 25768404
    [Google Scholar]
  51. Choudry F.A. Bagger F.O. Macaulay I.C. Transcriptional characterization of human megakaryocyte polyploidization and lineage commitment. J. Thromb. Haemost. 2021 19 5 1236 1249 10.1111/jth.15271 33587817
    [Google Scholar]
  52. Rao T.N. Hansen N. Stetka J. JAK2 -V617F and interferon-α induce megakaryocyte-biased stem cells characterized by decreased long-term functionality. Blood 2021 137 16 2139 2151 10.1182/blood.2020005563 33667305
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X395136250908045533
Loading
/content/journals/cscr/10.2174/011574888X395136250908045533
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: platelet ; Hematopoietic stem cell ; megakaryocyte
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test