Skip to content
2000
image of Global Trends and Knowledge Structure in HIV Stem Cell Research: A CiteSpace Analysis of Two Decades of Scientific Literature

Abstract

Introduction

Numerous studies on HIV (human immunodeficiency virus) in stem cells have been published over the last two decades. However, no comprehensive bibliometric analysis or visualization of this field currently exists. This study aims to provide a detailed and unbiased review of the knowledge structure, research hotspots, and emerging trends in stem cell therapy–related research for HIV. By mapping publication trends, collaboration networks, and topical evolution, this work fills a critical gap and offers guidance for future functional cure strategies.

Methods

Bibliometric data from 2004 to 2023 were retrieved from the Web of Science Core Collection database. CiteSpace was used to analyze annual scientific output, countries/regions, institutions, authors, journals, references, and keywords.

Results

A total of 2,868 publications were included, showing a general trend of increasing yet fluctuating annual output. The United States led in both publications and influence, while author collaboration remained relatively limited. Key research topics included acquired immune deficiency syndrome cure, lentivirus, HIV carcinogenicity, CCR5, and CXCR4. More recently, major active areas of investigation have focused on “extracellular vesicles,” “nucleases,” “viral libraries,” and “microglia.”

Discussion

HIV stem cell research has progressed from descriptive studies to mechanism-driven approaches, emphasizing gene editing and immune modulation. Integrating stem cell transplantation with technologies such as CRISPR/Cas9 presents a promising strategy to eliminate viral reservoirs and sustain remission. Nevertheless, stronger international collaboration and translational research are essential to advance clinical applications.

Conclusion

This comprehensive bibliometric overview provides clear insights into the development, research hotspots, and trends in HIV stem cell therapy. Further investigation into the molecular mechanisms of infection and strategies for functional cure may accelerate the development of effective stem cell–based gene therapies for HIV.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X392519251128043424
2026-02-14
2026-02-22
Loading full text...

Full text loading...

References

  1. Zhu T. Korber B.T. Nahmias A.J. Hooper E. Sharp P.M. Ho D.D. An African HIV-1 sequence from 1959 and implications for the origin of the epidemic. Nature 1998 391 6667 594 597 10.1038/354009468138
    [Google Scholar]
  2. HIV and AIDS. 2023.WHO. Available from: https://www.who.int/zh/news-room/fact-sheets/detail/hiv-aids
  3. Bertrand L. Cho H.J. Toborek M. Blood–brain barrier pericytes as a target for HIV-1 infection. Brain 2019 142 3 502 511 10.1093/brain/awy33930668645
    [Google Scholar]
  4. Montessori V. Press N. Harris M. Akagi L. Montaner J.S. Adverse effects of antiretroviral therapy for HIV infection. CMAJ 2004 170 2 229 238 [PMID: 14734438
    [Google Scholar]
  5. Ho D.D. Zhang L. HIV-1 rebound after anti-retroviral therapy. Nat. Med. 2000 6 7 736 737 10.1038/7744710888912
    [Google Scholar]
  6. Matsui Y. Miura Y. Advancements in cell-based therapies for hiv cure. Cells 2023 13 1 64 10.3390/cells1301006438201268
    [Google Scholar]
  7. Berger E.A. Murphy P.M. Farber J.M. Chemokine receptors as HIV-1 coreceptors: Roles in viral entry, tropism, and disease. Annu. Rev. Immunol. 1999 17 1 657 700 10.1146/annurev.immunol.17.1.65710358771
    [Google Scholar]
  8. Berger E.A. Doms R.W. Fenyö E.M. A new classification for HIV-1. Nature 1998 391 6664 240 10.1038/345719440686
    [Google Scholar]
  9. Samson M. Libert F. Doranz B.J. Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 1996 382 6593 722 725 10.1038/382722a08751444
    [Google Scholar]
  10. Liu R. Paxton W.A. Choe S. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 1996 86 3 367 377 10.1016/S0092‑8674(00)80110‑58756719
    [Google Scholar]
  11. Hsu J Van Besien K Glesby MJ HIV-1 remission and possiblecure in a woman after haplo-cord blood transplant Cell 2023 186 6 1115-1126.e8 International Maternal Pediatric Adolescent AIDS Clinical Trials Network (IMPAACT) P1107 Team. 10.1016/j.cell.2023.02.03036931242
    [Google Scholar]
  12. Gupta R.K. Peppa D. Hill A.L. Evidence for HIV-1 cure after CCR5Δ32/Δ32 allogeneic haemopoietic stem-cell transplantation 30 months post analytical treatment interruption: A case report. Lancet HIV 2020 7 5 e340 e347 10.1016/S2352‑3018(20)30069‑232169158
    [Google Scholar]
  13. Hütter G. Nowak D. Mossner M. Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N. Engl. J. Med. 2009 360 7 692 698 10.1056/NEJMoa080290519213682
    [Google Scholar]
  14. Gupta R.K. Abdul-Jawad S. McCoy L.E. HIV-1 remission following CCR5Δ32/Δ32 haematopoietic stem-cell transplantation. Nature 2019 568 7751 244 248 10.1038/s41586‑019‑1027‑430836379
    [Google Scholar]
  15. Henrich T.J. Hanhauser E. Marty F.M. Antiretroviral-free HIV-1 remission and viral rebound after allogeneic stem cell transplantation: Report of 2 cases. Ann. Intern. Med. 2014 161 5 319 327 10.7326/M14‑102725047577
    [Google Scholar]
  16. Teque F. Ye L. Xie F. Genetically-edited induced pluripotent stem cells derived from HIV-1-infected patients on therapy can give rise to immune cells resistant to HIV-1 infection. AIDS 2020 34 8 1141 1149 10.1097/QAD.000000000000253932287059
    [Google Scholar]
  17. Yang Z. Fan Z. Wang D. Bibliometric and visualization analysis of stem cell therapy for meniscal regeneration from 2012 to 2022. Front. Bioeng. Biotechnol. 2023 11 1107209 10.3389/fbioe.2023.110720936865032
    [Google Scholar]
  18. Zhang N. Li C. Chen J. Liu X. Wang Z. Ni J. Research hotspots and frontiers about role of visual perception in stroke: A bibliometric study. Front. Neurol. 2022 13 958875 10.3389/fneur.2022.95887536188385
    [Google Scholar]
  19. Chen C. Searching for intellectual turning points: progressive knowledge domain visualization. Proc. Natl. Acad. Sci. USA 2004 101 Suppl. 1 5303 5310 10.1073/pnas.030751310014724295
    [Google Scholar]
  20. Wu H. Li Y. Tong L. Wang Y. Sun Z. Worldwide research tendency and hotspots on hip fracture: A 20-year bibliometric analysis. Arch. Osteoporos. 2021 16 1 73 10.1007/s11657‑021‑00929‑233866438
    [Google Scholar]
  21. Chen C. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006 57 3 359 377 10.1002/asi.20317
    [Google Scholar]
  22. Kessler N. Akabayov S.R. Cohen L.S. Scherf T. Naider F. Anglister J. The chemokines CCL5 and CXCL12 exhibit high‐affinity binding to N‐terminal peptides of the non‐cognate receptors CXCR4 and CCR5, respectively. FEBS J. 2024 291 3 458 476 10.1111/febs.1701337997026
    [Google Scholar]
  23. Marichannegowda M.H. Zemil M. Wieczorek L. Tracking coreceptor switch of the transmitted/founder HIV-1 identifies co-evolution of HIV-1 antigenicity, coreceptor usage and CD4 subset targeting: the RV217 acute infection cohort study. EBioMedicine 2023 98 104867 10.1016/j.ebiom.2023.10486737939456
    [Google Scholar]
  24. Schuitemaker H. van ’t Wout A.B. Lusso P. Clinical significance of HIV-1 coreceptor usage. J. Transl. Med. 2011 9 Suppl. 1 S5 S5 10.1186/1479‑5876‑9‑S1‑S521284904
    [Google Scholar]
  25. AIDS and the Sustainable Development Goals UNAIDS 2025 Available from: https://www.unaids.org/en/AIDS_SDGs
    [Google Scholar]
  26. Folks T.M. Kessler S.W. Orenstein J.M. Justement J.S. Jaffe E.S. Fauci A.S. Infection and replication of HIV-1 in purified progenitor cells of normal human bone marrow. Science 1988 242 4880 919 922 10.1126/science.24609222460922
    [Google Scholar]
  27. Chari S. Nguyen A. Saxe J. Stem cells in the clinic. Cell Stem Cell 2018 22 6 781 782 10.1016/j.stem.2018.05.01729859164
    [Google Scholar]
  28. Kiem H.P. Jerome K.R. Deeks S.G. McCune J.M. Hematopoietic-stem-cell-based gene therapy for HIV disease. Cell Stem Cell 2012 10 2 137 147 10.1016/j.stem.2011.12.01522305563
    [Google Scholar]
  29. Baltimore D. Intracellular immunization. Nature 1988 335 6189 395 396 10.1038/335395a03166513
    [Google Scholar]
  30. Au T.Y. Arudkumar J. Assavarittirong C. Benjamin S. Killing two birds with one stone: CRISPR/Cas9 CCR5 knockout hematopoietic stem cells transplantation to treat patients with HIV infection and hematological malignancies concurrently. Clin. Exp. Med. 2023 23 8 4163 4175 10.1007/s10238‑023‑01129‑737500934
    [Google Scholar]
  31. Kiem H.P. Sellers S. Thomasson B. Long-term clinical and molecular follow-up of large animals receiving retrovirally transduced stem and progenitor cells: No progression to clonal hematopoiesis or leukemia. Mol. Ther. 2004 9 3 389 395 10.1016/j.ymthe.2003.12.00615006605
    [Google Scholar]
  32. Kiem H.P. Arumugam P.I. Burtner C.R. Pigtailed macaques as a model to study long-term safety of lentivirus vector-mediated gene therapy for hemoglobinopathies. Mol. Ther. Methods Clin. Dev. 2014 1 14055 10.1038/mtm.2014.5526052523
    [Google Scholar]
  33. Kiem H.P. Ironside C. Beard B.C. Trobridge G.D. A retroviral vector common integration site between leupaxin and zinc finger protein 91 (ZFP91) observed in baboon hematopoietic repopulating cells. Exp. Hematol. 2010 38 9 819 822 10.1016/j.exphem.2010.04.01420434516
    [Google Scholar]
  34. Hužička I. Could bone marrow transplantation cure AIDS?:Review Med. Hypotheses 1999 52 3 247 257 10.1054/mehy.1997.063810362285
    [Google Scholar]
  35. Habour Nouar N. Yafour N. Youcef B.Y. HLA-B*58 and HLA-B*27 Play a Role in the development of acute leukemia: A case control study. Asian Pac. J. Cancer Prev. 2024 25 1 169 173 10.31557/APJCP.2024.25.1.16938285781
    [Google Scholar]
  36. Ayash L.J. Ratanatharathorn V. Braun T. Silver S.M. Reynolds C.M. Uberti J.P. Unrelated donor bone marrow transplantation using a chemotherapy‐only preparative regimen for adults with high‐risk acute myelogenous leukemia. Am. J. Hematol. 2007 82 1 6 14 10.1002/ajh.2075916986128
    [Google Scholar]
  37. Allers K. Hütter G. Hofmann J. Evidence for the cure of HIV infection by CCR5Δ32/Δ32 stem cell transplantation. Blood 2011 117 10 2791 2799 10.1182/blood‑2010‑09‑30959121148083
    [Google Scholar]
  38. Holt N. Wang J. Kim K. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat. Biotechnol. 2010 28 8 839 847 10.1038/nbt.166320601939
    [Google Scholar]
  39. Tebas P. Stein D. Tang W.W. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N. Engl. J. Med. 2014 370 10 901 910 10.1056/NEJMoa130066224597865
    [Google Scholar]
  40. Ho A.D. Lane T.A. Law P. Li X. Yu M. Wong-Staal F. Stem cells as vehicles for gene therapy: Novel strategy for hiv infection. Stem Cells 1995 13 S3 100 105 10.1002/stem.55301307168747996
    [Google Scholar]
  41. Terahara K. Iwabuchi R. Tsunetsugu-Yokota Y. Perspectives on non-BLT Humanized Mouse Models for studying HIV pathogenesis and therapy. Viruses 2021 13 5 776 10.3390/v1305077633924786
    [Google Scholar]
  42. Leontyev D.S. Glazkova D.V. Bezborodova O.A. Humanized mouse model of hiv infection. Bull. Exp. Biol. Med. 2023 175 1 63 66 10.1007/s10517‑023‑05812‑337338766
    [Google Scholar]
  43. Schmidt J.K. Reynolds M.R. Golos T.G. Slukvin I.I. CRISPR/Cas9 genome editing to create nonhuman primate models for studying stem cell therapies for HIV infection. Retrovirology 2022 19 1 17 10.1186/s12977‑022‑00604‑535948929
    [Google Scholar]
  44. Shultz L.D. Brehm M.A. Garcia-Martinez J.V. Greiner D.L. Humanized mice for immune system investigation: progress, promise and challenges. Nat. Rev. Immunol. 2012 12 11 786 798 10.1038/nri331123059428
    [Google Scholar]
  45. Berges B.K. Rowan M.R. The utility of the new generation of humanized mice to study HIV-1 infection: Transmission, prevention, pathogenesis, and treatment. Retrovirology 2011 8 1 65 10.1186/1742‑4690‑8‑6521835012
    [Google Scholar]
  46. Abeynaike S.A. Huynh T.R. Mehmood A. Human hematopoietic stem cell engrafted IL-15 transgenic NSG mice support robust NK cell responses and sustained HIV-1 infection. Viruses 2023 15 2 365 10.3390/v1502036536851579
    [Google Scholar]
  47. Kutner R.H. Zhang X.Y. Reiser J. Production, concentration and titration of pseudotyped HIV-1-based lentiviral vectors. Nat. Protoc. 2009 4 4 495 505 10.1038/nprot.2009.2219300443
    [Google Scholar]
  48. Walker J.E. Chen R.X. McGee J. Generation of an HIV-1-resistant immune system with CD34(+) hematopoietic stem cells transduced with a triple-combination anti-HIV lentiviral vector. J. Virol. 2012 86 10 5719 5729 10.1128/JVI.06300‑1122398281
    [Google Scholar]
  49. Naldini L. Genetic engineering of hematopoiesis: Current stage of clinical translation and future perspectives. EMBO Mol. Med. 2019 11 3 e9958 10.15252/emmm.20180995830670463
    [Google Scholar]
  50. Bauler M. Roberts J.K. Wu C.C. Production of lentiviral vectors using suspension cells grown in serum-free media. Mol. Ther. Methods Clin. Dev. 2020 17 58 68 10.1016/j.omtm.2019.11.01131890741
    [Google Scholar]
  51. Jlizi A. Edouard J. Fadhlaoui-Zid K. Identification of the CCR5-Δ32 HIV resistance allele and new mutations of the CCR5 gene in different Tunisian populations. Hum. Immunol. 2007 68 12 993 1000 10.1016/j.humimm.2007.10.00318191728
    [Google Scholar]
  52. Alarifi M. Al-Amro F. Alalwan A. The prevalence of CCR5‐Δ32 mutation in a cohort of Saudi stem cell donors. HLA 2017 90 5 292 294 10.1111/tan.1310028731615
    [Google Scholar]
  53. Hesselgesser J. Halks-Miller M. DelVecchio V. CD4-independent association between HIV-1 gp120 and CXCR4: Functional chemokine receptors are expressed in human neurons. Curr. Biol. 1997 7 2 112 121 10.1016/S0960‑9822(06)00055‑89024623
    [Google Scholar]
  54. Goldman J.D. Robinson P.C. Uldrick T.S. Ljungman P. COVID-19 in immunocompromised populations: Implications for prognosis and repurposing of immunotherapies. J. Immunother. Cancer 2021 9 6 e002630 10.1136/jitc‑2021‑00263034117116
    [Google Scholar]
  55. Whittle H. Morris J. Todd J. HIV-2-infected patients survive longer than HIV-1 -infected patients. AIDS 1994 8 11 1617 1620 10.1097/00002030‑199411000‑000157848600
    [Google Scholar]
  56. Gottlieb G.S. Hawes S.E. Agne H.D. Lower levels of HIV RNA in semen in HIV-2 compared with HIV-1 infection: Implications for differences in transmission. AIDS 2006 20 6 895 900 10.1097/01.aids.0000218554.59531.8016549974
    [Google Scholar]
  57. Vidya Vijayan K.K. Karthigeyan K.P. Tripathi S.P. Hanna L.E. Pathophysiology of CD4+ T-cell depletion in HIV-1 and HIV-2 infections. Front. Immunol. 2017 8 580 10.3389/fimmu.2017.0058028588579
    [Google Scholar]
  58. Eisele E. Siliciano R.F. Redefining the viral reservoirs that prevent HIV-1 eradication. Immunity 2012 37 3 377 388 10.1016/j.immuni.2012.08.01022999944
    [Google Scholar]
  59. Chun T.W. Carruth L. Finzi D. Quantification of latent tissue reservoirs and total body viral load in HIV-1 infection. Nature 1997 387 6629 183 188 10.1038/387183a09144289
    [Google Scholar]
  60. McNamara L.A. Collins K.L. Hematopoietic stem/precursor cells as HIV reservoirs. Curr. Opin. HIV AIDS 2011 6 1 43 48 10.1097/COH.0b013e32834086b321242893
    [Google Scholar]
  61. Kwon M. Bailén R. Balsalobre P. Allogeneic stem-cell transplantation in HIV-1-infected patients with high-risk hematological disorders. AIDS 2019 33 9 1441 1447 Grupo Español de Trasplante Hematopoyético y Terapia Celular (GETH) 10.1097/QAD.000000000000220930932952
    [Google Scholar]
  62. Hütter G. Stem cell transplantation in strategies for curing HIV/AIDS. AIDS Res. Ther. 2016 13 1 31 10.1186/s12981‑016‑0114‑y27625700
    [Google Scholar]
  63. Dolcetti R. Giagulli C. He W. Role of HIV-1 matrix protein p17 variants in lymphoma pathogenesis. Proc. Natl. Acad. Sci. USA 2015 112 46 14331 14336 10.1073/pnas.151474811226578780
    [Google Scholar]
  64. Dolcetti R. Gloghini A. Caruso A. Carbone A. A lymphomagenic role for HIV beyond immune suppression? Blood 2016 127 11 1403 1409 10.1182/blood‑2015‑11‑68141126773045
    [Google Scholar]
  65. Cobucci R.N.O. Saconato H. Lima P.H. Comparative incidence of cancer in HIV-AIDS patients and transplant recipients. Cancer Epidemiol. 2012 36 2 e69 e73 10.1016/j.canep.2011.12.00222236649
    [Google Scholar]
  66. de Martel C. Ferlay J. Franceschi S. Global burden of cancers attributable to infections in 2008: A review and synthetic analysis. Lancet Oncol. 2012 13 6 607 615 10.1016/S1470‑2045(12)70137‑722575588
    [Google Scholar]
  67. Abbasi A. Peeke S. Shah N. Axicabtagene ciloleucel CD19 CAR-T cell therapy results in high rates of systemic and neurologic remissions in ten patients with refractory large B cell lymphoma including two with HIV and viral hepatitis. J. Hematol. Oncol. 2020 13 1 1 10.1186/s13045‑019‑0838‑y31900191
    [Google Scholar]
  68. Noy A. Optimizing treatment of HIV-associated lymphoma. Blood 2019 134 17 1385 1394 10.1182/blood‑2018‑01‑79140030992269
    [Google Scholar]
  69. Krishnan A. Zaia J. Forman S.J. Should HIV-positive patients with lymphoma be offered stem cell transplants? Bone Marrow Transplant. 2003 32 8 741 748 10.1038/sj.bmt.170427014520416
    [Google Scholar]
  70. Maude S.L. Frey N. Shaw P.A. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014 371 16 1507 1517 10.1056/NEJMoa140722225317870
    [Google Scholar]
  71. Strayer D.S. Akkina R. Bunnell B.A. Current status of gene therapy strategies to treat HIV/AIDS. Mol. Ther. 2005 11 6 823 842 10.1016/j.ymthe.2005.01.02015922953
    [Google Scholar]
  72. Symons J. Vandekerckhove L. Hütter G. Dependence on the CCR5 coreceptor for viral replication explains the lack of rebound of CXCR4-predicted HIV variants in the Berlin patient. Clin. Infect. Dis. 2014 59 4 596 600 10.1093/cid/ciu28424759824
    [Google Scholar]
  73. Anderson J. Li M-J. Palmer B. Safety and efficacy of a lentiviral vector containing three anti-HIV genes--CCR5 ribozyme, tat-rev siRNA, and TAR decoy--in SCID-hu mouse-derived T cells. Mol. Ther. 2007 15 6 1182 1188 10.1038/sj.mt.6300157
    [Google Scholar]
  74. Glass W.G. McDermott D.H. Lim J.K. CCR5 deficiency increases risk of symptomatic West Nile virus infection. J. Exp. Med. 2006 203 1 35 40 10.1084/jem.2005197016418398
    [Google Scholar]
  75. Li M. Li H. Rossi J.J. RNAi in combination with a ribozyme and TAR decoy for treatment of HIV infection in hematopoietic cell gene therapy. Ann. N. Y. Acad. Sci. 2006 1082 1 172 179 10.1196/annals.1348.00617145937
    [Google Scholar]
  76. An D.S. Donahue R.E. Kamata M. Stable reduction of CCR5 by RNAi through hematopoietic stem cell transplant in non-human primates. Proc. Natl. Acad. Sci. USA 2007 104 32 13110 13115 10.1073/pnas.070547410417670939
    [Google Scholar]
  77. Liu Y.P. von Eije K.J. Schopman N.C.T. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol. Ther. 2009 17 10 1712 1723 10.1038/mt.2009.17619672247
    [Google Scholar]
  78. ter Brake O. Legrand N. von Eije K.J. Evaluation of safety and efficacy of RNAi against HIV-1 in the human immune system (Rag-2-/-γc-/-) mouse model. Gene Ther. 2009 16 1 148 153 10.1038/gt.2008.12418668146
    [Google Scholar]
  79. Rettig M.P. Ansstas G. DiPersio J.F. Mobilization of hematopoietic stem and progenitor cells using inhibitors of CXCR4 and VLA-4. Leukemia 2012 26 1 34 53 10.1038/leu.2011.19721886173
    [Google Scholar]
  80. De Clercq E. Recent advances on the use of the CXCR4 antagonist plerixafor (AMD3100, Mozobil™) and potential of other CXCR4 antagonists as stem cell mobilizers. Pharmacol. Ther. 2010 128 3 509 518 10.1016/j.pharmthera.2010.08.00920826182
    [Google Scholar]
  81. De Clercq E. The AMD3100 story: The path to the discovery of a stem cell mobilizer (Mozobil). Biochem. Pharmacol. 2009 77 11 1655 1664 10.1016/j.bcp.2008.12.01419161986
    [Google Scholar]
  82. Wilen C.B. Wang J. Tilton J.C. Engineering HIV-resistant human CD4+ T cells with CXCR4-specific zinc-finger nucleases. PLoS Pathog. 2011 7 4 e1002020 10.1371/journal.ppat.100202021533216
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X392519251128043424
Loading
/content/journals/cscr/10.2174/011574888X392519251128043424
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher’s website along with the published article.


  • Article Type:
    Review Article
Keywords: CiteSpace ; stem cells ; gene therapy ; HIV/AIDS ; visualization analysis ; emerging trends
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test