Skip to content
2000
image of Mesenchymal Stem Cell-derived Exosomes in the Treatment of Skin and Subcutaneous Tissue Diseases: A Review

Abstract

Skin and subcutaneous tissue diseases (SSTDs) are a leading cause of nonfatal disability worldwide, particularly in resource-poor regions, affecting over one-third of the world's population. Current treatments for SSTDs include topical and oral medications, as well as mechanotherapy; however, these approaches have several significant limitations, including insufficient efficacy, side effects, and high costs. In this regard, particular interest is directed to mesenchymal stem cell-derived exosomes (MSC-Exo), the therapeutic properties of which have been actively studied worldwide in recent years. Our aim was to review clinical trials, published clinical studies, and case reports on MSC-Exo-based cell-free therapy for SSTDs, summarizing both its opportunities and challenges for clinical translation. A literature search for clinical studies and case reports of the application of MSC-Exo in the treatment of SSTDs was conducted using PubMed, Google Scholar databases, and ClinicalTrials.gov. The analysis revealed that MSC-Exo are utilized in treating diverse SSTDs, including: alopecia and hair thinning, psoriasis, facial redness in patients with atopic dermatitis, sensitive skin, melasma, skin wounds, ulcers and burns, skin aging, hyperpigmentation, scars, and dystrophic epidermolysis bullosa. Ongoing clinical trials and preliminary published clinical studies and case reports demonstrate that MSC-Exo are safe and effective cell-free therapeutic agents, highlighting their potential as a novel treatment for SSTDs.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X393159250704132425
2025-07-11
2025-09-14
Loading full text...

Full text loading...

References

  1. Darjani A. Rad E.H. Ghahdarijani A.H. Nejad K.G. Economic burden of skin diseases among hospitalized patients in North of Iran. Iran. Red Crescent Med. J. 2024 59 1 6 10.22034/ircmj.2024.469542.1331
    [Google Scholar]
  2. Flohr C. Hay R. Putting the burden of skin diseases on the global map. Br. J. Dermatol. 2021 184 2 189 190 10.1111/bjd.19704 33544440
    [Google Scholar]
  3. Karimkhani C. Dellavalle R.P. Coffeng L.E. Global skin disease morbidity and mortality: an update from the Global Burden of Disease Study 2013. JAMA Dermatol. 2017 153 5 406 412 10.1001/jamadermatol.2016.5538 28249066
    [Google Scholar]
  4. Seth D. Cheldize K. Brown D. Freeman E.E. Global burden of skin disease: Inequities and innovations. Curr. Dermatol. Rep. 2017 6 3 204 210 10.1007/s13671‑017‑0192‑7 29226027
    [Google Scholar]
  5. Richard M.A. Paul C. Nijsten T. Prevalence of most common skin diseases in Europe: A population‐based study. J. Eur. Acad. Dermatol. Venereol. 2022 36 7 1088 1096 10.1111/jdv.18050 35274366
    [Google Scholar]
  6. Urban K. Chu S. Giesey R.L. Burden of skin disease and associated socioeconomic status in Asia: A cross-sectional analysis from the Global Burden of Disease Study 1990-2017. JAAD Int 2021 2 40 50 10.1016/j.jdin.2020.10.006 34409353
    [Google Scholar]
  7. Basra M.K.A. Shahrukh M. Burden of skin diseases. Expert Rev. Pharmacoecon. Outcomes Res. 2009 9 3 271 283 10.1586/erp.09.23 19527100
    [Google Scholar]
  8. Yakupu A. Aimaier R. Yuan B. The burden of skin and subcutaneous diseases: Findings from the global burden of disease study 2019. Front. Public Health 2023 11 1145513 10.3389/fpubh.2023.1145513 37139398
    [Google Scholar]
  9. Dalgard F.J. Gieler U. Tomas-Aragones L. The psychological burden of skin diseases: A cross-sectional multicenter study among dermatological out-patients in 13 European countries. J. Invest. Dermatol. 2015 135 4 984 991 10.1038/jid.2014.530 25521458
    [Google Scholar]
  10. Ebrahimnejad N. Jaafar D. Goodarzi H. The past, present, future: Pathophysiology, diagnosis, and treatment of human skin diseases. Physiologia 2024 4 1 81 99 10.3390/physiologia4010005
    [Google Scholar]
  11. Kreher M.A. Noland M.M.B. Konda S. Longo M.I. Valdes-Rodriguez R. Risk of melanoma and nonmelanoma skin cancer with immunosuppressants, part I: Calcineurin inhibitors, thiopurines, IMDH inhibitors, mTOR inhibitors, and corticosteroids. J. Am. Acad. Dermatol. 2023 88 3 521 530 10.1016/j.jaad.2022.11.044 36460257
    [Google Scholar]
  12. Vangipuram R. Feldman S.R. Ultraviolet phototherapy for cutaneous diseases: A concise review. Oral Dis. 2016 22 4 253 259 10.1111/odi.12366 26464123
    [Google Scholar]
  13. Keshtkar S. Azarpira N. Ghahremani M.H. Mesenchymal stem cell-derived extracellular vesicles: Novel frontiers in regenerative medicine. Stem Cell Res. Ther. 2018 9 1 63 10.1186/s13287‑018‑0791‑7 29523213
    [Google Scholar]
  14. Musiał-Wysocka A. Kot M. Majka M. The pros and cons of mesenchymal stem cell-asbed therapies. Cell Transplant. 2019 28 7 801 812 10.1177/0963689719837897 31018669
    [Google Scholar]
  15. Wang M. Yuan Q. Xie L. Mesenchymal stem cell-based immunomodulation: Properties and clinical application. Stem Cells Int. 2018 2018 1 12 10.1155/2018/3057624 30013600
    [Google Scholar]
  16. Gimona M. Brizzi M.F. Choo A.B.H. Critical considerations for the development of potency tests for therapeutic applications of mesenchymal stromal cell-derived small extracellular vesicles. Cytotherapy 2021 23 5 373 380 10.1016/j.jcyt.2021.01.001 33934807
    [Google Scholar]
  17. Sun Y. Liu G. Zhang K. Cao Q. Liu T. Li J. Mesenchymal stem cells-derived exosomes for drug delivery. Stem Cell Res. Ther. 2021 12 1 561 10.1186/s13287‑021‑02629‑7 34717769
    [Google Scholar]
  18. Hastuti S. Idroes R. Imran I. Ramli Y. Abas A.H. Tallei T.E. hUMSC vs. hUMSC–Exosome: Which one is better for epilepsy? Pharmaceuticals 2022 15 10 1247 10.3390/ph15101247 36297359
    [Google Scholar]
  19. Tan F. Li X. Wang Z. Li J. Shahzad K. Zheng J. Clinical applications of stem cell-derived exosomes. Signal Transduct. Target. Ther. 2024 9 1 17 10.1038/s41392‑023‑01704‑0 38212307
    [Google Scholar]
  20. Wu P. Zhang B. Shi H. Qian H. Xu W. MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy 2018 20 3 291 301 10.1016/j.jcyt.2017.11.002 29434006
    [Google Scholar]
  21. Altanerova U. Jakubechova J. Repiska V. Altaner C. Exosomes of human mesenchymal stem/stromal/medicinal signaling cells. Neoplasma 2017 64 6 809 815 10.4149/neo_2017_601 28895404
    [Google Scholar]
  22. Yadav S. Maity P. Kapat K. The opportunities and challenges of mesenchymal stem cells-derived exosomes in theranostics and regenerative medicine. Cells 2024 13 23 1956 10.3390/cells13231956 39682706
    [Google Scholar]
  23. Dairov A. Sekenova A. Alimbek S. Psoriasis: The versatility of mesenchymal stem cell and exosome therapies. Biomolecules 2024 14 11 1351 10.3390/biom14111351 39595528
    [Google Scholar]
  24. Ti D. Hao H. Fu X. Han W. Mesenchymal stem cells-derived exosomal microRNAs contribute to wound inflammation. Sci. China Life Sci. 2016 59 12 1305 1312 10.1007/s11427‑016‑0240‑4 27864711
    [Google Scholar]
  25. Cavallini C. Zannini C. Olivi E. Restoring in vivo-like membrane lipidomics promotes exosome trophic behavior from human placental mesenchymal stromal/stem cells. Cell Transplant. 2018 27 1 55 69 10.1177/0963689717723016 29562775
    [Google Scholar]
  26. Li X. Zhang D. Yu Y. Wang L. Zhao M. Umbilical cord‐derived mesenchymal stem cell secretome promotes skin regeneration and rejuvenation: From mechanism to therapeutics. Cell Prolif. 2024 57 4 e13586 10.1111/cpr.13586 38148579
    [Google Scholar]
  27. Eleuteri S. Fierabracci A. Insights into the secretome of mesenchymal stem cells and its potential applications. Int. J. Mol. Sci. 2019 20 18 4597 10.3390/ijms20184597 31533317
    [Google Scholar]
  28. Théry C. Zitvogel L. Amigorena S. Exosomes: composition, biogenesis and function. Nat. Rev. Immunol. 2002 2 8 569 579 10.1038/nri855 12154376
    [Google Scholar]
  29. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  30. Li M. Li S. Du C. Exosomes from different cells: Characteristics, modifications, and therapeutic applications. Eur. J. Med. Chem. 2020 207 112784 10.1016/j.ejmech.2020.112784 33007722
    [Google Scholar]
  31. Al-Khawaga S. Abdelalim E.M. Potential application of mesenchymal stem cells and their exosomes in lung injury: An emerging therapeutic option for COVID-19 patients. Stem Cell Res. Ther. 2020 11 1 437 10.1186/s13287‑020‑01963‑6 33059757
    [Google Scholar]
  32. Koken G.Y. Abamor E.S. Allahverdiyev A. Karaoz E. Wharton jelly derived mesenchymal stem cell’s exosomes demonstrate significant antileishmanial and wound healing effects in combination with aloe-emodin: An in vitro study. J. Pharm. Sci. 2022 111 12 3232 3242 10.1016/j.xphs.2022.08.016 35995206
    [Google Scholar]
  33. Zhou Y. Seo J. Tu S. Nanmo A. Kageyama T. Fukuda J. Exosomes for hair growth and regeneration. J. Biosci. Bioeng. 2024 137 1 1 8 10.1016/j.jbiosc.2023.11.001 37996318
    [Google Scholar]
  34. Liu Y. Wang H. Wang J. Exosomes as a novel pathway for regulating development and diseases of the skin (Review). Biomed. Rep. 2018 8 3 207 214 10.3892/br.2018.1054 29599975
    [Google Scholar]
  35. Lotfy A. AboQuella N.M. Wang H. Mesenchymal stromal/stem cell (MSC)-derived exosomes in clinical trials. Stem Cell Res. Ther. 2023 14 1 66 10.1186/s13287‑023‑03287‑7 37024925
    [Google Scholar]
  36. Colombo M. Raposo G. Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu. Rev. Cell Dev. Biol. 2014 30 1 255 289 10.1146/annurev‑cellbio‑101512‑122326 25288114
    [Google Scholar]
  37. Hu J.C. Zheng C.X. Sui B.D. Liu W.J. Jin Y. Mesenchymal stem cell-derived exosomes: A novel and potential remedy for cutaneous wound healing and regeneration. World J. Stem Cells 2022 14 5 318 329 10.4252/wjsc.v14.i5.318 35722196
    [Google Scholar]
  38. Yuan Y.G. Wang J.L. Zhang Y.X. Li L. Reza A.M.M.T. Gurunathan S. Biogenesis, composition and potential therapeutic applications of mesenchymal stem cells derived exosomes in various diseases. Int. J. Nanomedicine 2023 18 3177 3210 10.2147/IJN.S407029 37337578
    [Google Scholar]
  39. Zhang B. Wang M. Gong A. HucMSC-exosome mediated-Wnt4 signaling is required for cutaneous wound healing. Stem Cells 2015 33 7 2158 2168 10.1002/stem.1771 24964196
    [Google Scholar]
  40. Zhang H. Zang C. Zhao W. Exosome derived from mesenchymal stem cells alleviates hypertrophic scar by inhibiting the fibroblasts via TNFSF-13/HSPG2 signaling pathway. Int. J. Nanomedicine 2023 18 7047 7063 10.2147/IJN.S433510 38046235
    [Google Scholar]
  41. Ding J.Y. Chen M.J. Wu L.F. Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: Roles, opportunities and challenges. Mil. Med. Res. 2023 10 1 36 10.1186/s40779‑023‑00472‑w 37587531
    [Google Scholar]
  42. Chen G. Chen H. Zeng X. Zhu W. Stem cell-derived exosomal transcriptomes for wound healing. Front. Surg. 2022 9 933781 10.3389/fsurg.2022.933781 36034367
    [Google Scholar]
  43. Ju C. Liu D. Exosomal microRNAs from mesenchymal stem cells: Novel therapeutic effect in wound healing. Tissue Eng. Regen. Med. 2023 20 5 647 660 10.1007/s13770‑023‑00542‑z 37131016
    [Google Scholar]
  44. Ghanbarzadeh A. Mehran Y.Z. Weber M. Exosome therapy in combination with photodynamic therapy for severe and large-scale injuries and resisted wound treatment: case series. Scholar J Med Case Report 2024 12 3 379 384 10.36347/sjmcr.2024.v12i03.037
    [Google Scholar]
  45. Cao G. Chen B. Zhang X. Chen H. Human adipose-derived mesenchymal stem cells-derived exosomal microRNA-19b promotes the healing of skin wounds through modulation of the CCL1/TGF-β signaling axis. Clin. Cosmet. Investig. Dermatol. 2020 13 957 971 10.2147/CCID.S274370 33364805
    [Google Scholar]
  46. Cardoso C.O. Tolentino S. Gratieri T. Cunha-Filho M. Lopez R. Gelfuso G. Topical treatment for scarring and non-scarring alopecia: An overview of the current evidence. Clin. Cosmet. Investig. Dermatol. 2021 14 485 499 10.2147/CCID.S284435 34012282
    [Google Scholar]
  47. Rambwawasvika H. Dzomba P. Gwatidzo L. Alopecia types, current and future treatment. J Dermatol Cosmetology 2021 5 4 93 99 10.15406/jdc.2021.05.00190
    [Google Scholar]
  48. Cotsarelis G. Millar S.E. Towards a molecular understanding of hair loss and its treatment. Trends Mol. Med. 2001 7 7 293 301 10.1016/S1471‑4914(01)02027‑5 11425637
    [Google Scholar]
  49. Anudeep T.C. Jeyaraman M. Muthu S. Advancing regenerative cellular therapies in non-scarring alopecia. Pharmaceutics 2022 14 3 612 10.3390/pharmaceutics14030612 35335987
    [Google Scholar]
  50. Devjani S. Ezemma O. Kelley K.J. Stratton E. Senna M. Androgenetic alopecia: Therapy update. Drugs 2023 83 8 701 715 10.1007/s40265‑023‑01880‑x 37166619
    [Google Scholar]
  51. Lolli F. Pallotti F. Rossi A. Androgenetic alopecia: A review. Endocrine 2017 57 1 9 17 10.1007/s12020‑017‑1280‑y 28349362
    [Google Scholar]
  52. Liang Y. Tang X. Zhang X. Cao C. Yu M. Wan M. Adipose mesenchymal stromal cell-derived exosomes carrying MiR-122-5p antagonize the inhibitory effect of dihydrotestosterone on hair follicles by targeting the TGF-β1/SMAD3 signaling pathway. Int. J. Mol. Sci. 2023 24 6 5703 10.3390/ijms24065703 36982775
    [Google Scholar]
  53. Ntshingila S. Oputu O. Arowolo A.T. Khumalo N.P. Androgenetic alopecia: An update. JAAD Int 2023 13 150 158 10.1016/j.jdin.2023.07.005 37823040
    [Google Scholar]
  54. Gokce N Basgoz N Kenanoglu S An overview of the genetic aspects of hair loss and its connection with nutrition. J Prev Med Hyg 2022 63 2 E228 38 (Suppl. 3) 10.15167/2421‑4248/jpmh2022.63.2s3.2765 36479473
    [Google Scholar]
  55. Gentile P. Garcovich S. Perego F. Autologous micrografts containing nanovesicles, exosomes, and follicle stem cells in androgenetic alopecia: In vitro and in vivo analysis through a multicentric, observational, evaluator-blinded study. Aesthetic Plast. Surg. 2025 49 1 43 58 10.1007/s00266‑024‑04439‑7 39453468
    [Google Scholar]
  56. Ersan M. Ozer E. Akin O. Tasli P.N. Sahin F. Effectiveness of exosome treatment in androgenetic alopecia: outcomes of a prospective study. Aesthetic Plast. Surg. 2024 48 21 4262 4271 10.1007/s00266‑024‑04332‑3 39174804
    [Google Scholar]
  57. Park B.S. Choi H.I. Huh G. Kim W.S. Effects of exosome from adipose‐derived stem cell on hair loss: A retrospective analysis of 39 patients. J. Cosmet. Dermatol. 2022 21 5 2282 2284 10.1111/jocd.14846 35157363
    [Google Scholar]
  58. Tsuji W. Rubin J.P. Marra K.G. Adipose-derived stem cells: Implications in tissue regeneration. World J. Stem Cells 2014 6 3 312 321 10.4252/wjsc.v6.i3.312 25126381
    [Google Scholar]
  59. Norooznezhad A.H. Yarani R. Payandeh M. Treatment of persistent chemotherapy-induced hair loss (Alopecia) with human mesenchymal stromal cells exosome enriched extracellular vesicles: A case report. Heliyon 2023 9 4 e15165 10.1016/j.heliyon.2023.e15165 37095978
    [Google Scholar]
  60. Norouzi F. Aghajani S. Vosoughi N. Exosomes derived stem cells as a modern therapeutic approach for skin rejuvenation and hair regrowth. Regen. Ther. 2024 26 1124 1137 10.1016/j.reth.2024.10.001 39640923
    [Google Scholar]
  61. Li Y. Wang G. Wang Q. Zhang Y. Cui L. Huang X. Exosomes secreted from adipose-derived stem cells are a potential treatment agent for immune-mediated alopecia. J. Immunol. Res. 2022 2022 1 14 10.1155/2022/7471246 35155688
    [Google Scholar]
  62. Rajendran R.L. Gangadaran P. Bak S.S. Extracellular vesicles derived from MSCs activates dermal papilla cell in vitro and promotes hair follicle conversion from telogen to anagen in mice. Sci. Rep. 2017 7 1 15560 10.1038/s41598‑017‑15505‑3 29138430
    [Google Scholar]
  63. Harden J.L. Krueger J.G. Bowcock A.M. The immunogenetics of Psoriasis: A comprehensive review. J. Autoimmun. 2015 64 66 73 10.1016/j.jaut.2015.07.008 26215033
    [Google Scholar]
  64. Zhou X. Chen Y. Cui L. Shi Y. Guo C. Advances in the pathogenesis of psoriasis: From keratinocyte perspective. Cell Death Dis. 2022 13 1 81 10.1038/s41419‑022‑04523‑3 35075118
    [Google Scholar]
  65. Dairov A. Issabekova A. Sekenova A. Shakhatbayev M. Ogay V. Prevalence, incidence, gender and age distribution, and economic burden of psoriasis worldwide and in Kazakhstan. J Clin Med Kazakhstan 2024 21 2 18 30 10.23950/jcmk/14497
    [Google Scholar]
  66. Man A.M. Orăsan M.S. Hoteiuc O.A. Olănescu-Vaida-Voevod M.C. Mocan T. Inflammation and psoriasis: A comprehensive review. Int. J. Mol. Sci. 2023 24 22 16095 10.3390/ijms242216095 38003284
    [Google Scholar]
  67. Branisteanu D. Cojocaru C. Diaconu R. Update on the etiopathogenesis of psoriasis (Review). Exp. Ther. Med. 2022 23 3 201 10.3892/etm.2022.11124 35126704
    [Google Scholar]
  68. Liu S. He M. Jiang J. Triggers for the onset and recurrence of psoriasis: A review and update. Cell Commun. Signal. 2024 22 1 108 10.1186/s12964‑023‑01381‑0 38347543
    [Google Scholar]
  69. Chen Y. Mohamed A.H. Amer Alsaiari A. The role of mesenchymal stem cells in the treatment and pathogenesis of psoriasis. Cytokine 2024 182 156699 10.1016/j.cyto.2024.156699 39033730
    [Google Scholar]
  70. Raharja A. Mahil S.K. Barker J.N. Psoriasis: a brief overview. Clin. Med. (Lond.) 2021 21 3 170 173 10.7861/clinmed.2021‑0257 34001566
    [Google Scholar]
  71. Mohseni Meybodi M.A. Nilforoushzadeh M.A. KhandanDezfully N, Mansouri P. The safety and efficacy of adipose tissue-derived exosomes in treating mild to moderate plaque psoriasis: A clinical study. Life Sci. 2024 353 122915 10.1016/j.lfs.2024.122915 39013528
    [Google Scholar]
  72. Chen Y. Liu H. He Y. Yang B. Lu W. Dai Z. Roles for exosomes in the pathogenesis, drug delivery and therapy of psoriasis. Pharmaceutics 2025 17 1 51 10.3390/pharmaceutics17010051 39861699
    [Google Scholar]
  73. Menter A. Krueger G.G. Paek S.Y. Kivelevitch D. Adamopoulos I.E. Langley R.G. Interleukin-17 and interleukin-23: A narrative review of mechanisms of action in psoriasis and associated comorbidities. Dermatol. Ther. (Heidelb.) 2021 11 2 385 400 10.1007/s13555‑021‑00483‑2 33512665
    [Google Scholar]
  74. Tang B. Bi Y. Zheng X. The role of extracellular vesicles in the development and treatment of psoriasis: narrative review. Pharmaceutics 2024 16 12 1586 10.3390/pharmaceutics16121586 39771564
    [Google Scholar]
  75. Barbarot S. Auziere S. Gadkari A. Epidemiology of atopic dermatitis in adults: Results from an international survey. Allergy 2018 73 6 1284 1293 10.1111/all.13401 29319189
    [Google Scholar]
  76. Leung D.Y.M. Bieber T. Atopic dermatitis. Lancet 2003 361 9352 151 160 10.1016/S0140‑6736(03)12193‑9 12531593
    [Google Scholar]
  77. Langan S.M. Irvine A.D. Weidinger S. Atopic dermatitis. Lancet 2020 396 10247 345 360 10.1016/S0140‑6736(20)31286‑1 32738956
    [Google Scholar]
  78. Murota H. Koike Y. Morisaki H. Matsumoto M. Takenaka M. Exacerbating factors and disease burden in patients with atopic dermatitis. Allergol. Int. 2022 71 1 25 30 10.1016/j.alit.2021.10.002 34764038
    [Google Scholar]
  79. Tamagawa-Mineoka R. Katoh N. Atopic dermatitis: Identification and management of complicating factors. Int. J. Mol. Sci. 2020 21 8 2671 10.3390/ijms21082671 32290423
    [Google Scholar]
  80. Park K.Y. Han H.S. Park J.W. Kwon H.H. Park G.H. Seo S.J. Exosomes derived from human adipose tissue‐derived mesenchymal stem cells for the treatment of dupilumab‐related facial redness in patients with atopic dermatitis: A report of two cases. J. Cosmet. Dermatol. 2022 21 2 844 849 10.1111/jocd.14153 33844417
    [Google Scholar]
  81. Han H.S. Koh Y.G. Hong J.K. Roh Y.J. Seo S.J. Park K.Y. Adipose-derived stem cell exosomes for treatment of dupilumab-related facial redness in patients with atopic dermatitis. J. Dermatolog. Treat. 2023 34 1 2220444 10.1080/09546634.2023.2220444 37272353
    [Google Scholar]
  82. Metko D. Alkofide M. Abu-Hilal M. A real-world study of dupilumab in patients with atopic dermatitis including patients with malignancy and other medical comorbidities. JAAD Int 2024 15 5 11 10.1016/j.jdin.2024.01.002 38371662
    [Google Scholar]
  83. Quiñones-Vico M.I. Sanabria-de la Torre R. Sánchez-Díaz M. The role of exosomes derived from mesenchymal stromal cells in dermatology. Front. Cell Dev. Biol. 2021 9 647012 10.3389/fcell.2021.647012 33898436
    [Google Scholar]
  84. Shi C. Pei S. Ding Y. Exosomes with overexpressed miR 147a suppress angiogenesis and infammatory injury in an experimental model of atopic dermatitis. Sci. Rep. 2023 13 1 8904 10.1038/s41598‑023‑34418‑y 37264030
    [Google Scholar]
  85. Zhang R. Wei Y. Wang T. Exosomal miRNAs in autoimmune skin diseases. Front. Immunol. 2023 14 1307455 10.3389/fimmu.2023.1307455 38106405
    [Google Scholar]
  86. Saint-Martory C. Roguedas-Contios A.M. Sibaud V. Degouy A. Schmitt A.M. Misery L. Sensitive skin is not limited to the face. Br. J. Dermatol. 2008 158 1 130 133 17986305
    [Google Scholar]
  87. Wollenberg A Giménez-Arnau A. Sensitive skin: A relevant syndrome, be aware. J Eur Acad Dermatol Venereol 2022 36 S5 3 5 (Suppl. 5) 10.1111/jdv.17903 35315153
    [Google Scholar]
  88. Berardesca E. Farage M. Maibach H. Sensitive skin: An overview. Int. J. Cosmet. Sci. 2013 35 1 2 8 10.1111/j.1468‑2494.2012.00754.x 22928591
    [Google Scholar]
  89. Jiang C. Guo C. Yan J. Sensitive skin syndrome: Research progress on mechanisms and applications. J Dermatol Sci Cosmetic Technol 2024 1 2 100015 10.1016/j.jdsct.2024.100015
    [Google Scholar]
  90. Ye C. Zhang Y. Su Z. hMSC exosomes as a novel treatment for female sensitive skin: An in vivo study. Front. Bioeng. Biotechnol. 2022 10 1053679 10.3389/fbioe.2022.1053679 36338115
    [Google Scholar]
  91. Ghasemiyeh P. Fazlinejad R. Kiafar M.R. Rasekh S. Mokhtarzadegan M. Mohammadi-Samani S. Different therapeutic approaches in melasma: Advances and limitations. Front. Pharmacol. 2024 15 1337282 10.3389/fphar.2024.1337282
    [Google Scholar]
  92. Sarkar R. Gokhale N. Godse K. Medical management of melasma: A review with consensus recommendations by Indian pigmentary expert group. Indian J. Dermatol. 2017 62 6 450 10.4103/ijd.IJD_489_17 29263529
    [Google Scholar]
  93. Desai S.R. Alexis A.F. Elbuluk N. Best practices in the treatment of melasma with a focus on patients with skin of color. J. Am. Acad. Dermatol. 2024 90 2 269 279 10.1016/j.jaad.2023.07.1045 37748556
    [Google Scholar]
  94. Gan C. Rodrigues M. An update on new and existing treatments for the management of melasma. Am. J. Clin. Dermatol. 2024 25 5 717 733 10.1007/s40257‑024‑00863‑2 38896402
    [Google Scholar]
  95. Ortonne J.P. Arellano I. Berneburg M. A global survey of the role of ultraviolet radiation and hormonal influences in the development of melasma. J. Eur. Acad. Dermatol. Venereol. 2009 23 11 1254 1262 10.1111/j.1468‑3083.2009.03295.x 19486232
    [Google Scholar]
  96. Espósito A.C.C. Cassiano D.P. da Silva C.N. Update on melasma-part I: Pathogenesis. Dermatol. Ther. (Heidelb.) 2022 12 9 1967 1988 10.1007/s13555‑022‑00779‑x 35904706
    [Google Scholar]
  97. Wang T. Gao H. Wang D. Stem cell‐derived exosomes in the treatment of melasma and its percutaneous penetration. Lasers Surg. Med. 2023 55 2 178 189 10.1002/lsm.23628 36573453
    [Google Scholar]
  98. Peredo M. Shivananjappa S. Topical human mesenchymal stem cell-derived exosomes for acceleration of wound healing following tissue trauma and aesthetic procedures: A case series. J. Drugs Dermatol. 2024 23 4 281 284 10.36849/JDD.C7395 38564379
    [Google Scholar]
  99. Chen W. Wang Y. Zheng J. Characterization of cellular senescence in radiation ulcers and therapeutic effects of mesenchymal stem cell-derived conditioned medium. Burns Trauma 2023 11 tkad001 10.1093/burnst/tkad001 37188110
    [Google Scholar]
  100. Ghasempour A. Dehghan H. Mahmoudi M. Lavi Arab F. Biomimetic scaffolds loaded with mesenchymal stem cells (MSCs) or MSC-derived exosomes for enhanced wound healing. Stem Cell Res. Ther. 2024 15 1 406 10.1186/s13287‑024‑04012‑8 39522032
    [Google Scholar]
  101. Fakouri A. Razavi Z.S. Mohammed A.T. Hussein A.H.A. Afkhami H. Hooshiar M.H. Applications of mesenchymal stem cell-exosome components in wound infection healing: New insights. Burns Trauma 2024 12 tkae021 10.1093/burnst/tkae021 39139205
    [Google Scholar]
  102. Esmaeili A. Noorkhajavi G. Soleimani M. Farsinezhad H. Bagheri-Mohammadi S. Keshel S.H. Application of exosomes for the regeneration of skin wounds: Principles, recent applications and limitations. Tissue Cell 2024 91 102611 10.1016/j.tice.2024.102611 39550901
    [Google Scholar]
  103. Zhou Y. Zhang X.L. Lu S.T. Human adipose-derived mesenchymal stem cells-derived exosomes encapsulated in pluronic F127 hydrogel promote wound healing and regeneration. Stem Cell Res. Ther. 2022 13 1 407 10.1186/s13287‑022‑02980‑3 35941707
    [Google Scholar]
  104. Qin X. He J. Wang X. Wang J. Yang R. Chen X. The functions and clinical application potential of exosomes derived from mesenchymal stem cells on wound repair: A review of recent research advances. Front. Immunol. 2023 14 1256687 10.3389/fimmu.2023.1256687 37691943
    [Google Scholar]
  105. Li Q. Gong S. Yao W. Exosome loaded genipin crosslinked hydrogel facilitates full thickness cutaneous wound healing in rat animal model. Drug Deliv. 2021 28 1 884 893 10.1080/10717544.2021.1912210 33960253
    [Google Scholar]
  106. Heydari M.B. Ghanbari-Movahed Z. Heydari M. Farzaei M.H. The exosome and its application in skin wound healing: a systematic review on in vitro studies. Curr. Pharm. Biotechnol. in press 10.2174/0113892010323495241016085000 39779546
    [Google Scholar]
  107. An Y. Huang F. Tan X. Exosomes of adipose tissue-derived stem cells promote wound healing by sponging miR-17-5p and inducing autophagy protein Ulk1. Plast. Reconstr. Surg. 2023 151 5 1016 1028 10.1097/PRS.0000000000010083 36729201
    [Google Scholar]
  108. Zakeri A. Khaseb S. Akhavan Rahnama M. Hajaliaskari A. Soufi Zomorrod M. Exosomes derived from mesenchymal stem cells: A promising cell-free therapeutic tool for cutaneous wound healing. Biochimie 2023 209 73 84 10.1016/j.biochi.2023.01.013 36681232
    [Google Scholar]
  109. Raghav P.K. Mann Z. Nano-delivery revolution: Harnessing mesenchymal stem cell-derived exosomes’ potential for wound healing. Biomedicines 2024 12 12 2791 10.3390/biomedicines12122791 39767697
    [Google Scholar]
  110. Zeng Q.L. Liu D.W. Mesenchymal stem cell-derived exosomes: An emerging therapeutic strategy for normal and chronic wound healing. World J. Clin. Cases 2021 9 22 6218 6233 10.12998/wjcc.v9.i22.6218 34434989
    [Google Scholar]
  111. Zhao X. Zhang W. Fan J. Chen X. Wang X. Application of mesenchymal stem cell exosomes in the treatment of skin wounds. Smart Mater Med 2023 4 578 589 10.1016/j.smaim.2023.04.006
    [Google Scholar]
  112. Chaudhary M. Khan A. Gupta M. Skin ageing: Pathophysiology and current market treatment approaches. Curr. Aging Sci. 2020 13 1 22 30 10.2174/1567205016666190809161115 31530270
    [Google Scholar]
  113. Zhang S. Duan E. Fighting against skin aging. Cell Transplant. 2018 27 5 729 738 10.1177/0963689717725755 29692196
    [Google Scholar]
  114. Shin S.H. Lee Y.H. Rho N.K. Park K.Y. Skin aging from mechanisms to interventions: Focusing on dermal aging. Front. Physiol. 2023 14 1195272 10.3389/fphys.2023.1195272 37234413
    [Google Scholar]
  115. Gui Q. Ding N. Yao Z. Extracellular vesicles derived from mesenchymal stem cells: The wine in Hebe’s hands to treat skin aging. Precis. Clin. Med. 2024 7 1 pbae004 10.1093/pcmedi/pbae004 38516531
    [Google Scholar]
  116. Griffiths TW Watson REB Langton AK Skin ageing and topical rejuvenation strategies. Br J Dermatol 2023 i17 23 (Suppl. 1) 10.1093/bjd/ljad282 37903073
    [Google Scholar]
  117. Chernoff G. The utilization of human placental mesenchymal stem cell derived exosomes in aging skin: An investigational pilot study. J. Surg. 2021 6 1388 10.29011/2575‑9760.001388
    [Google Scholar]
  118. Chernoff G. Combining topical dermal infused exosomes with injected calcium hydroxylapatite for enhanced tissue biostimulation. J Cosmet Dermatol 2023 22 S1 15 27 (Suppl. 1) 10.1111/jocd.15695 36988469
    [Google Scholar]
  119. Svolacchia F. Svolacchia L. Falabella P. Exosomes and signaling nanovesicles from the nanofiltration of preconditioned adipose tissue with Skin-B® in tissue regeneration and antiaging: A clinical study and case report. Medicina (Kaunas) 2024 60 4 670 10.3390/medicina60040670 38674316
    [Google Scholar]
  120. Wu J.Y. Wu S.N. Zhang L.P. Stem cell-derived exosomes: A new method for reversing skin aging. Tissue Eng. Regen. Med. 2022 19 5 961 968 10.1007/s13770‑022‑00461‑5 35809187
    [Google Scholar]
  121. Li J. Huang Y. Sun H. Yang L. Mechanism of mesenchymal stem cells and exosomes in the treatment of age-related diseases. Front. Immunol. 2023 14 1181308 10.3389/fimmu.2023.1181308 37275920
    [Google Scholar]
  122. Rathee P. Kumar S. Kumar D. Kumari B. Yadav S.S. Skin hyperpigmentation and its treatment with herbs: An alternative method. Future J Pharm Sci 2021 7 1 132 10.1186/s43094‑021‑00284‑6
    [Google Scholar]
  123. Nautiyal A. Wairkar S. Management of hyperpigmentation: Current treatments and emerging therapies. Pigment Cell Melanoma Res. 2021 34 6 1000 1014 10.1111/pcmr.12986 33998768
    [Google Scholar]
  124. Moolla S. Miller-Monthrope Y. Dermatology: How to manage facial hyperpigmentation in skin of colour. Drugs Context 2021 2022 11 10.7573/dic.2021‑11‑2 35720052
    [Google Scholar]
  125. Cho B.S. Lee J. Won Y. Skin brightening efficacy of exosomes derived from human adipose tissue-derived stem/stromal cells: A prospective, split-face, randomized placebo-controlled study. Cosmetics 2020 7 4 90 10.3390/cosmetics7040090
    [Google Scholar]
  126. Ding J.Y. Sun L. Zhu Z.H. Wu X.C. Xu X.L. Xiang Y.W. Nano drug delivery systems: A promising approach to scar prevention and treatment. J. Nanobiotechnology 2023 21 1 268 10.1186/s12951‑023‑02037‑4 37568194
    [Google Scholar]
  127. Lin X. Lai Y. Scarring skin: Mechanisms and therapies. Int. J. Mol. Sci. 2024 25 3 1458 10.3390/ijms25031458 38338767
    [Google Scholar]
  128. Basson R. Bayat A. Skin scarring: Latest update on objective assessment and optimal management. Front. Med. (Lausanne) 2022 9 942756 10.3389/fmed.2022.942756 36275799
    [Google Scholar]
  129. Marshall C.D. Hu M.S. Leavitt T. Barnes L.A. Lorenz H.P. Longaker M.T. Cutaneous scarring: Basic science, current treatments, and future directions. Adv. Wound Care (New Rochelle) 2018 7 2 29 45 10.1089/wound.2016.0696 29392092
    [Google Scholar]
  130. Kwon H. Yang S. Lee J. Combination treatment with human adipose tissue stem cell-derived exosomes and fractional CO2 laser for acne scars: A 12-week prospective, double-blind, randomized, split-face study. Acta Derm. Venereol. 2020 100 18 adv00310 10.2340/00015555‑3666 33073298
    [Google Scholar]
  131. Chernoff G. The utilization of human placental, fetal mesenchymal stem cell derived-exosomes in treating keloid scars. J. Surg. (Lisle) 2022 7 4 1482 10.29011/2575‑9760.001482
    [Google Scholar]
  132. Nakashima M. Chung S. Takahashi A. A genome-wide association study identifies four susceptibility loci for keloid in the Japanese population. Nat. Genet. 2010 42 9 768 771 10.1038/ng.645 20711176
    [Google Scholar]
  133. Ojeh N. Bharatha A. Gaur U. Forde A.L. Keloids: Current and emerging therapies. Scars. Burn. Heal. 2020 6 2059513120940499 10.1177/2059513120940499 32844039
    [Google Scholar]
  134. Limandjaja G.C. Niessen F.B. Scheper R.J. Gibbs S. The keloid disorder: Heterogeneity, histopathology, mechanisms and models. Front. Cell Dev. Biol. 2020 8 360 10.3389/fcell.2020.00360 32528951
    [Google Scholar]
  135. Robles D.T. Berg D. Abnormal wound healing: Keloids. Clin. Dermatol. 2007 25 1 26 32 10.1016/j.clindermatol.2006.09.009 17276198
    [Google Scholar]
  136. Betarbet U. Blalock T.W. Keloids: A review of etiology, prevention, and treatment. J. Clin. Aesthet. Dermatol. 2020 13 2 33 43 32308783
    [Google Scholar]
  137. Gong X. Zhao Q. Zhang H. The effects of mesenchymal stem cells-derived exosomes on metabolic reprogramming in scar formation and wound healing. Int. J. Nanomedicine 2024 19 9871 9887 10.2147/IJN.S480901 39345908
    [Google Scholar]
  138. Zhao W. Zhang H. Liu R. Cui R. Advances in immunomodulatory mechanisms of mesenchymal stem cells-derived exosome on immune cells in scar formation. Int. J. Nanomedicine 2023 18 3643 3662 10.2147/IJN.S412717 37427367
    [Google Scholar]
  139. Shinkuma S. Dystrophic epidermolysis bullosa: A review. Clin. Cosmet. Investig. Dermatol. 2015 8 275 284 10.2147/CCID.S54681 26064063
    [Google Scholar]
  140. Dang N. Murrell D.F. Mutation analysis and characterization of COL7A1 mutations in dystrophic epidermolysis bullosa. Exp. Dermatol. 2008 17 7 553 568 10.1111/j.1600‑0625.2008.00723.x 18558993
    [Google Scholar]
  141. Shinkuma S. McMillan J.R. Shimizu H. Ultrastructure and molecular pathogenesis of epidermolysis bullosa. Clin. Dermatol. 2011 29 4 412 419 10.1016/j.clindermatol.2011.01.010 21679868
    [Google Scholar]
  142. Nyström A. Bruckner-Tuderman L. Kiritsi D. Dystrophic epidermolysis bullosa: Secondary disease mechanisms and disease modifiers. Front. Genet. 2021 12 737272 10.3389/fgene.2021.737272 34650598
    [Google Scholar]
  143. Samuelov L. Dystrophic epidermolysis bullosa: From disease biology to biologic therapy. Br. J. Dermatol. 2024 191 2 159 160 10.1093/bjd/ljae182 38680069
    [Google Scholar]
  144. Danescu S. Negrutiu M. Has C. Treatment of epidermolysis bullosa and future directions: A review. Dermatol. Ther. (Heidelb.) 2024 14 8 2059 2075 10.1007/s13555‑024‑01227‑8 39090514
    [Google Scholar]
  145. McBride J.D. Rodriguez-Menocal L. Candanedo A. Guzman W. Garcia-Contreras M. Badiavas E.V. Dual mechanism of type VII collagen transfer by bone marrow mesenchymal stem cell extracellular vesicles to recessive dystrophic epidermolysis bullosa fibroblasts. Biochimie 2018 155 50 58 10.1016/j.biochi.2018.04.007 29653141
    [Google Scholar]
  146. Gimona M. Pachler K. Laner-Plamberger S. Schallmoser K. Rohde E. Manufacturing of human extracellular vesicle-based therapeutics for clinical use. Int. J. Mol. Sci. 2017 18 6 1190 10.3390/ijms18061190 28587212
    [Google Scholar]
  147. Riazifar M. Pone E.J. Lötvall J. Zhao W. Stem cell extracellular vesicles: Extended messages of regeneration. Annu. Rev. Pharmacol. Toxicol. 2017 57 1 125 154 10.1146/annurev‑pharmtox‑061616‑030146 27814025
    [Google Scholar]
  148. Tang Y. Zhou Y. Li H.J. Advances in mesenchymal stem cell exosomes: A review. Stem Cell Res. Ther. 2021 12 1 71 10.1186/s13287‑021‑02138‑7 33468232
    [Google Scholar]
  149. Zhang K. Cheng K. Stem cell-derived exosome versus stem cell therapy. Nat Rev Bioeng 2023 1 9 608 609 10.1038/s44222‑023‑00064‑2 37359776
    [Google Scholar]
  150. Zhang Y. Bi J. Huang J. Tang Y. Du S. Li P. Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications. Int. J. Nanomedicine 2020 15 6917 6934 10.2147/IJN.S264498 33061359
    [Google Scholar]
  151. Phinney D.G. Pittenger M.F. Concise review: MSC-derived exosomes for cell-free therapy. Stem Cells 2017 35 4 851 858 10.1002/stem.2575 28294454
    [Google Scholar]
  152. Kronstadt S.M. Patel D.B. Born L.J. Mesenchymal stem cell culture within perfusion bioreactors incorporating 3D-printed scaffolds enables improved extracellular vesicle yield with preserved bioactivity. Adv. Healthc. Mater. 2023 12 20 2300584 10.1002/adhm.202300584 36930747
    [Google Scholar]
  153. Li M.Y. Liu D.W. Mao Y.G. Advances in the research of effects of exosomes derived from stem cells on wound repair. Zhonghua Shao Shang Za Zhi 2017 33 3 180 184 10.3760/cma.j.issn.1009‑2587.2017.03.013 28316168
    [Google Scholar]
  154. Rani S. Ryan A.E. Griffin M.D. Ritter T. Mesenchymal stem cell-derived extracellular vesicles: Toward cell-free therapeutic applications. Mol. Ther. 2015 23 5 812 823 10.1038/mt.2015.44 25868399
    [Google Scholar]
  155. Ahmadi M. Mahmoodi M. Shoaran M. Nazari-Khanamiri F. Rezaie J. Harnessing normal and engineered mesenchymal stem cells derived exosomes for cancer therapy: Opportunity and challenges. Int. J. Mol. Sci. 2022 23 22 13974 10.3390/ijms232213974 36430452
    [Google Scholar]
  156. Hade M.D. Suire C.N. Suo Z. An effective peptide-based platform for efficient exosomal loading and cellular delivery of a microRNA. ACS Appl. Mater. Interfaces 2023 15 3 3851 3866 10.1021/acsami.2c20728 36638205
    [Google Scholar]
  157. Lee K.W.A. Chan L.K.W. Hung L.C. Phoebe L.K.W. Park Y. Yi K.H. Clinical applications of exosomes: A critical review. Int. J. Mol. Sci. 2024 25 14 7794 10.3390/ijms25147794 39063033
    [Google Scholar]
  158. Kim S. Lee S. Kim H. Kim T. Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation. Int. J. Mol. Sci. 2018 19 10 3119 10.3390/ijms19103119 30314356
    [Google Scholar]
  159. Long R. Wang S. Exosomes from preconditioned mesenchymal stem cells: Tissue repair and regeneration. Regen. Ther. 2024 25 355 366 10.1016/j.reth.2024.01.009 38374989
    [Google Scholar]
  160. Jafari D. Malih S. Eini M. Improvement, scaling-up, and downstream analysis of exosome production. Crit. Rev. Biotechnol. 2020 40 8 1098 1112 10.1080/07388551.2020.1805406 32772758
    [Google Scholar]
  161. Chen S. Sun F. Qian H. Xu W. Jiang J. Preconditioning and engineering strategies for improving the efficacy of mesenchymal stem cell-derived exosomes in cell-free therapy. Stem Cells Int. 2022 2022 1 18 10.1155/2022/1779346 35607400
    [Google Scholar]
  162. Witwer K.W. Van Balkom B.W.M. Bruno S. Defining mesenchymal stromal cell (MSC)‐derived small extracellular vesicles for therapeutic applications. J. Extracell. Vesicles 2019 8 1 1609206 10.1080/20013078.2019.1609206 31069028
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X393159250704132425
Loading
/content/journals/cscr/10.2174/011574888X393159250704132425
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test