Skip to content
2000
image of Targeting TMEM175 in Lysosomal Physiology and Human Diseases

Abstract

The transmembrane protein TMEM175, a cation channel located on the lysosomal membrane, plays a crucial role in regulating lysosomal membrane potential and maintaining intralysosomal pH stability. It is involved in various physiological and pathological processes. This review summarizes recent advancements in understanding TMEM175’s role in lysosomal physiology, with a detailed discussion of its regulatory mechanisms and specific contributions to lysosomal function. Furthermore, it explores the potential links between TMEM175 and human diseases, particularly neurodegenerative disorders. The structure of TMEM175 is elaborated upon, highlighting how activators and inhibitors interact with different structural domains of TMEM175, revealing multiple potential active sites. The functional significance of these sites and their relationships with TMEM175’s activity are also discussed.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X385236250729200924
2025-08-06
2025-12-29
Loading full text...

Full text loading...

References

  1. Saftig P. Klumperman J. Lysosome biogenesis and lysosomal membrane proteins: Trafficking meets function. Nat. Rev. Mol. Cell Biol. 2009 10 9 623 635 10.1038/nrm2745 19672277
    [Google Scholar]
  2. Guicciardi M.E. Leist M. Gores G.J. Lysosomes in cell death. Oncogene 2004 23 16 2881 2890 10.1038/sj.onc.1207512 15077151
    [Google Scholar]
  3. Settembre C. Fraldi A. Medina D.L. Ballabio A. Signals from the lysosome: A control centre for cellular clearance and energy metabolism. Nat. Rev. Mol. Cell Biol. 2013 14 5 283 296 10.1038/nrm3565 23609508
    [Google Scholar]
  4. Lawrence R.E. Zoncu R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat. Cell Biol. 2019 21 2 133 142 10.1038/s41556‑018‑0244‑7 30602725
    [Google Scholar]
  5. Xu H. Ren D. Lysosomal physiology. Annu. Rev. Physiol. 2015 77 1 57 80 10.1146/annurev‑physiol‑021014‑071649 25668017
    [Google Scholar]
  6. Holopainen J.M. Saarikoski J. Kinnunen P.K.J. Järvelä I. Elevated lysosomal pH in neuronal ceroid lipofuscinoses (NCLs). Eur. J. Biochem. 2001 268 22 5851 5856 10.1046/j.0014‑2956.2001.02530.x 11722572
    [Google Scholar]
  7. Lee J.H. Yu W.H. Kumar A. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010 141 7 1146 1158 10.1016/j.cell.2010.05.008 20541250
    [Google Scholar]
  8. Xu M. Liu K. Swaroop M. A phenotypic compound screening assay for lysosomal storage diseases. SLAS Discov. 2014 19 1 168 175 10.1177/1087057113501197 23983233
    [Google Scholar]
  9. Clare J.J. Targeting ion channels for drug discovery. Discov. Med. 2010 9 46 253 260 20350493
    [Google Scholar]
  10. Chapel A. Kieffer-Jaquinod S. Sagné C. An extended proteome map of the lysosomal membrane reveals novel potential transporters. Mol. Cell. Proteomics 2013 12 6 1572 1588 10.1074/mcp.M112.021980 23436907
    [Google Scholar]
  11. Cang C. Aranda K. Seo Y. Gasnier B. Ren D. TMEM175 is an organelle K+ channel regulating lysosomal function. Cell 2015 162 5 1101 1112 10.1016/j.cell.2015.08.002 26317472
    [Google Scholar]
  12. Brunner J.D. Jakob R.P. Schulze T. Structural basis for ion selectivity in TMEM175 K+ channels. eLife 2020 9 53683 10.7554/eLife.53683 32267231
    [Google Scholar]
  13. Lee C. Guo J. Zeng W. The lysosomal potassium channel TMEM175 adopts a novel tetrameric architecture. Nature 2017 547 7664 472 475 10.1038/nature23269 28723891
    [Google Scholar]
  14. Hu M. Li P. Wang C. Parkinson’s disease-risk protein tmem175 is a proton-activated proton channel in lysosomes. Cell 2022 185 13 2292 2308.e20 10.1016/j.cell.2022.05.021
    [Google Scholar]
  15. Oh S. Paknejad N. Hite R.K. Gating and selectivity mechanisms for the lysosomal K+ channel TMEM175. eLife 2020 9 53430 10.7554/eLife.53430 32228865
    [Google Scholar]
  16. Oh S. Marinelli F. Zhou W. Differential ion dehydration energetics explains selectivity in the non-canonical lysosomal K+ channel TMEM175. eLife 2022 11 75122 10.7554/eLife.75122 35608336
    [Google Scholar]
  17. Wie J. Liu Z. Song H. A growth-factor-activated lysosomal K+ channel regulates Parkinson’s pathology. Nature 2021 591 7850 431 437 10.1038/s41586‑021‑03185‑z 33505021
    [Google Scholar]
  18. Tallima H. El Ridi R. Arachidonic acid: Physiological roles and potential health benefits – A review. J. Adv. Res. 2018 11 33 41 10.1016/j.jare.2017.11.004 30034874
    [Google Scholar]
  19. de Duve C. Pressman B.C. Gianetto R. Wattiaux R. Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem. J. 1955 60 4 604 617 10.1042/bj0600604 13249955
    [Google Scholar]
  20. Beyenbach K.W. Wieczorek H. The V-type H+ ATPase: Molecular structure and function,physiological roles and regulation. J. Exp. Biol. 2006 209 4 577 589 10.1242/jeb.02014 16449553
    [Google Scholar]
  21. Mindell J.A. Lysosomal acidification mechanisms. Annu. Rev. Physiol. 2012 74 1 69 86 10.1146/annurev‑physiol‑012110‑142317 22335796
    [Google Scholar]
  22. Casey J.R. Grinstein S. Orlowski J. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 2010 11 1 50 61 10.1038/nrm2820 19997129
    [Google Scholar]
  23. Graves A.R. Curran P.K. Smith C.L. Mindell J.A. The Cl-/H+ antiporter ClC-7 is the primary chloride permeation pathway in lysosomes. Nature 2008 453 7196 788 792 10.1038/nature06907 18449189
    [Google Scholar]
  24. Kasper D. Planells-Cases R. Fuhrmann J.C. Loss of the chloride channel ClC-7 leads to lysosomal storage disease and neurodegeneration. EMBO J. 2005 24 5 1079 1091 10.1038/sj.emboj.7600576 15706348
    [Google Scholar]
  25. Steinberg B.E. Huynh K.K. Brodovitch A. A cation counterflux supports lysosomal acidification. J. Cell Biol. 2010 189 7 1171 1186 10.1083/jcb.200911083 20566682
    [Google Scholar]
  26. Li P. Gu M. Xu H. Lysosomal ion channels as decoders of cellular signals. Trends Biochem. Sci. 2019 44 2 110 124 10.1016/j.tibs.2018.10.006 30424907
    [Google Scholar]
  27. Zheng W Shen C Wang L Ph regulates potassium conductance and drives a constitutive proton current in human tmem175. Sci Adv 2022 8 12 eabm1568 10.1126/sciadv.abm1568
    [Google Scholar]
  28. Koivusalo M. Steinberg B.E. Mason D. Grinstein S. In situ measurement of the electrical potential across the lysosomal membrane using FRET. Traffic 2011 12 8 972 982 10.1111/j.1600‑0854.2011.01215.x 21554506
    [Google Scholar]
  29. Saminathan A. Devany J. Veetil A.T. A DNA-based voltmeter for organelles. Nat. Nanotechnol. 2021 16 1 96 103 10.1038/s41565‑020‑00784‑1 33139937
    [Google Scholar]
  30. Briozzo P. Morisset M. Capony F. Rougeot C. Rochefort H. In vitro degradation of extracellular matrix with Mr 52,000 cathepsin D secreted by breast cancer cells. Cancer Res. 1988 48 13 3688 3692 3378211
    [Google Scholar]
  31. Kirschke H. Langer J. Wiederanders B. Ansorge S. Bohley P. Cathepsin L. Eur. J. Biochem. 1977 74 2 293 301 10.1111/j.1432‑1033.1977.tb11393.x 15835
    [Google Scholar]
  32. Yoshida A. Ohta M. Kuwahara K. Cao M.J. Hara K. Osatomi K. Purification and characterization of cathepsin B from the muscle of horse mackerel Trachurus japonicus. Mar. Drugs 2015 13 11 6550 6565 10.3390/md13116550 26516867
    [Google Scholar]
  33. Xu Y. Zhang H-Y. Tian Y. Shi H-Y. Cai Y. The critical role of the endolysosomal system in cerebral ischemia. Neural Regen. Res. 2023 18 5 983 990 10.4103/1673‑5374.355745 36254978
    [Google Scholar]
  34. Tian X. Teng J. Chen J. New insights regarding SNARE proteins in autophagosome-lysosome fusion. Autophagy 2021 17 10 2680 2688 10.1080/15548627.2020.1823124 32924745
    [Google Scholar]
  35. Yang C. Wang X. Lysosome biogenesis: Regulation and functions. J. Cell Biol. 2021 220 6 202102001 10.1083/jcb.202102001 33950241
    [Google Scholar]
  36. Jinn S. Drolet R.E. Cramer P.E. Tmem175 deficiency impairs lysosomal and mitochondrial function and increases α-synuclein aggregation. Proc. Natl. Acad. Sci. USA 2017 114 9 2389 2394 10.1073/pnas.1616332114
    [Google Scholar]
  37. Zhang H. Tian Y. Yu W. TMEM175 downregulation participates in impairment of the autophagy related lysosomal dynamics following neonatal hypoxic‐ischemic brain injury. J. Cell. Physiol. 2023 238 10 2512 2527 10.1002/jcp.31096 37566721
    [Google Scholar]
  38. Zhang M. Lu H. Xie X. TMEM175 mediates Lysosomal function and participates in neuronal injury induced by cerebral ischemia-reperfusion. Mol. Brain 2020 13 1 113 10.1186/s13041‑020‑00651‑z 32799888
    [Google Scholar]
  39. Zhang J. Zeng W. Han Y. Lysosomal lamp proteins regulate lysosomal ph by direct inhibition of the tmem175 channel. Mol. Cell 2023 83 14 2524 2539.e7 10.1016/j.molcel.2023.06.004
    [Google Scholar]
  40. Chen J.W. Murphy T.L. Willingham M.C. Pastan I. August J.T. Identification of two lysosomal membrane glycoproteins. J. Cell Biol. 1985 101 1 85 95 10.1083/jcb.101.1.85 2409098
    [Google Scholar]
  41. Braulke T. Bonifacino J.S. Sorting of lysosomal proteins[J]. Biochimica et Biophysica Acta (BBA)-. Molecular Cell Research 2009 1793 4 605 614
    [Google Scholar]
  42. Höning S. Hunziker W. Cytoplasmic determinants involved in direct lysosomal sorting, endocytosis, and basolateral targeting of rat lgp120 (lamp-I) in MDCK cells. J. Cell Biol. 1995 128 3 321 332 10.1083/jcb.128.3.321 7844146
    [Google Scholar]
  43. Eskelinen E.L. Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Mol. Aspects Med. 2006 27 5-6 495 502 10.1016/j.mam.2006.08.005 16973206
    [Google Scholar]
  44. Huynh K.K. Eskelinen E.L. Scott C.C. Malevanets A. Saftig P. Grinstein S. LAMP proteins are required for fusion of lysosomes with phagosomes. EMBO J. 2007 26 2 313 324 10.1038/sj.emboj.7601511 17245426
    [Google Scholar]
  45. Saftig P. Beertsen W. Eskelinen E.L. LAMP-2: A control step for phagosome and autophagosome maturation. Autophagy 2008 4 4 510 512 10.4161/auto.5724 18376150
    [Google Scholar]
  46. Nishino I. Fu J. Tanji K. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 2000 406 6798 906 910 10.1038/35022604 10972294
    [Google Scholar]
  47. Schneede A. Schmidt C.K. Hölttä-Vuori M. Role for LAMP-2 in endosomal cholesterol transport. J. Cell. Mol. Med. 2011 15 2 280 295 10.1111/j.1582‑4934.2009.00973.x 19929948
    [Google Scholar]
  48. Bandyopadhyay U. Kaushik S. Varticovski L. Cuervo A.M. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol. Cell. Biol. 2008 28 18 5747 5763 10.1128/MCB.02070‑07 18644871
    [Google Scholar]
  49. Prentzell M.T. Rehbein U. Sandoval M.C. G3bps tether the tsc complex to lysosomes and suppress mtorc1 signaling. Cell 2021 184 3 655 674.e27 10.1016/j.cell.2020.12.024
    [Google Scholar]
  50. Zhang G. Yi Y.P. Zhang G.J. Effects of arachidonic acid on the lysosomal ion permeability and osmotic stability. J. Bioenerg. Biomembr. 2006 38 1 75 82 10.1007/s10863‑006‑9008‑3 16732469
    [Google Scholar]
  51. Decher N. Lang H.J. Nilius B. Brüggemann A. Busch A.E. Steinmeyer K. DCPIB is a novel selective blocker ofICl,swell and prevents swelling‐induced shortening of guinea‐pig atrial action potential duration. Br. J. Pharmacol. 2001 134 7 1467 1479 10.1038/sj.bjp.0704413 11724753
    [Google Scholar]
  52. Bagriantsev S.N. Ang K.H. Gallardo-Godoy A. A high-throughput functional screen identifies small molecule regulators of temperature- and mechano-sensitive K2P channels. ACS Chem. Biol. 2013 8 8 1841 1851 10.1021/cb400289x 23738709
    [Google Scholar]
  53. Chen F. Ghosh A. Lin J. 5-lipoxygenase pathway and its downstream cysteinyl leukotrienes as potential therapeutic targets for Alzheimer’s disease. Brain Behav. Immun. 2020 88 844 855 10.1016/j.bbi.2020.03.022 32222525
    [Google Scholar]
  54. Bazzone A. Barthmes M. George C. A comparative study on the lysosomal cation channel TMEM175 using automated whole-cell patch-clamp, lysosomal patch-clamp, and solid supported membrane-based electrophysiology: Functional characterization and high-throughput screening assay development. Int. J. Mol. Sci. 2023 24 16 12788 10.3390/ijms241612788 37628970
    [Google Scholar]
  55. Wong Y.C. Ysselstein D. Krainc D. Mitochondria–lysosome contacts regulate mitochondrial fission via RAB7 GTP hydrolysis. Nature 2018 554 7692 382 386 10.1038/nature25486 29364868
    [Google Scholar]
  56. Qu L. Lin B. Zeng W. Lysosomal K + channel TMEM175 promotes apoptosis and aggravates symptoms of Parkinson’s disease. EMBO Rep. 2022 23 9 53234 10.15252/embr.202153234 35913019
    [Google Scholar]
  57. Jagtap Y.A. Kumar P. Kinger S. Disturb mitochondrial associated proteostasis: Neurodegeneration and imperfect ageing. Front. Cell Dev. Biol. 2023 11 1146564 10.3389/fcell.2023.1146564 36968195
    [Google Scholar]
  58. Ray B. Bhat A. Mahalakshmi A.M. Mitochondrial and organellar crosstalk in Parkinson’s disease. ASN Neuro 2021 13 1 17590914211028364 10.1177/17590914211028364 34304614
    [Google Scholar]
  59. Oh S. Stix R. Zhou W. Faraldo-Gómez J.D. Hite R.K. Mechanism of 4-aminopyridine inhibition of the lysosomal channel TMEM175. Proc. Natl. Acad. Sci. USA 2022 119 44 2208882119 10.1073/pnas.2208882119 36279431
    [Google Scholar]
  60. Oh S. Lee J. Choi H.J. Discovery of selective inhibitors for the lysosomal parkinson’s disease channel TMEM175. J. Am. Chem. Soc. 2024 146 33 23230 23239 10.1021/jacs.4c05623 39116214
    [Google Scholar]
  61. Jo H. Mondal S. Tan D. Small molecule-induced cytosolic activation of protein kinase Akt rescues ischemia-elicited neuronal death. Proc. Natl. Acad. Sci. USA 2012 109 26 10581 10586 10.1073/pnas.1202810109 22689977
    [Google Scholar]
  62. Gammon K. Neurodegenerative disease: Brain windfall. Nature 2014 515 7526 299 300 10.1038/nj7526‑299a 25396246
    [Google Scholar]
  63. Simon D.K. Tanner C.M. Brundin P. Parkinson disease epidemiology, pathology, genetics, and pathophysiology. Clin. Geriatr. Med. 2020 36 1 1 12 10.1016/j.cger.2019.08.002 31733690
    [Google Scholar]
  64. Filippi M. Balestrino R. The “Glymphatic” Window on Neurodegeneration in Synucleinopathies. Radiology 2023 307 5 230817 10.1148/radiol.230817 37158718
    [Google Scholar]
  65. Polymeropoulos M.H. Lavedan C. Leroy E. Mutation in the alpha-synuclein gene identified in families with parkinson’s disease. Science 1997 276 5321 2045 2047 10.1126/science.276.5321.2045
    [Google Scholar]
  66. Guo M. Ji X. Liu J. Hypoxia and alpha-Synuclein: Inextricable link underlying the pathologic progression of Parkinson’s disease. Front. Aging Neurosci. 2022 14 919343 10.3389/fnagi.2022.919343 35959288
    [Google Scholar]
  67. Jinn S. Blauwendraat C. Toolan D. Functionalization of the tmem175 p.m393t variant as a risk factor for parkinson disease. Hum. Mol. Genet. 2019 28 19 3244 3254 10.1093/hmg/ddz136
    [Google Scholar]
  68. Nalls M.A. Pankratz N. Lill C.M. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat. Genet. 2014 46 9 989 993 10.1038/ng.3043 25064009
    [Google Scholar]
  69. Pankratz N. Wilk J.B. Latourelle J.C. Genomewide association study for susceptibility genes contributing to familial Parkinson disease. Hum. Genet. 2009 124 6 593 605 10.1007/s00439‑008‑0582‑9 18985386
    [Google Scholar]
  70. Lill C.M. Hansen J. Olsen J.H. Binder H. Ritz B. Bertram L. Impact of Parkinson’s disease risk loci on age at onset. Mov. Disord. 2015 30 6 847 850 10.1002/mds.26237 25914293
    [Google Scholar]
  71. Blauwendraat C. Heilbron K. Vallerga C.L. Parkinson’s disease age at onset genome‐wide association study: Defining heritability, genetic loci, and α‐synuclein mechanisms. Mov. Disord. 2019 34 6 866 875 10.1002/mds.27659 30957308
    [Google Scholar]
  72. Krohn L. Öztürk T.N. Vanderperre B. Genetic, structural, and functional evidence link TMEM175 to synucleinopathies. Ann. Neurol. 2020 87 1 139 153 10.1002/ana.25629 31658403
    [Google Scholar]
  73. Hopfner F. Mueller S.H. Szymczak S. Rare variants in specific lysosomal genes are associated with Parkinson’s disease. Mov. Disord. 2020 35 7 1245 1248 10.1002/mds.28037 32267580
    [Google Scholar]
  74. Ye G. Li Y. Zhou L. Predictors of conversion to α-synucleinopathy diseases in idiopathic rapid eye movement sleep behavior disorder. J. Parkinsons Dis. 2020 10 4 1443 1455 10.3233/JPD‑202243 32986685
    [Google Scholar]
  75. Senkevich K. Gan-Or Z. Autophagy lysosomal pathway dysfunction in Parkinson’s disease; evidence from human genetics. Parkinsonism Relat. Disord. 2020 73 60 71 10.1016/j.parkreldis.2019.11.015 31761667
    [Google Scholar]
  76. Iwaki H. Blauwendraat C. Leonard H.L. Genetic risk of Parkinson disease and progression. Neurol. Genet. 2019 5 4 348 10.1212/NXG.0000000000000348 31404238
    [Google Scholar]
  77. Anderson J.P. Walker D.E. Goldstein J.M. Phosphorylation of Ser-129 is the dominant pathological modification of α-synuclein in familial and sporadic Lewy body disease. J. Biol. Chem. 2006 281 40 29739 29752 10.1074/jbc.M600933200 16847063
    [Google Scholar]
  78. Chen L. Periquet M. Wang X. Tyrosine and serine phosphorylation of α-synuclein have opposing effects on neurotoxicity and soluble oligomer formation. J. Clin. Invest. 2009 119 11 3257 3265 10.1172/JCI39088 19855133
    [Google Scholar]
  79. Fujiwara H. Hasegawa M. Dohmae N. α-Synuclein is phosphorylated in synucleinopathy lesions. Nat. Cell Biol. 2002 4 2 160 164 10.1038/ncb748 11813001
    [Google Scholar]
  80. Sanchiz-Calvo M. Bentea E. Baekelandt V. Rodent models based on endolysosomal genes involved in Parkinson’s disease. Curr. Opin. Neurobiol. 2022 72 55 62 10.1016/j.conb.2021.09.004 34628360
    [Google Scholar]
  81. Kausar S. Wang F. Cui H. The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases. Cells 2018 7 12 274 10.3390/cells7120274 30563029
    [Google Scholar]
  82. Zhou Z. Austin G.L. Young L.E.A. Johnson L.A. Sun R. Mitochondrial metabolism in major neurological diseases. Cells 2018 7 12 229 10.3390/cells7120229 30477120
    [Google Scholar]
  83. Mani S. Sevanan M. Krishnamoorthy A. Sekar S. A systematic review of molecular approaches that link mitochondrial dysfunction and neuroinflammation in Parkinson’s disease. Neurol. Sci. 2021 42 11 4459 4469 10.1007/s10072‑021‑05551‑1 34480241
    [Google Scholar]
  84. Chen G. Kroemer G. Kepp O. Mitophagy: An emerging role in aging and age-associated diseases. Front. Cell Dev. Biol. 2020 8 200 10.3389/fcell.2020.00200
    [Google Scholar]
  85. Tang T. Jian B. Liu Z. Transmembrane protein 175, a lysosomal ion channel related to Parkinson’s disease. Biomolecules 2023 13 5 802 10.3390/biom13050802 37238672
    [Google Scholar]
  86. Du L. He X. Fan X. Pharmacological interventions targeting α-synuclein aggregation triggered REM sleep behavior disorder and early development of Parkinson’s disease. Pharmacol. Ther. 2023 249 108498 10.1016/j.pharmthera.2023.108498 37499913
    [Google Scholar]
  87. Feng S. Ge J. Zhao S. Dopaminergic damage pattern predicts phenoconversion time in isolated rapid eye movement sleep behavior disorder. Eur. J. Nucl. Med. Mol. Imaging 2023 51 1 159 167 10.1007/s00259‑023‑06402‑1 37668706
    [Google Scholar]
  88. Figorilli M. Meloni M. Lanza G. Considering REM sleep behavior disorder in the management of Parkinson’s disease. Nat. Sci. Sleep 2023 15 333 352 10.2147/NSS.S266071 37180094
    [Google Scholar]
  89. Orso B. Mattioli P. Yoon E.J. Validation of the REM behaviour disorder phenoconversion-related pattern in an independent cohort. Neurol. Sci. 2023 44 9 3161 3168 10.1007/s10072‑023‑06829‑2 37140829
    [Google Scholar]
  90. Postuma R.B. Iranzo A. Hu M. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: A multicentre study. Brain 2019 142 3 744 759 10.1093/brain/awz030 30789229
    [Google Scholar]
  91. Krohn L. Heilbron K. Blauwendraat C. Genome-wide association study of REM sleep behavior disorder identifies polygenic risk and brain expression effects. Nat. Commun. 2022 13 1 7496 10.1038/s41467‑022‑34732‑5 36470867
    [Google Scholar]
  92. Weidner WS Barbarino P P4‐443: The state of the art of dementia research: New frontiers. Alzheimers Dement 2019 15 7S_Part_28 1473 P1473 10.1016/j.jalz.2019.06.4115
    [Google Scholar]
  93. Europe A. Dementia in Europe Yearbook. 2019: Estimating the prevalence of dementia in Europe. Alzheimer Europe 2019 180
    [Google Scholar]
  94. Wu Y.T. Beiser A.S. Breteler M.M.B. The changing prevalence and incidence of dementia over time — current evidence. Nat. Rev. Neurol. 2017 13 6 327 339 10.1038/nrneurol.2017.63 28497805
    [Google Scholar]
  95. Prince M. Ali G.C. Guerchet M. Prina A.M. Albanese E. Wu Y.T. Recent global trends in the prevalence and incidence of dementia, and survival with dementia. Alzheimers Res. Ther. 2016 8 1 23 10.1186/s13195‑016‑0188‑8 27473681
    [Google Scholar]
  96. Hamano T. Enomoto S. Shirafuji N. Autophagy and tau protein. Int. J. Mol. Sci. 2021 22 14 7475 10.3390/ijms22147475 34299093
    [Google Scholar]
  97. Li Q. Liu Y. Sun M. Autophagy and Alzheimer’s disease. Cell. Mol. Neurobiol. 2017 37 3 377 388 10.1007/s10571‑016‑0386‑8 27260250
    [Google Scholar]
  98. Bachhuber T. Katzmarski N. McCarter J.F. Inhibition of amyloid-β plaque formation by α-synuclein. Nat. Med. 2015 21 7 802 807 10.1038/nm.3885 26099047
    [Google Scholar]
  99. Guo J.L. Covell D.J. Daniels J.P. Distinct α-synuclein strains differentially promote tau inclusions in neurons. Cell 2013 154 1 103 117 10.1016/j.cell.2013.05.057 23827677
    [Google Scholar]
  100. Santos RX Correia SC Wang X A synergistic dysfunction of mitochondrial fission/fusion dynamics and mitophagy in Alzheimer’s disease. J Alzheimers Dis 2010 20 s2 S401 12 (Suppl. 2) 10.3233/JAD‑2010‑100666 20463393
    [Google Scholar]
  101. Chen X. Petranovic D. Amyloid-β peptide-induced cytotoxicity and mitochondrial dysfunction in yeast. FEMS Yeast Res. 2015 15 6 fov061 10.1093/femsyr/fov061 26152713
    [Google Scholar]
  102. Chia R. Sabir M.S. Bandres-Ciga S. Genome sequencing analysis identifies new loci associated with Lewy body dementia and provides insights into its genetic architecture. Nat. Genet. 2021 53 3 294 303 10.1038/s41588‑021‑00785‑3 33589841
    [Google Scholar]
  103. Boursin P. Paternotte S. Dercy B. Semantics, epidemiology and semiology of stroke. Soins 2018 63 828 24 27 10.1016/j.soin.2018.06.008
    [Google Scholar]
  104. Schaller B. Graf R. Cerebral ischemia and reperfusion: The pathophysiologic concept as a basis for clinical therapy. J. Cereb. Blood Flow Metab. 2004 24 4 351 371 10.1097/00004647‑200404000‑00001 15087705
    [Google Scholar]
  105. Fan L. Zhang C.J. Zhu L. FasL-PDPK1 pathway promotes the cytotoxicity of CD8+ T cells during ischemic stroke. Transl. Stroke Res. 2020 11 4 747 761 10.1007/s12975‑019‑00749‑0 32036560
    [Google Scholar]
  106. Wang R. Wang H. Liu Y. Optimized mouse model of embolic MCAO: From cerebral blood flow to neurological outcomes. J. Cereb. Blood Flow Metab. 2022 42 3 495 509 10.1177/0271678X20917625 32312170
    [Google Scholar]
  107. Dave K.R. Bhattacharya S.K. Saul I. Activation of protein kinase C delta following cerebral ischemia leads to release of cytochrome C from the mitochondria via bad pathway. PLoS One 2011 6 7 22057 10.1371/journal.pone.0022057 21789211
    [Google Scholar]
  108. Shukla V. Fuchs P. Liu A. Recurrent hypoglycemia exacerbates cerebral ischemic damage in diabetic rats via enhanced post-ischemic mitochondrial dysfunction. Transl. Stroke Res. 2019 10 1 78 90 10.1007/s12975‑018‑0622‑2 29569040
    [Google Scholar]
  109. Rajawat Y.S. Bossis I. Autophagy in aging and in neurodegenerative disorders. Hormones 2008 7 1 46 61 10.14310/horm.2002.1111037 18359744
    [Google Scholar]
  110. Gorlova O.Y. Li Y. Gorlov I. Gene-level association analysis of systemic sclerosis: A comparison of African-Americans and White populations. PLoS One 2018 13 1 0189498 10.1371/journal.pone.0189498 29293537
    [Google Scholar]
  111. Mori T. Tamura N. Waguri S. Yamamoto T. Autophagy is involved in the sclerotic phase of systemic sclerosis. Fukushima J. Med. Sci. 2020 66 1 17 24 10.5387/fms.2019‑28 32281584
    [Google Scholar]
  112. Judge S.I.V. Bever C.T. Potassium channel blockers in multiple sclerosis: Neuronal Kv channels and effects of symptomatic treatment. Pharmacol. Ther. 2006 111 1 224 259 10.1016/j.pharmthera.2005.10.006 16472864
    [Google Scholar]
  113. Jukkola P.I. Lovett-Racke A.E. Zamvil S.S. Gu C. K+ channel alterations in the progression of experimental autoimmune encephalomyelitis. Neurobiol. Dis. 2012 47 2 280 293 10.1016/j.nbd.2012.04.012 22560931
    [Google Scholar]
  114. Li C.Y. Ou R.W. Chen Y.P. Mutation analysis of tmem family members for early-onset parkinson’s disease in chinese population. Neurobiol. Aging 2021 101 299.e1 299.e6 10.1016/j.neurobiolaging.2020.11.005
    [Google Scholar]
  115. Dobson R. Giovannoni G. Multiple sclerosis – a review. Eur. J. Neurol. 2019 26 1 27 40 10.1111/ene.13819 30300457
    [Google Scholar]
  116. Dietrich M. Hartung H.P. Albrecht P. Neuroprotective properties of 4-aminopyridine. Neurol. Neuroimmunol. Neuroinflamm. 2021 8 3 976 10.1212/NXI.0000000000000976 33653963
    [Google Scholar]
  117. Rawji K.S. Mishra M.K. Yong V.W. Regenerative capacity of macrophages for remyelination. Front. Cell Dev. Biol. 2016 4 47 10.3389/fcell.2016.00047 27243011
    [Google Scholar]
  118. O’Day D.H. Huber R.J. Calmodulin binding proteins and neuroinflammation in multiple neurodegenerative diseases. BMC Neurosci. 2022 23 1 10 10.1186/s12868‑022‑00695‑y 35246032
    [Google Scholar]
  119. Hou Y. Dan X. Babbar M. Ageing as a risk factor for neurodegenerative disease. Nat. Rev. Neurol. 2019 15 10 565 581 10.1038/s41582‑019‑0244‑7 31501588
    [Google Scholar]
  120. Di H. Zhu Y. Xia W. Bidirectional Mendelian randomization to explore the causal relationships between Sleep traits, Parkinson’s disease and Amyotrophic lateral sclerosis. Sleep Med. 2022 96 42 49 10.1016/j.sleep.2022.03.024 35594779
    [Google Scholar]
  121. Manno C. Lipari A. Bono V. Taiello A.C. La Bella V. Sporadic Parkinson disease and amyotrophic lateral sclerosis complex (Brait-Fahn-Schwartz disease). J. Neurol. Sci. 2013 326 1-2 104 106 10.1016/j.jns.2013.01.009 23380453
    [Google Scholar]
  122. Calvo A. Chiò A. Pagani M. Parkinsonian traits in amyotrophic lateral sclerosis (ALS): A prospective population-based study. J. Neurol. 2019 266 7 1633 1642 10.1007/s00415‑019‑09305‑0 30949819
    [Google Scholar]
  123. Park H.K. Lim Y.M. Kim J.S. Nigrostriatal dysfunction in patients with amyotrophic lateral sclerosis and parkinsonism. J. Neurol. Sci. 2011 301 1-2 12 13 10.1016/j.jns.2010.11.017 21167502
    [Google Scholar]
  124. Tian Y. Ma G. Li H. Shared genetics and comorbid genes of amyotrophic lateral sclerosis and Parkinson’s disease. Mov. Disord. 2023 38 10 1813 1821 10.1002/mds.29572 37534731
    [Google Scholar]
  125. Scherer H.U. Häupl T. Burmester G.R. The etiology of rheumatoid arthritis. J. Autoimmun. 2020 110 102400 10.1016/j.jaut.2019.102400 31980337
    [Google Scholar]
  126. Gravallese E.M. Firestein G.S. Rheumatoid arthritis—common origins, divergent mechanisms. N. Engl. J. Med. 2023 388 6 529 542 10.1056/NEJMra2103726 36780677
    [Google Scholar]
  127. Kadura S. Raghu G. Rheumatoid arthritis-interstitial lung disease: Manifestations and current concepts in pathogenesis and management. Eur. Respir. Rev. 2021 30 160 210011 10.1183/16000617.0011‑2021 34168062
    [Google Scholar]
  128. Luppi F. Sebastiani M. Salvarani C. Bendstrup E. Manfredi A. Acute exacerbation of interstitial lung disease associated with rheumatic disease. Nat. Rev. Rheumatol. 2022 18 2 85 96 10.1038/s41584‑021‑00721‑z 34876670
    [Google Scholar]
  129. Liu N. Fan X. Shao Y. Resveratrol attenuates inflammation and fibrosis in rheumatoid arthritis-associated interstitial lung disease via the AKT/TMEM175 pathway. J. Transl. Med. 2024 22 1 457 10.1186/s12967‑024‑05228‑1 38745204
    [Google Scholar]
  130. Florencio-Silva R. Sasso G.R.S. Sasso-Cerri E. Simões M.J. Cerri P.S. Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Res. Int. 2015 2015 1 1 17 10.1155/2015/421746 26247020
    [Google Scholar]
  131. Chen X. Wang Z. Duan N. Zhu G. Schwarz E.M. Xie C. Osteoblast–osteoclast interactions. Connect. Tissue Res. 2018 59 2 99 107 10.1080/03008207.2017.1290085 28324674
    [Google Scholar]
  132. Gao Q. Wang L. Wang S. Huang B. Jing Y. Su J. Bone marrow mesenchymal stromal cells: Identification, classification, and differentiation. Front. Cell Dev. Biol. 2022 9 787118 10.3389/fcell.2021.787118 35047499
    [Google Scholar]
  133. Nabavi N. Urukova Y. Cardelli M. Aubin J.E. Harrison R.E. Lysosome dispersion in osteoblasts accommodates enhanced collagen production during differentiation. J. Biol. Chem. 2008 283 28 19678 19690 10.1074/jbc.M802517200 18463099
    [Google Scholar]
  134. Taniguchi T. Kido S. Yamauchi E. Abe M. Matsumoto T. Taniguchi H. Induction of endosomal/lysosomal pathways in differentiating osteoblasts as revealed by combined proteomic and transcriptomic analyses. FEBS Lett. 2010 584 18 3969 3974 10.1016/j.febslet.2010.07.055 20682313
    [Google Scholar]
  135. Tsukuba T. Sakai E. Nishishita K. Kadowaki T. Okamoto K. New functions of lysosomes in bone cells. J. Oral Biosci./JAOB, Jpn. Assoc. Oral Biol. 2017 59 2 92 95 10.1016/j.job.2017.01.004
    [Google Scholar]
  136. Parzych K.R. Klionsky D.J. An overview of autophagy: Morphology, mechanism, and regulation. Antioxid. Redox Signal. 2014 20 3 460 473 10.1089/ars.2013.5371 23725295
    [Google Scholar]
  137. Chen X.D. Tan J.L. Feng Y. Huang L.J. Zhang M. Cheng B. Autophagy in fate determination of mesenchymal stem cells and bone remodeling. World J. Stem Cells 2020 12 8 776 786 10.4252/wjsc.v12.i8.776 32952858
    [Google Scholar]
  138. Nollet M. Santucci-Darmanin S. Breuil V. Autophagy in osteoblasts is involved in mineralization and bone homeostasis. Autophagy 2014 10 11 1965 1977 10.4161/auto.36182 25484092
    [Google Scholar]
  139. Yin X. Zhou C. Li J. Autophagy in bone homeostasis and the onset of osteoporosis. Bone Res. 2019 7 1 28 10.1038/s41413‑019‑0058‑7 31666998
    [Google Scholar]
  140. Kelly R.R. Sidles S.J. LaRue A.C. Effects of neurological disorders on bone health. Front. Psychol. 2020 11 612366 10.3389/fpsyg.2020.612366 33424724
    [Google Scholar]
  141. Xiong L. Pan J.X. Guo H.H. Mei L. Xiong W.C. Parkinson’s in the bone. Cell Biosci. 2021 Nov 5 11 1 190 10.1186/s13578‑021‑00702‑5
    [Google Scholar]
  142. Christou M.A. Ntritsos G. Markozannes G. A genome-wide scan for pleiotropy between bone mineral density and nonbone phenotypes. Bone Res. 2020 8 1 26 10.1038/s41413‑020‑0101‑8 32637184
    [Google Scholar]
  143. Lee S.H. Jang J.S. Mo S. Kim H.H. TMEM175 plays a crucial role in osteoblast differentiation by regulating lysosomal function and autophagy. Mol. Cells 2024 47 11 100127 10.1016/j.mocell.2024.100127 39426687
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X385236250729200924
Loading
/content/journals/cscr/10.2174/011574888X385236250729200924
Loading

Data & Media loading...


  • Article Type:
    Review Article
Keywords: molecular docking ; Transmembrane protein TMEM175 ; ion channel ; lysosome
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test