Skip to content
2000
image of The Application Prospects and Challenges of Mesenchymal Stem Cell-Derived Exosomes in Spinal Cord Injury Repair

Abstract

Spinal cord injury (SCI) is a severe, disabling condition for which current treatments are largely insufficient in restoring neurological function. Despite advances in surgical and pharmacological interventions, no effective treatment currently exists to reverse neurological deficits caused by SCI. Mesenchymal stem cells (MSCs), especially human umbilical cord-derived MSCs (hucMSCs), have shown promise in tissue regeneration due to their multipotency and low immunogenicity. However, challenges such as low engraftment rates, tumorigenicity, and potential immune responses limit their clinical application. In recent years, mesenchymal stem cell-derived exosomes (MSC-Exos) have emerged as a promising therapeutic approach, demonstrating significant potential in SCI treatment. MSC-Exos exerts its therapeutic effects through mechanisms such as immune modulation, promotion of angiogenesis and axon regeneration, and reduction of blood-spinal cord barrier (BSCB) permeability. Furthermore, hucMSC-Exos demonstrate advantages in scalability, safety, and therapeutic efficacy, making them a promising cell-free approach for SCI repair. This review summarizes the biological properties of MSC-Exos, their roles in tissue injury repair, and their mechanistic contributions across different phases of SCI pathophysiology. Understanding these mechanisms will help pave the way for clinical translation of MSC-Exos as a novel and effective therapeutic strategy for SCI.

This is an open access article published under CC BY 4.0 https://creativecommons.org/licenses/by/4.0/legalcode
Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X384819250823091635
2025-08-28
2025-11-03
Loading full text...

Full text loading...

/deliver/fulltext/cscr/10.2174/011574888X384819250823091635/BMS-CSCRT-2025-7.html?itemId=/content/journals/cscr/10.2174/011574888X384819250823091635&mimeType=html&fmt=ahah

References

  1. Zhou X. Shi G. Fan B. Polycaprolactone electrospun fiber scaffold loaded with iPSCs-NSCs and ASCs as a novel tissue engineering scaffold for the treatment of spinal cord injury. Int. J. Nanomedicine 2018 13 6265 6277 10.2147/IJN.S175914 30349249
    [Google Scholar]
  2. Safdarian M. Trinka E. Rahimi-Movaghar V. Global, regional, and national burden of spinal cord injury, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2023 22 11 1026 1047 10.1016/S1474‑4422(23)00287‑9 37863591
    [Google Scholar]
  3. Huang R. Meng T. Zhu R. The integrated transcriptome bioinformatics analysis identifies key genes and cellular components for spinal cord injury-related neuropathic pain. Front. Bioeng. Biotechnol. 2020 8 8 101 10.3389/fbioe.2020.00101 32140464
    [Google Scholar]
  4. Li J. Deng J. Yuan J. Zonisamide-loaded triblock copolymer nanomicelles as a novel drug delivery system for the treatment of acute spinal cord injury. Int. J. Nanomedicine 2017 12 0 2443 2456 10.2147/IJN.S128705 28408816
    [Google Scholar]
  5. Lv B. Zhang X. Yuan J. Biomaterial-supported MSC transplantation enhances cell–cell communication for spinal cord injury. Stem Cell Res. Ther. 2021 12 1 36 10.1186/s13287‑020‑02090‑y 33413653
    [Google Scholar]
  6. Xie Y. Sun Y. Liu Y. Targeted delivery of RGD-CD146 + CD271 + human umbilical cord mesenchymal stem cell-derived exosomes promotes blood–spinal cord barrier repair after spinal cord injury. ACS Nano 2023 17 18 18008 18024 10.1021/acsnano.3c04423 37695238
    [Google Scholar]
  7. Yu S. Yu S. Liu H. Liao N. Liu X. Enhancing mesenchymal stem cell survival and homing capability to improve cell engraftment efficacy for liver diseases. Stem Cell Res. Ther. 2023 14 1 235 10.1186/s13287‑023‑03476‑4 37667383
    [Google Scholar]
  8. Wu Z. Liang J. Huang W. Immunomodulatory effects of mesenchymal stem cells for the treatment of cardiac allograft rejection. Exp. Biol. Med. (Maywood) 2021 246 7 851 860 10.1177/1535370220978650 33327780
    [Google Scholar]
  9. Barkholt L. Flory E. Jekerle V. Risk of tumorigenicity in mesenchymal stromal cell–based therapies—Bridging scientific observations and regulatory viewpoints. Cytotherapy 2013 15 7 753 759 10.1016/j.jcyt.2013.03.005 23602595
    [Google Scholar]
  10. Sun Y. Liu G. Zhang K. Cao Q. Liu T. Li J. Mesenchymal stem cells-derived exosomes for drug delivery. Stem Cell Res. Ther. 2021 12 1 561 10.1186/s13287‑021‑02629‑7 34717769
    [Google Scholar]
  11. Schepici G. Silvestro S. Mazzon E. Regenerative effects of exosomes-derived MSCs: An overview on spinal cord injury experimental studies. Biomedicines 2023 11 1 201 10.3390/biomedicines11010201 36672709
    [Google Scholar]
  12. Luan Z. Liu J. Li M. Wang Y. Wang Y. Exosomes derived from umbilical cord-mesenchymal stem cells inhibit the NF-κB/MAPK signaling pathway and reduce the inflammatory response to promote recovery from spinal cord injury. J. Orthop. Surg. Res. 2024 19 1 184 10.1186/s13018‑024‑04651‑w 38491537
    [Google Scholar]
  13. Prockop D.J. Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 1997 276 5309 71 74 10.1126/science.276.5309.71 9082988
    [Google Scholar]
  14. Sun Y. Williams A. Waisbourd M. Iacovitti L. Katz L.J. Stem cell therapy for glaucoma: Science or snake oil? Surv. Ophthalmol. 2015 60 2 93 105 10.1016/j.survophthal.2014.07.001 25132498
    [Google Scholar]
  15. Wang P. Zhao L. Chen W. Liu X. Weir M.D. Xu H.H.K. Stem cells and calcium phosphate cement scaffolds for bone regeneration. J. Dent. Res. 2014 93 7 618 625 10.1177/0022034514534689 24799422
    [Google Scholar]
  16. Hoffmann A. Floerkemeier T. Melzer C. Hass R. Comparison of in vitro -cultivation of human mesenchymal stroma/stem cells derived from bone marrow and umbilical cord. J. Tissue Eng. Regen. Med. 2017 11 9 2565 2581 10.1002/term.2153 27125777
    [Google Scholar]
  17. Yin S. Ji C. Wu P. Jin C. Qian H. Human umbilical cord mesenchymal stem cells and exosomes: Bioactive ways of tissue injury repair. Am. J. Transl. Res. 2019 11 3 1230 1240 30972158
    [Google Scholar]
  18. Zhou J. Benito-Martin A. Mighty J. Retinal progenitor cells release extracellular vesicles containing developmental transcription factors, microRNA and membrane proteins. Sci. Rep. 2018 8 1 2823 10.1038/s41598‑018‑20421‑1 29434302
    [Google Scholar]
  19. Gurunathan S. Kang M.H. Jeyaraj M. Qasim M. Kim J.H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 2019 8 4 307 10.3390/cells8040307 30987213
    [Google Scholar]
  20. Harding C.V. Heuser J.E. Stahl P.D. Exosomes: Looking back three decades and into the future. J. Cell Biol. 2013 200 4 367 371 10.1083/jcb.201212113 23420870
    [Google Scholar]
  21. Johnstone R.M. Adam M. Hammond J.R. Orr L. Turbide C. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 1987 262 19 9412 9420 10.1016/S0021‑9258(18)48095‑7 3597417
    [Google Scholar]
  22. Kalluri R. LeBleu V.S. The biology, function, and biomedical applications of exosomes. Science 2020 367 6478 eaau6977 10.1126/science.aau6977 32029601
    [Google Scholar]
  23. Ung T.H. Madsen H.J. Hellwinkel J.E. Lencioni A.M. Graner M.W. Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Sci. 2014 105 11 1384 1392 10.1111/cas.12534 25220623
    [Google Scholar]
  24. Hessvik N.P. Llorente A. Current knowledge on exosome biogenesis and release. Cell. Mol. Life Sci. 2018 75 2 193 208 10.1007/s00018‑017‑2595‑9 28733901
    [Google Scholar]
  25. Zhang B. Shen L. Shi H. Exosomes from human umbilical cord mesenchymal stem cells: Identification, purification, and biological characteristics. Stem Cells Int. 2016 2016 1 1929536 10.1155/2016/1929536 28105054
    [Google Scholar]
  26. Zhao Y. Sun X. Cao W. Exosomes derived from human umbilical cord mesenchymal stem cells relieve acute myocardial ischemic injury. Stem Cells Int. 2015 2015 1 1 12 10.1155/2015/761643 26106430
    [Google Scholar]
  27. Yu B. Kim H.W. Gong M. Exosomes secreted from GATA-4 overexpressing mesenchymal stem cells serve as a reservoir of anti-apoptotic microRNAs for cardioprotection. Int. J. Cardiol. 2015 182 349 360 10.1016/j.ijcard.2014.12.043 25590961
    [Google Scholar]
  28. Bruno S. Tapparo M. Collino F. Renal regenerative potential of different extracellular vesicle populations derived from bone marrow mesenchymal stromal cells. Tissue Eng. Part A 2017 23 21 1262 1273 10.1089/ten.tea.2017.0069 28471327
    [Google Scholar]
  29. Zhang L. Song Y. Chen L. MiR‐20a‐containing exosomes from umbilical cord mesenchymal stem cells alleviates liver ischemia/reperfusion injury. J. Cell. Physiol. 2020 235 4 3698 3710 10.1002/jcp.29264 31566731
    [Google Scholar]
  30. Lankford K.L. Arroyo E.J. Nazimek K. Bryniarski K. Askenase P.W. Kocsis J.D. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord. PLoS One 2018 13 1 e0190358 10.1371/journal.pone.0190358 29293592
    [Google Scholar]
  31. Huang J.H. Yin X.M. Xu Y. Systemic administration of exosomes released from mesenchymal stromal cells attenuates apoptosis, inflammation, and promotes angiogenesis after spinal cord injury in rats. J. Neurotrauma 2017 34 24 3388 3396 10.1089/neu.2017.5063 28665182
    [Google Scholar]
  32. Oyinbo C. Secondary injury mechanisms in traumatic spinal cord injury: A nugget of this multiply cascade. Acta Neurobiol. Exp. (Warsz.) 2011 71 2 281 299 10.55782/ane‑2011‑1848 21731081
    [Google Scholar]
  33. McDonald J.W. Sadowsky C. Spinal-cord injury. Lancet 2002 359 9304 417 425 10.1016/S0140‑6736(02)07603‑1 11844532
    [Google Scholar]
  34. Dumont R.J. Okonkwo D.O. Verma S. Acute spinal cord injury, part I: Pathophysiologic mechanisms. Clin. Neuropharmacol. 2001 24 5 254 264 10.1097/00002826‑200109000‑00002 11586110
    [Google Scholar]
  35. Hellenbrand D.J. Quinn C.M. Piper Z.J. The secondary injury cascade after spinal cord injury: An analysis of local cytokine/chemokine regulation. Neural Regen. Res. 2024 19 6 1308 1317 10.4103/1673‑5374.385849 37905880
    [Google Scholar]
  36. Munteanu C. Rotariu M. Turnea M. Main cations and cellular biology of traumatic spinal cord injury. Cells 2022 11 16 2503 10.3390/cells11162503 36010579
    [Google Scholar]
  37. Chaggar R. Gill R. Evaluating initial screening practices for calcium dysregulation after acute traumatic spinal cord injury: A retrospective review. Spinal Cord Ser. Cases 2024 10 1 54 10.1038/s41394‑024‑00663‑0 39085204
    [Google Scholar]
  38. Ohashi N. Uta D. Ohashi M. Hoshino R. Baba H. Omega-conotoxin MVIIA reduces neuropathic pain after spinal cord injury by inhibiting N-type voltage-dependent calcium channels on spinal dorsal horn. Front. Neurosci. 2024 18 1 1366829 10.3389/fnins.2024.1366829 38469570
    [Google Scholar]
  39. Gu G. Yu H. Zou H. Pyroptosis in Spinal Cord Injury: Implications for pathogenesis and therapeutic approaches. Front. Biosci. (Landmark Ed) 2024 29 6 210 10.31083/j.fbl2906210 38940037
    [Google Scholar]
  40. Wang X. Zhou Z. Zhang Y. Exosome-shuttled miR-5121 from A2 astrocytes promotes BSCB repair after traumatic SCI by activating autophagy in vascular endothelial cells. J. Nanobiotechnology 2025 23 1 291 10.1186/s12951‑025‑03365‑3 40229869
    [Google Scholar]
  41. Nakazaki M. Yokoyama T. Lankford K.L. Hirota R. Kocsis J.D. Honmou O. Mesenchymal stem cells and their extracellular vesicles: Therapeutic mechanisms for blood–spinal cord barrier repair following spinal cord injury. Int. J. Mol. Sci. 2024 25 24 13460 10.3390/ijms252413460 39769223
    [Google Scholar]
  42. Zhou X. Yang Y. Wu L. Brilliant blue G inhibits inflammasome activation and reduces disruption of blood–spinal cord barrier induced by spinal cord injury in rats. Med. Sci. Monit. 2019 25 1 6359 6366 10.12659/MSM.915865 31444877
    [Google Scholar]
  43. Tran A.P. Warren P.M. Silver J. New insights into glial scar formation after spinal cord injury. Cell Tissue Res. 2022 387 3 319 336 10.1007/s00441‑021‑03477‑w 34076775
    [Google Scholar]
  44. Duncan G.J. Manesh S.B. Hilton B.J. Assinck P. Plemel J.R. Tetzlaff W. The fate and function of oligodendrocyte progenitor cells after traumatic spinal cord injury. Glia 2020 68 2 227 245 10.1002/glia.23706 31433109
    [Google Scholar]
  45. Li Z. Rong Y. Zhang Y. MiR-335 improves functional recovery in rats after spinal cord injury and protects PC12 cells against injury via the SPI-Bax/Caspase-3 Axis. Spine 2024 49 8 583 593 10.1097/BRS.0000000000004862 38167229
    [Google Scholar]
  46. Lipinski M.M. Wu J. Faden A.I. Sarkar C. Function and mechanisms of autophagy in brain and spinal cord trauma. Antioxid. Redox Signal. 2015 23 6 565 577 10.1089/ars.2015.6306 25808205
    [Google Scholar]
  47. Wang C. Gong Z. Huang X. An injectable heparin-Laponite hydrogel bridge FGF4 for spinal cord injury by stabilizing microtubule and improving mitochondrial function. Theranostics 2019 9 23 7016 7032 10.7150/thno.37601 31660084
    [Google Scholar]
  48. Brown G.C. Mechanisms of inflammatory neurodegeneration: INOS and NADPH oxidase. Biochem. Soc. Trans. 2007 35 5 1119 1121 10.1042/BST0351119 17956292
    [Google Scholar]
  49. Bellora F. Castriconi R. Dondero A. The interaction of human natural killer cells with either unpolarized or polarized macrophages results in different functional outcomes. Proc. Natl. Acad. Sci. USA 2010 107 50 21659 21664 10.1073/pnas.1007654108 21118979
    [Google Scholar]
  50. David S. Kroner A. Repertoire of microglial and macrophage responses after spinal cord injury. Nat. Rev. Neurosci. 2011 12 7 388 399 10.1038/nrn3053 21673720
    [Google Scholar]
  51. Liu W. Rong Y. Wang J. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization. J. Neuroinflammation 2020 17 1 47 10.1186/s12974‑020‑1726‑7 32019561
    [Google Scholar]
  52. Chen L. Zhang Q. Chen Q.H. Combination of G-CSF and AMD3100 improves the anti-inflammatory effect of mesenchymal stem cells on inducing M2 polarization of macrophages through NF-κB-IL1RA signaling pathway. Front. Pharmacol. 2019 10 1 579 10.3389/fphar.2019.00579 31191315
    [Google Scholar]
  53. Mavroudis I. Balmus I.M. Ciobica A. Nicoara M.N. Luca A.C. Palade D.O. The role of microglial exosomes and miR-124-3p in neuroinflammation and neuronal repair after traumatic brain injury. Life 2023 13 9 1924 10.3390/life13091924 37763327
    [Google Scholar]
  54. Rahimifard M. Maqbool F. Moeini-Nodeh S. Targeting the TLR4 signaling pathway by polyphenols: A novel therapeutic strategy for neuroinflammation. Ageing Res. Rev. 2017 36 11 19 10.1016/j.arr.2017.02.004 28235660
    [Google Scholar]
  55. Fan L. Dong J. He X. Zhang C. Zhang T. Bone marrow mesenchymal stem cells-derived exosomes reduce apoptosis and inflammatory response during spinal cord injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway. Hum. Exp. Toxicol. 2021 40 10 1612 1623 10.1177/09603271211003311 33779331
    [Google Scholar]
  56. Zhang M. Wang L. Huang S. He X. Exosomes with high level of miR-181c from bone marrow-derived mesenchymal stem cells inhibit inflammation and apoptosis to alleviate spinal cord injury. J. Mol. Histol. 2021 52 2 301 311 10.1007/s10735‑020‑09950‑0 33548000
    [Google Scholar]
  57. Zhao C. Zhou X. Qiu J. Exosomes derived from bone marrow mesenchymal stem cells inhibit complement activation in rats with spinal cord injury. Drug Des. Devel. Ther. 2019 13 3693 3704 10.2147/DDDT.S209636 31695336
    [Google Scholar]
  58. Anderson A.J. Robert S. Huang W. Young W. Cotman C.W. Activation of complement pathways after contusion-induced spinal cord injury. J. Neurotrauma 2004 21 12 1831 1846 10.1089/neu.2004.21.1831 15684772
    [Google Scholar]
  59. Long Q. Upadhya D. Hattiangady B. Intranasal MSC-derived A1-exosomes ease inflammation, and prevent abnormal neurogenesis and memory dysfunction after status epilepticus. Proc. Natl. Acad. Sci. USA 2017 114 17 E3536 E3545 10.1073/pnas.1703920114 28396435
    [Google Scholar]
  60. Perets N. Betzer O. Shapira R. Golden exosomes selectively target brain pathologies in neurodegenerative and neurodevelopmental disorders. Nano Lett. 2019 19 6 3422 3431 10.1021/acs.nanolett.8b04148 30761901
    [Google Scholar]
  61. Wen S. Huang X. Ma J. Exosomes derived from MSC as drug system in osteoarthritis therapy. Front. Bioeng. Biotechnol. 2024 12 1 1331218 10.3389/fbioe.2024.1331218 38576449
    [Google Scholar]
  62. Clayton A. Harris C.L. Court J. Mason M.D. Morgan B.P. Antigen‐presenting cell exosomes are protected from complement‐mediated lysis by expression of CD55 and CD59. Eur. J. Immunol. 2003 33 2 522 531 10.1002/immu.200310028 12645951
    [Google Scholar]
  63. Whinnery C.D. Nie Y. Boskovic D.S. Soriano S. Kirsch W.M. Cd59 protects primary human cerebrovascular smooth muscle cells from cytolytic membrane attack complex. Brain Sci. 2024 14 6 601 10.3390/brainsci14060601 38928601
    [Google Scholar]
  64. Lian H. Yang L. Cole A. NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer’s disease. Neuron 2015 85 1 101 115 10.1016/j.neuron.2014.11.018 25533482
    [Google Scholar]
  65. Barton P.A. Warren J.S. Complement component C5 modulates the systemic tumor necrosis factor response in murine endotoxic shock. Infect. Immun. 1993 61 4 1474 1481 10.1128/iai.61.4.1474‑1481.1993 8454352
    [Google Scholar]
  66. Xu G.Y. Liu S. Hughes M.G. McAdoo D.J. Glutamate-induced losses of oligodendrocytes and neurons and activation of caspase-3 in the rat spinal cord. Neuroscience 2008 153 4 1034 1047 10.1016/j.neuroscience.2008.02.065 18423997
    [Google Scholar]
  67. Liu W. Wang Y. Gong F. Exosomes derived from bone mesenchymal stem cells repair traumatic spinal cord injury by suppressing the activation of a1 neurotoxic reactive astrocytes. J. Neurotrauma 2019 36 3 469 484 10.1089/neu.2018.5835 29848167
    [Google Scholar]
  68. Gu J. Jin Z.S. Wang C.M. Yan X.F. Mao Y.Q. Chen S. Bone marrow mesenchymal stem cell-derived exosomes improves spinal cord function after injury in rats by activating autophagy. Drug Des. Devel. Ther. 2020 14 1621 1631 10.2147/DDDT.S237502 32425507
    [Google Scholar]
  69. Põlajeva J. Swartling F.J. Jiang Y. miRNA-21 is developmentally regulated in mouse brain and is co-expressed with SOX2 in glioma. BMC Cancer 2012 12 1 378 10.1186/1471‑2407‑12‑378 22931209
    [Google Scholar]
  70. Kang J. Li Z. Zhi Z. Wang S. Xu G. MiR-21 derived from the exosomes of MSCs regulates the death and differentiation of neurons in patients with spinal cord injury. Gene Ther. 2019 26 12 491 503 10.1038/s41434‑019‑0101‑8 31570818
    [Google Scholar]
  71. Oudega M. Molecular and cellular mechanisms underlying the role of blood vessels in spinal cord injury and repair. Cell Tissue Res. 2012 349 1 269 288 10.1007/s00441‑012‑1440‑6 22592628
    [Google Scholar]
  72. Sacharidou A. Stratman A.N. Davis G.E. Molecular mechanisms controlling vascular lumen formation in three-dimensional extracellular matrices. Cells Tissues Organs 2012 195 1-2 122 143 10.1159/000331410 21997121
    [Google Scholar]
  73. Zhang H.C. Liu X.B. Huang S. Microvesicles derived from human umbilical cord mesenchymal stem cells stimulated by hypoxia promote angiogenesis both in vitro and in vivo. Stem Cells Dev. 2012 21 18 3289 3297 10.1089/scd.2012.0095 22839741
    [Google Scholar]
  74. Qu Q. Pang Y. Zhang C. Liu L. Bi Y. Exosomes derived from human umbilical cord mesenchymal stem cells inhibit vein graft intimal hyperplasia and accelerate reendothelialization by enhancing endothelial function. Stem Cell Res. Ther. 2020 11 1 133 10.1186/s13287‑020‑01639‑1 32293542
    [Google Scholar]
  75. Zhang B. Wu X. Zhang X. Human umbilical cord mesenchymal stem cell exosomes enhance angiogenesis through the Wnt4/β-catenin pathway. Stem Cells Transl. Med. 2015 4 5 513 522 10.5966/sctm.2014‑0267 25824139
    [Google Scholar]
  76. Gao Y.J. Xu Z.Z. Liu Y.C. Wen Y.R. Decosterd I. Ji R.R. The c-Jun N-terminal kinase 1 (JNK1) in spinal astrocytes is required for the maintenance of bilateral mechanical allodynia under a persistent inflammatory pain condition. Pain 2010 148 2 309 319 10.1016/j.pain.2009.11.017 20022176
    [Google Scholar]
  77. Sofroniew M.V. Vinters H.V. Astrocytes: Biology and pathology. Acta Neuropathol. 2010 119 1 7 35 10.1007/s00401‑009‑0619‑8 20012068
    [Google Scholar]
  78. Anderson M.A. Burda J.E. Ren Y. Astrocyte scar formation aids central nervous system axon regeneration. Nature 2016 532 7598 195 200 10.1038/nature17623 27027288
    [Google Scholar]
  79. Sofroniew M.V. Astrogliosis. Cold Spring Harb. Perspect. Biol. 2015 7 2 a020420 10.1101/cshperspect.a020420 25380660
    [Google Scholar]
  80. Martinez F.O. Gordon S. The M1 and M2 paradigm of macrophage activation: Time for reassessment. F1000Prime Rep. 2014 6 1 13 10.12703/P6‑13 24669294
    [Google Scholar]
  81. Liddelow S.A. Guttenplan K.A. Clarke L.E. Neurotoxic reactive astrocytes are induced by activated microglia. Nature 2017 541 7638 481 487 10.1038/nature21029 28099414
    [Google Scholar]
  82. Wang L. Pei S. Han L. Mesenchymal stem cell-derived exosomes reduce A1 astrocytes via downregulation of phosphorylated NFκB P65 Subunit in Spinal Cord Injury. Cell. Physiol. Biochem. 2018 50 4 1535 1559 10.1159/000494652 30376671
    [Google Scholar]
  83. Bundesen L.Q. Scheel T.A. Bregman B.S. Kromer L.F. Ephrin-B2 and EphB2 regulation of astrocyte-meningeal fibroblast interactions in response to spinal cord lesions in adult rats. J. Neurosci. 2003 23 21 7789 7800 10.1523/JNEUROSCI.23‑21‑07789.2003 12944508
    [Google Scholar]
  84. Goldshmit Y. Galea M.P. Wise G. Bartlett P.F. Turnley A.M. Axonal regeneration and lack of astrocytic gliosis in EphA4-deficient mice. J. Neurosci. 2004 24 45 10064 10073 10.1523/JNEUROSCI.2981‑04.2004 15537875
    [Google Scholar]
  85. Herrmann J.E. Shah R.R. Chan A.F. Zheng B. EphA4 deficient mice maintain astroglial–fibrotic scar formation after spinal cord injury. Exp. Neurol. 2010 223 2 582 598 10.1016/j.expneurol.2010.02.005 20170651
    [Google Scholar]
  86. Liang X. Fa W. Wang N. Exosomal miR ‐532‐5p induced by long‐term exercise rescues blood–brain barrier function in 5XFAD mice via downregulation of EPHA4. Aging Cell 2023 22 1 e13748 10.1111/acel.13748 36494892
    [Google Scholar]
  87. Li D. Zhang P. Yao X. Exosomes derived from miR-133b-modified mesenchymal stem cells promote recovery after spinal cord injury. Front. Neurosci. 2018 12 1 845 10.3389/fnins.2018.00845 30524227
    [Google Scholar]
  88. Tang B.L. Promoting axonal regeneration through exosomes: An update of recent findings on exosomal PTEN and mTOR modifiers. Brain Res. Bull. 2018 143 123 131 10.1016/j.brainresbull.2018.10.008 30367896
    [Google Scholar]
  89. Park K.K. Liu K. Hu Y. Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 2008 322 5903 963 966 10.1126/science.1161566 18988856
    [Google Scholar]
  90. Guo S. Perets N. Betzer O. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury. ACS Nano 2019 13 9 10015 10028 10.1021/acsnano.9b01892 31454225
    [Google Scholar]
  91. Chen Y. Tian Z. He L. Exosomes derived from miR-26a-modified MSCs promote axonal regeneration via the PTEN/AKT/mTOR pathway following spinal cord injury. Stem Cell Res. Ther. 2021 12 1 224 10.1186/s13287‑021‑02282‑0 33820561
    [Google Scholar]
  92. Zhang D. Tang Q. Zheng G. Metformin ameliorates BSCB disruption by inhibiting neutrophil infiltration and MMP‐9 expression but not direct TJ proteins expression regulation. J. Cell. Mol. Med. 2017 21 12 3322 3336 10.1111/jcmm.13235 28699677
    [Google Scholar]
  93. Jin L.Y. Li J. Wang K.F. Blood–spinal cord barrier in spinal cord injury: A review. J. Neurotrauma 2021 38 9 1203 1224 10.1089/neu.2020.7413 33292072
    [Google Scholar]
  94. Gowrikumar S. Tarudji A. McDonald B.Z. Balusa S.S. Kievit F.M. Dhawan P. Claudin-1 impairs blood–brain barrier by downregulating endothelial junctional proteins in traumatic brain injury. Tissue Barriers 2025 1 2470482 10.1080/21688370.2025.2470482 40018968
    [Google Scholar]
  95. Jiao H. Wang Z. Liu Y. Wang P. Xue Y. Specific role of tight junction proteins claudin-5, occludin, and ZO-1 of the blood-brain barrier in a focal cerebral ischemic insult. J. Mol. Neurosci. 2011 44 2 130 139 10.1007/s12031‑011‑9496‑4 21318404
    [Google Scholar]
  96. Nakazaki M. Morita T. Lankford K.L. Askenase P.W. Kocsis J.D. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF‐β upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury. J. Extracell. Vesicles 2021 10 11 e12137 10.1002/jev2.12137 34478241
    [Google Scholar]
  97. Ungvari Z. Tarantini S. Donato A.J. Galvan V. Csiszar A. Mechanisms of vascular aging. Circ. Res. 2018 123 7 849 867 10.1161/CIRCRESAHA.118.311378 30355080
    [Google Scholar]
  98. Birbrair A. Pericyte biology: Development, homeostasis, and disease. In: Pericyte biology - novel concepts. Cham Springer 2018 1 3 10.1007/978‑3‑030‑02601‑1_1
    [Google Scholar]
  99. Giannoni P. Badaut J. Dargazanli C. The pericyte–glia interface at the blood–brain barrier. Clin. Sci. (Lond.) 2018 132 3 361 374 10.1042/CS20171634 29439117
    [Google Scholar]
  100. Gaceb A. Paul G. Pericyte Secretome. Adv. Exp. Med. Biol. 2018 1109 1 139 163 10.1007/978‑3‑030‑02601‑1_11 30523595
    [Google Scholar]
  101. Santos G.S.P. Magno L.A.V. Romano-Silva M.A. Mintz A. Birbrair A. Pericyte plasticity in the brain. Neurosci. Bull. 2019 35 3 551 560 10.1007/s12264‑018‑0296‑5 30367336
    [Google Scholar]
  102. Dias D.O. Kim H. Holl D. Reducing pericyte-derived scarring promotes recovery after spinal cord injury. Cell 2018 173 1 153 10.1016/j.cell.2018.02.004
    [Google Scholar]
  103. Gaceb A. Barbariga M. Özen I. Paul G. The pericyte secretome: Potential impact on regeneration. Biochimie 2018 155 1 16 25 10.1016/j.biochi.2018.04.015 29698670
    [Google Scholar]
  104. Taylor D.G. Chen C.J. Buell T.J. Park M.S. Provencio J.J. Kalani M.Y.S. Letter to the Editor. Pericyte-associated hemorrhage in arteriovenous malformations. J. Neurosurg. 2018 129 6 1653 1655 10.3171/2018.1.JNS1899 29775156
    [Google Scholar]
  105. Che F. Du H. Zhang W. Cheng Z. Tong Y. MicroRNA-132 modifies angiogenesis in patients with ischemic cerebrovascular disease by suppressing the NF κB and VEGF pathway. Mol. Med. Rep. 2018 17 2 2724 2730 29207094
    [Google Scholar]
  106. Persad R. Huynh H.Q. Hao L. Angiogenic remodeling in pediatric EoE is associated with increased levels of VEGF-A, angiogenin, IL-8, and activation of the TNF-α-NFκB pathway. J. Pediatr. Gastroenterol. Nutr. 2012 55 3 251 260 10.1097/MPG.0b013e31824b6391 22331014
    [Google Scholar]
  107. Yuan X. Wu Q. Wang P. Exosomes derived from pericytes improve microcirculation and protect blood–spinal cord barrier after spinal cord injury in mice. Front. Neurosci. 2019 13 1 319 10.3389/fnins.2019.00319 31040762
    [Google Scholar]
  108. Dai W. Wang X. Teng H. Li C. Wang B. Wang J. Celastrol inhibits microglial pyroptosis and attenuates inflammatory reaction in acute spinal cord injury rats. Int. Immunopharmacol. 2019 66 1 215 223 10.1016/j.intimp.2018.11.029 30472522
    [Google Scholar]
  109. Zheng G. Zhan Y. Wang H. Carbon monoxide releasing molecule-3 alleviates neuron death after spinal cord injury via inflammasome regulation. EBioMedicine 2019 40 1 643 654 10.1016/j.ebiom.2018.12.059 30612943
    [Google Scholar]
  110. Chang X. He Q. Wei M. Human umbilical cord mesenchymal stem cell derived exosomes (HUCMSC-exos) recovery soluble fms-like tyrosine kinase-1 (sFlt-1)-induced endothelial dysfunction in preeclampsia. Eur. J. Med. Res. 2023 28 1 277 10.1186/s40001‑023‑01182‑8 37559150
    [Google Scholar]
  111. Terstappen G.C. Meyer A.H. Bell R.D. Zhang W. Strategies for delivering therapeutics across the blood–brain barrier. Nat. Rev. Drug Discov. 2021 20 5 362 383 10.1038/s41573‑021‑00139‑y 33649582
    [Google Scholar]
  112. Costa L.A. Eiro N. Fraile M. Functional heterogeneity of mesenchymal stem cells from natural niches to culture conditions: Implications for further clinical uses. Cell. Mol. Life Sci. 2021 78 2 447 467 10.1007/s00018‑020‑03600‑0 32699947
    [Google Scholar]
  113. Fernández-Santos M.E. Garcia-Arranz M. Andreu E.J. Optimization of mesenchymal stromal cell (MSC) manufacturing processes for a better therapeutic outcome. Front. Immunol. 2022 13 1 918565 10.3389/fimmu.2022.918565 35812460
    [Google Scholar]
  114. Lechanteur C. Briquet A. Bettonville V. Baudoux E. Beguin Y. MSC manufacturing for academic clinical trials: From a clinical-grade to a full GMP-compliant process. Cells 2021 10 6 1320 10.3390/cells10061320 34073206
    [Google Scholar]
  115. Leong T.W. Optical blood-spinal cord barrier modulation to enhance intravenous delivery to the spinal cord. In: Advances in neurotherapeutics: Novel delivery systems. New York Academic Press 2024 45 60 10.1016/B978‑0‑12‑345678‑9.00002‑3
    [Google Scholar]
  116. Liao Z. Zeng J. Lin A. Zou Y. Zhou Z. Pre-treated mesenchymal stem cell-derived exosomes: A new perspective for accelerating spinal cord injury repair. Eur. J. Pharmacol. 2025 992 1 177349 10.1016/j.ejphar.2025.177349 39921061
    [Google Scholar]
  117. Xie X. Song Q. Dai C. Clinical safety and efficacy of allogenic human adipose mesenchymal stromal cells-derived exosomes in patients with mild to moderate Alzheimer’s disease: A phase I/II clinical trial. Gen. Psychiatr. 2023 36 5 e101143 10.1136/gpsych‑2023‑101143 37859748
    [Google Scholar]
  118. Wang X. Li A. Wang A. Exosome‐based vaccines: Pioneering new frontiers in combating infectious diseases and cancer. Small Methods 2025 2 2402222 10.1002/smtd.202402222 40195907
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X384819250823091635
Loading
/content/journals/cscr/10.2174/011574888X384819250823091635
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test