Skip to content
2000
image of Research Progress on Pancreatic Islet Organoids

Abstract

Background

Diabetes mellitus (DM) is a condition that arises from the dysfunction or disruption of pancreatic islets, characterized by elevated blood glucose levels. The advent and development of islet organoids have facilitated insulin-independent treatments and the reproduction of complex tissue or organ development.

Objective

This review focuses on the potential and value of islet organoids in both basic research and clinical applications, particularly in addressing the limitations of current diabetes treatments. We further discuss the structural characteristics of islets and explore various methods for obtaining seed cells, constructing organoids, and identifying factors that influence the formation and development of islet organoids.

Methods

The online databases, including Pubmed, Google Scholar, Science Direct, Web of Science, Embase, and reference lists were searched using the keywords diabetes mellitus, islet organoids, beta cells, material, development, three-dimensional, extracellular matrix, biomechanical, to identify published articles relevant to pancreatic islet organoids.

RESULTS

We examine the structural characteristics of islets and investigate various methods for obtaining seed cells, constructing organoids, and identifying factors that influence the formation and maturation of islet organoids.

DISCUSSION

To achieve a cure for diabetes, researchers have made significant efforts in islet transplantation and cell-derived insulin-secreting devices. However, organoids still require substantial improvements in cell sources, assembly techniques, and vascularization.

CONCLUSION

Islet organoids derived from stem cells may enable them to achieve insulin-independent regulation of blood glucose levels, thereby offering new hope for the individuals with diabetes.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X383245250617052324
2025-06-30
2025-09-15
Loading full text...

Full text loading...

References

  1. Gæde P. Lund-Andersen H. Parving H.H. Pedersen O. Effect of a multifactorial intervention on mortality in type 2 diabetes. N. Engl. J. Med. 2008 358 6 580 591 10.1056/NEJMoa0706245 18256393
    [Google Scholar]
  2. Pieńczykowska K. Bryl A. Mrugacz M. Link between metabolic syndrome, inflammation, and eye diseases. Int. J. Mol. Sci. 2025 26 5 2174 10.3390/ijms26052174 40076793
    [Google Scholar]
  3. Romero-Aroca P. de la Riva-Fernandez S. Valls-Mateu A. Sagarra-Alamo R. Moreno-Ribas A. Soler N. Puig D. Cost of diabetic retinopathy and macular oedema in a population, an eight year follow up. BMC Ophthalmol. 2016 16 1 136 10.1186/s12886‑016‑0318‑x 27491545
    [Google Scholar]
  4. Ma Y. Wang X. Lin S. King L. Liu L. The potential role of advanced glycation end products in the development of kidney disease. Nutrients 2025 17 5 758 10.3390/nu17050758 40077627
    [Google Scholar]
  5. Van Weyenbergh J. P Silva M.P. Báfica A. Cardoso S. Wietzerbin J. Barral-Netto M. IFN-beta and TGF-beta differentially regulate IL-12 activity in human peripheral blood mononuclear cells. Immunol. Lett. 2001 75 2 117 122 10.1016/S0165‑2478(00)00303‑5 11137135
    [Google Scholar]
  6. Bordács B. Várkonyi Á. Valkusz Z. Nyiraty S. Pósa A. Menyhárt A. Lengyel C. Kempler P. Kupai K. Várkonyi T. Comprehensive assessment of neuropathy and metabolic parameters in type 1 diabetic patients with or without using continuous glucose sensors. Int. J. Mol. Sci. 2025 26 5 2062 10.3390/ijms26052062 40076685
    [Google Scholar]
  7. Boulton A.J.M. Vinik A.I. Arezzo J.C. Bril V. Feldman E.L. Freeman R. Malik R.A. Maser R.E. Sosenko J.M. Ziegler D. Diabetic neuropathies. Diabetes Care 2005 28 4 956 962 10.2337/diacare.28.4.956 15793206
    [Google Scholar]
  8. Sepahdar A. Rahnamafar R. Bahadorikhalili S. Azadbakht K. Eslami O. Rezvanfar M.A. Rezaei G. Javar H.A. Metformin and silymarin loaded onto poly(caprolactone)/chitosan polymeric nanofiber based pads for diabetic wound healing. New J. Chem. 2024 48 22 10314 10323 10.1039/D3NJ05628G
    [Google Scholar]
  9. Chen J. Luo M. Chen Y. Xing Z. Peng C. Li D. Smart macrophage-targeting wound dressings accelerate diabetic wound healing. Chem. Eng. J. 2024 500 156860 10.1016/j.cej.2024.156860
    [Google Scholar]
  10. Shapiro A.M.J. Lakey J.R.T. Ryan E.A. Korbutt G.S. Toth E. Warnock G.L. Kneteman N.M. Rajotte R.V. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 2000 343 4 230 238 10.1056/NEJM200007273430401 10911004
    [Google Scholar]
  11. Li Y. Xu M. Chen J. Huang J. Cao J. Chen H. Zhang J. Luo Y. Wang Y. Sun J. Ameliorating and refining islet organoids to illuminate treatment and pathogenesis of diabetes mellitus. Stem Cell Res. Ther. 2024 15 1 188 10.1186/s13287‑024‑03780‑7 38937834
    [Google Scholar]
  12. Zhang T. Wang N. Liao Z. Chen J. Meng H. Lin H. Xu T. Chen L. Zhu L.Q. Liu H. A differentiation protocol for generating pancreatic delta cells from human pluripotent stem cells. Front. Cell Dev. Biol. 2024 12 1490040 10.3389/fcell.2024.1490040 39493348
    [Google Scholar]
  13. Magliano D.J. Boyko E.J. IDF diabetes atlas. 2021 Available from: https://diabetesatlas.org/
  14. Ilonen J. Lempainen J. Veijola R. The heterogeneous pathogenesis of type 1 diabetes mellitus. Nat. Rev. Endocrinol. 2019 15 11 635 650 10.1038/s41574‑019‑0254‑y 31534209
    [Google Scholar]
  15. Lernmark Å. Type 1 diabetes. Clin. Chem. 1999 45 8 1331 1338 10.1093/clinchem/45.8.1331 10430815
    [Google Scholar]
  16. Lam T.K.T. Cherney D.Z.I. Beta cell preservation in patients with type 1 diabetes. Nat. Med. 2018 24 8 1089 1090 10.1038/s41591‑018‑0144‑1 30082859
    [Google Scholar]
  17. Wagenknecht L.E. Lawrence J.M. Isom S. Jensen E.T. Dabelea D. Liese A.D. Dolan L.M. Shah A.S. Bellatorre A. Sauder K. Marcovina S. Reynolds K. Pihoker C. Imperatore G. Divers J. Trends in incidence of youth-onset type 1 and type 2 diabetes in the USA, 2002–18: Results from the population-based SEARCH for Diabetes in Youth study. Lancet Diabetes Endocrinol. 2023 11 4 242 250 10.1016/S2213‑8587(23)00025‑6 36868256
    [Google Scholar]
  18. Eizirik D.L. Pasquali L. Cnop M. Pancreatic β-cells in type 1 and type 2 diabetes mellitus: Different pathways to failure. Nat. Rev. Endocrinol. 2020 16 7 349 362 10.1038/s41574‑020‑0355‑7 32398822
    [Google Scholar]
  19. Dolenšek J. Rupnik M.S. Stožer A. Structural similarities and differences between the human and the mouse pancreas. Islets 2015 7 1 1024405 10.1080/19382014.2015.1024405 26030186
    [Google Scholar]
  20. Fu Q. Jiang H. Qian Y. Lv H. Dai H. Zhou Y. Chen Y. He Y. Gao R. Zheng S. Liang Y. Li S. Xu X. Xu K. Yang T. Single-cell RNA sequencing combined with single-cell proteomics identifies the metabolic adaptation of islet cell subpopulations to high-fat diet in mice. Diabetologia 2023 66 4 724 740 10.1007/s00125‑022‑05849‑5 36538064
    [Google Scholar]
  21. Briant L.J.B. Reinbothe T.M. Spiliotis I. Miranda C. Rodriguez B. Rorsman P. δ‐cells and β‐cells are electrically coupled and regulate α‐cell activity via somatostatin. J. Physiol. 2018 596 2 197 215 10.1113/JP274581 28975620
    [Google Scholar]
  22. Mandarim-de-Lacerda C.A. Pancreatic islet (of Langerhans) revisited. Histol. Histopathol. 2019 34 9 985 993 31020988
    [Google Scholar]
  23. Jansson L. Carlsson P.O. Pancreatic blood flow with special emphasis on blood perfusion of the islets of langerhans. Compr. Physiol. 2019 9 2 799 837 10.1002/j.2040‑4603.2019.tb00068.x 30892693
    [Google Scholar]
  24. Nair G. Hebrok M. Islet formation in mice and men: Lessons for the generation of functional insulin-producing β-cells from human pluripotent stem cells. Curr. Opin. Genet. Dev. 2015 32 171 180 10.1016/j.gde.2015.03.004 25909383
    [Google Scholar]
  25. Corrò C. Novellasdemunt L. Li V.S.W. A brief history of organoids. Am. J. Physiol. Cell Physiol. 2020 319 1 C151 C165 10.1152/ajpcell.00120.2020 32459504
    [Google Scholar]
  26. Smirnov A. Melino G. Candi E. Gene expression in organoids: An expanding horizon. Biol. Direct 2023 18 1 11 10.1186/s13062‑023‑00360‑2 36964575
    [Google Scholar]
  27. Yang L. Han Y. Zhang T. Dong X. Ge J. Roy A. Zhu J. Lu T. Jeya Vandana J. de Silva N. Robertson C.C. Xiang J.Z. Pan C. Sun Y. Que J. Evans T. Liu C. Wang W. Naji A. Parker S.C.J. Schwartz R.E. Chen S. Human vascularized macrophage-islet organoids to model immune-mediated pancreatic β cell pyroptosis upon viral infection. Cell Stem Cell 2024 31 11 1612 1629.e8 10.1016/j.stem.2024.08.007 39232561
    [Google Scholar]
  28. Ringel T. Frey N. Ringnalda F. Janjuha S. Cherkaoui S. Butz S. Srivatsa S. Pirkl M. Russo G. Villiger L. Rogler G. Clevers H. Beerenwinkel N. Zamboni N. Baubec T. Schwank G. Genome-scale CRISPR screening in human intestinal organoids identifies drivers of TGF-β resistance. Cell Stem Cell 2020 26 3 431 440.e8 10.1016/j.stem.2020.02.007 32142663
    [Google Scholar]
  29. Driehuis E. Kretzschmar K. Clevers H. Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc. 2020 15 10 3380 3409 10.1038/s41596‑020‑0379‑4 32929210
    [Google Scholar]
  30. Baptista L.S. Mironov V. Koudan E. Amorim É.A. Pampolha T.P. Kasyanov V. Kovalev A. Senatov F. Granjeiro J.M. Bioprinting using organ building blocks: Spheroids, organoids, and assembloids. Tissue Eng. Part A 2024 30 13-14 377 386 10.1089/ten.tea.2023.0198 38062998
    [Google Scholar]
  31. Lancaster M.A. Knoblich J.A. Organogenesis in a dish: Modeling development and disease using organoid technologies. Science 2014 345 6194 1247125 10.1126/science.1247125 25035496
    [Google Scholar]
  32. Camp J.G. Sekine K. Gerber T. Loeffler-Wirth H. Binder H. Gac M. Kanton S. Kageyama J. Damm G. Seehofer D. Belicova L. Bickle M. Barsacchi R. Okuda R. Yoshizawa E. Kimura M. Ayabe H. Taniguchi H. Takebe T. Treutlein B. Multilineage communication regulates human liver bud development from pluripotency. Nature 2017 546 7659 533 538 10.1038/nature22796 28614297
    [Google Scholar]
  33. Liu Y.H. Chung M.T. Lin H.C. Lee T.A. Cheng Y.J. Huang C.C. Wu H.M. Tung Y.C. Shaping early neural development by timed elevated tissue oxygen tension: Insights from multiomic analysis on human cerebral organoids. Sci. Adv. 2025 11 11 eado1164 10.1126/sciadv.ado1164 40073136
    [Google Scholar]
  34. Childs C.J. Poling H.M. Chen K. Tsai Y.H. Wu A. Vallie A. Eiken M.K. Huang S. Sweet C.W. Schreiner R. Xiao Z. Spencer R.C. Paris S.A. Conchola A.S. Villanueva J.W. Anderman M.F. Holloway E.M. Singh A. Giger R.J. Mahe M.M. Loebel C. Helmrath M.A. Walton K.D. Rafii S. Spence J.R. Coordinated differentiation of human intestinal organoids with functional enteric neurons and vasculature. Cell Stem Cell 2025 32 4 640 651.e9 10.1016/j.stem.2025.02.007 40043706
    [Google Scholar]
  35. Zou R.Q. Dai Y.S. Liu F. Yang S.Q. Hu H.J. Li F.Y. Hepatobiliary organoid research: The progress and applications. Front. Pharmacol. 2025 16 1473863 10.3389/fphar.2025.1473863 40008122
    [Google Scholar]
  36. Wang Y. Hou Y. Hao T. Garcia-Contreras M. Li G. Cretoiu D. Xiao J. Model construction and clinical therapeutic potential of engineered cardiac organoids for cardiovascular diseases. Biomater Transl. 2024 5 4 337 354 39872935
    [Google Scholar]
  37. D’Amour K.A. Bang A.G. Eliazer S. Kelly O.G. Agulnick A.D. Smart N.G. Moorman M.A. Kroon E. Carpenter M.K. Baetge E.E. Production of pancreatic hormone–expressing endocrine cells from human embryonic stem cells. Nat. Biotechnol. 2006 24 11 1392 1401 10.1038/nbt1259 17053790
    [Google Scholar]
  38. Kroon E. Martinson L.A. Kadoya K. Bang A.G. Kelly O.G. Eliazer S. Young H. Richardson M. Smart N.G. Cunningham J. Agulnick A.D. D’Amour K.A. Carpenter M.K. Baetge E.E. Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat. Biotechnol. 2008 26 4 443 452 10.1038/nbt1393 18288110
    [Google Scholar]
  39. Rezania A. Bruin J.E. Riedel M.J. Mojibian M. Asadi A. Xu J. Gauvin R. Narayan K. Karanu F. O’Neil J.J. Ao Z. Warnock G.L. Kieffer T.J. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 2012 61 8 2016 2029 10.2337/db11‑1711 22740171
    [Google Scholar]
  40. Rezania A. Bruin J.E. Arora P. Rubin A. Batushansky I. Asadi A. O’Dwyer S. Quiskamp N. Mojibian M. Albrecht T. Yang Y.H.C. Johnson J.D. Kieffer T.J. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotechnol. 2014 32 11 1121 1133 10.1038/nbt.3033 25211370
    [Google Scholar]
  41. Pagliuca F.W. Millman J.R. Gürtler M. Segel M. Van Dervort A. Ryu J.H. Peterson Q.P. Greiner D. Melton D.A. Generation of functional human pancreatic β cells in vitro. Cell 2014 159 2 428 439 10.1016/j.cell.2014.09.040 25303535
    [Google Scholar]
  42. Velazco-Cruz L. Song J. Maxwell K.G. Goedegebuure M.M. Augsornworawat P. Hogrebe N.J. Millman J.R. Acquisition of dynamic function in human stem cell-derived β cells. Stem Cell Reports 2019 12 2 351 365 10.1016/j.stemcr.2018.12.012 30661993
    [Google Scholar]
  43. Peterson Q.P. Veres A. Chen L. Slama M.Q. Kenty J.H.R. Hassoun S. Brown M.R. Dou H. Duffy C.D. Zhou Q. Matveyenko A.V. Tyrberg B. Sörhede-Winzell M. Rorsman P. Melton D.A. A method for the generation of human stem cell-derived alpha cells. Nat. Commun. 2020 11 1 2241 10.1038/s41467‑020‑16049‑3 32382023
    [Google Scholar]
  44. Rorsman P. Huising M.O. The somatostatin-secreting pancreatic δ- cell in health and disease. Nat. Rev. Endocrinol. 2018 14 7 404 414 10.1038/s41574‑018‑0020‑6 29773871
    [Google Scholar]
  45. Pan F.C. Brissova M. Powers A.C. Pfaff S. Wright C.V.E. Inactivating the permanent neonatal diabetes gene Mnx1 switches insulin-producing β-cells to a δ-like fate and reveals a facultative proliferative capacity in aged β-cells. Development 2015 142 21 3637 3648 10.1242/dev.126011 26534984
    [Google Scholar]
  46. Gu L. Cui X. Lang S. Wang H. Hong T. Wei R. Glucagon receptor antagonism increases mouse pancreatic δ-cell mass through cell proliferation and duct-derived neogenesis. Biochem. Biophys. Res. Commun. 2019 512 4 864 870 10.1016/j.bbrc.2019.03.148 30929915
    [Google Scholar]
  47. Russ H.A. Parent A.V. Ringler J.J. Hennings T.G. Nair G.G. Shveygert M. Guo T. Puri S. Haataja L. Cirulli V. Blelloch R. Szot G.L. Arvan P. Hebrok M. Controlled induction of human pancreatic progenitors produces functional beta‐like cells in vitro. EMBO J. 2015 34 13 1759 1772 10.15252/embj.201591058 25908839
    [Google Scholar]
  48. Wesolowska-Andersen A. Jensen R.R. Alcántara M.P. Beer N.L. Duff C. Nylander V. Gosden M. Witty L. Bowden R. McCarthy M.I. Hansson M. Gloyn A.L. Honore C. Analysis of differentiation protocols defines a common pancreatic progenitor molecular signature and guides refinement of endocrine differentiation. Stem Cell Reports 2020 14 1 138 153 10.1016/j.stemcr.2019.11.010 31883919
    [Google Scholar]
  49. Wu H. Feng E. Yin H. Zhang Y. Chen G. Zhu B. Yue X. Zhang H. Liu Q. Xiong L. Biomaterials for neuroengineering: Applications and challenges. Regen. Biomater. 2025 12 rbae137 10.1093/rb/rbae137 40007617
    [Google Scholar]
  50. Zhang Y. Li L. Dong L. Cheng Y. Huang X. Xue B. Jiang C. Cao Y. Yang J. Hydrogel-Based Strategies for Liver Tissue Engineering. Chem & Bio Engineering 2024 1 11 887 915 10.1021/cbe.4c00079 39975572
    [Google Scholar]
  51. Wimmers D.G. Huebner K. Dale T. Papargyriou A. Reichert M. Hartmann A. Schneider-Stock R. A floating collagen matrix triggers ring formation and stemness characteristics in human colorectal cancer organoids. Pathol. Res. Pract. 2025 269 155890 10.1016/j.prp.2025.155890 40073643
    [Google Scholar]
  52. Wan J. Xu Y. Qi T. Xue X. Li Y. Huang M. Guo Y. Guo Q. Lu Y. Huang Y. AG73-GelMA/AlgMA hydrogels provide a stable microenvironment for the generation of pancreatic progenitor organoids. J. Nanobiotechnology 2025 23 1 149 152 10.1186/s12951‑025‑03266‑5 40016740
    [Google Scholar]
  53. Zhao Y. Gong J. Liu H. Huang H. Tan W. Cai H. A chemically defined, mechanically tunable, and bioactive hyaluronic acid/alginate double-network hydrogel for liver cancer organoid construction. Int. J. Biol. Macromol. 2024 282 Pt 2 136707 10.1016/j.ijbiomac.2024.136707 39442832
    [Google Scholar]
  54. Li J. Hietel B. Brunk M.G.K. Reimers A. Willems C. Groth T. Cynis H. Adelung R. Schütt F. Sacher W.D. Poon J.K.S. 3D-printed microstructured alginate scaffolds for neural tissue engineering. Trends Biotechnol. 2025 43 2 447 461 10.1016/j.tibtech.2024.10.013 39658448
    [Google Scholar]
  55. Wen Z. Orduno M. Liang Z. Gong X. Mak M. Optimization of vascularized intestinal organoid model. Adv. Healthc. Mater. 2024 13 31 2400977 10.1002/adhm.202400977 39091070
    [Google Scholar]
  56. She W. Shen C. Xue Z. Zhang B. Zhang G. Meng Q. Hydrogel Strain Sensors for Integrating Into Dynamic Organ‐on‐a‐Chip. Small 2025 21 7 2407704 10.1002/smll.202407704 39846814
    [Google Scholar]
  57. Slaby E.M. Hansen N. Sharma R. Engineered 3D hydrogel matrices to modulate trophoblast stem cell-derived placental organoid phenotype. bioRxiv 2024 2024.05.13.594007 10.1101/2024.05.13.594007
    [Google Scholar]
  58. Zhang M. Yuan F. Jia H. Xu Y. Yan L. Zhang T. Xu X. Liu Y. Wang X. Li D. Rapidly in situ forming antibiotic-free injectable hydrogel wound dressing for eradicating drug-resistant bacterial infections in human skin organoids. Int. J. Biol. Macromol. 2024 282 Pt 6 137542 10.1016/j.ijbiomac.2024.137542 39537051
    [Google Scholar]
  59. Shkumatov A. Baek K. Kong H. Matrix rigidity-modulated cardiovascular organoid formation from embryoid bodies. PLoS One 2014 9 4 94764 10.1371/journal.pone.0094764 24732893
    [Google Scholar]
  60. Hogrebe N.J. Augsornworawat P. Maxwell K.G. Velazco-Cruz L. Millman J.R. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells. Nat. Biotechnol. 2020 38 4 460 470 10.1038/s41587‑020‑0430‑6 32094658
    [Google Scholar]
  61. Kim Y. Kim H. Ko U.H. Oh Y. Lim A. Sohn J.W. Shin J.H. Kim H. Han Y.M. Islet-like organoids derived from human pluripotent stem cells efficiently function in the glucose responsiveness in vitro and in vivo. Sci. Rep. 2016 6 1 35145 10.1038/srep35145 27731367
    [Google Scholar]
  62. Rahimnejad M. Rasouli F. Jahangiri S. Ahmadi S. Rabiee N. Ramezani Farani M. Akhavan O. Asadnia M. Fatahi Y. Hong S. Lee J. Lee J. Hahn S.K. Engineered biomimetic membranes for organ-on-a-chip. ACS Biomater. Sci. Eng. 2022 8 12 5038 5059 10.1021/acsbiomaterials.2c00531 36347501
    [Google Scholar]
  63. Tao T. Wang Y. Chen W. Li Z. Su W. Guo Y. Deng P. Qin J. Engineering human islet organoids from iPSCs using an organ-on-chip platform. Lab Chip 2019 19 6 948 958 10.1039/C8LC01298A 30719525
    [Google Scholar]
  64. Jun Y. Kim M.J. Hwang Y.H. Jeon E.A. Kang A.R. Lee S.H. Lee D.Y. Microfluidics-generated pancreatic islet microfibers for enhanced immunoprotection. Biomaterials 2013 34 33 8122 8130 10.1016/j.biomaterials.2013.07.079 23927952
    [Google Scholar]
  65. Tao T. Deng P. Wang Y. Zhang X. Guo Y. Chen W. Qin J. Microengineered multi‐organoid system from hipscs to recapitulate human liver‐islet axis in normal and type 2 diabetes. Adv. Sci. 2022 9 5 2103495 10.1002/advs.202103495 34951149
    [Google Scholar]
  66. Chu X. Zhou Z. Qian X. Shen H. Cheng H. Zhang J. Functional regeneration strategies of hair follicles: Advances and challenges. Stem Cell Res. Ther. 2025 16 1 77 81 10.1186/s13287‑025‑04210‑y 39985119
    [Google Scholar]
  67. Jiang S. Zhao H. Zhang W. Wang J. Liu Y. Cao Y. Zheng H. Hu Z. Wang S. Zhu Y. Wang W. Cui S. Lobie P.E. Huang L. Ma S. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity. Cell Rep. Med. 2020 1 9 100161 10.1016/j.xcrm.2020.100161 33377132
    [Google Scholar]
  68. Inagaki N.F. Oki Y. Ikeda S. Tulakarnwong S. Shinohara M. Inagaki F.F. Ohta S. Kokudo N. Sakai Y. Ito T. Transplantation of pancreatic beta-cell spheroids in mice via non-swellable hydrogel microwells composed of poly(HEMA- co -GelMA). Biomater. Sci. 2024 12 17 4354 4362 10.1039/D4BM00295D 38967234
    [Google Scholar]
  69. Gan Z. Qin X. Liu H. Liu J. Qin J. Recent advances in defined hydrogels in organoid research. Bioact. Mater. 2023 28 386 401 10.1016/j.bioactmat.2023.06.004 37334069
    [Google Scholar]
  70. Luo L. Liu L. Ding Y. Dong Y. Ma M. Advances in biomimetic hydrogels for organoid culture. Chem. Commun. 2023 59 64 9675 9686 10.1039/D3CC01274C 37455615
    [Google Scholar]
  71. Aisenbrey E.A. Murphy W.L. Synthetic alternatives to Matrigel. Nat. Rev. Mater. 2020 5 7 539 551 10.1038/s41578‑020‑0199‑8 32953138
    [Google Scholar]
  72. Bergenheim F. Fregni G. Buchanan C.F. Riis L.B. Heulot M. Touati J. Seidelin J.B. Rizzi S.C. Nielsen O.H. A fully defined 3D matrix for ex vivo expansion of human colonic organoids from biopsy tissue. Biomaterials 2020 262 120248 10.1016/j.biomaterials.2020.120248 32891909
    [Google Scholar]
  73. Patel S.N. Ishahak M. Chaimov D. Velraj A. LaShoto D. Hagan D.W. Buchwald P. Phelps E.A. Agarwal A. Stabler C.L. Organoid microphysiological system preserves pancreatic islet function within 3D matrix. Sci. Adv. 2021 7 7 eaba5515 10.1126/sciadv.aba5515 33579705
    [Google Scholar]
  74. Birgul Akolpoglu M. Inceoglu Y. Kizilel S. An all-aqueous approach for physical immobilization of PEG-lipid microgels on organoid surfaces. Colloids Surf. B Biointerfaces 2020 186 110708 10.1016/j.colsurfb.2019.110708 31838268
    [Google Scholar]
  75. Wang D. Guo Y. Zhu J. Liu F. Xue Y. Huang Y. Zhu B. Wu D. Pan H. Gong T. Lu Y. Yang Y. Wang Z. Hyaluronic acid methacrylate/pancreatic extracellular matrix as a potential 3D printing bioink for constructing islet organoids. Acta Biomater. 2023 165 86 101 10.1016/j.actbio.2022.06.036 35803504
    [Google Scholar]
  76. Wang Y. Li H. Zhang J. Chen M. Pan Y. Lou X. 3D Bioprinting inner ear organ of corti organoids induce hair cell regeneration. J. Biomed. Mater. Res. A 2025 113 3 37892 10.1002/jbm.a.37892 40033804
    [Google Scholar]
  77. Wang H. Liu H. Zhang X. Wang Y. Zhao M. Chen W. Qin J. One-step generation of aqueous- droplet-filled hydrogel fibers as organoid carriers using an all-in-water microfluidic system. ACS Appl. Mater. Interfaces 2021 13 2 3199 3208 10.1021/acsami.0c20434 33405509
    [Google Scholar]
  78. Hassanajili S. Karami-Pour A. Oryan A. Talaei-Khozani T. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Mater. Sci. Eng. C 2019 104 109960 10.1016/j.msec.2019.109960 31500051
    [Google Scholar]
  79. Lewis P.L. Green R.M. Shah R.N. 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater. 2018 69 63 70 10.1016/j.actbio.2017.12.042 29317370
    [Google Scholar]
  80. Kanninen L.K. Harjumäki R. Peltoniemi P. Bogacheva M.S. Salmi T. Porola P. Niklander J. Smutný T. Urtti A. Yliperttula M.L. Lou Y.R. Laminin-511 and laminin-521-based matrices for efficient hepatic specification of human pluripotent stem cells. Biomaterials 2016 103 86 100 10.1016/j.biomaterials.2016.06.054 27372423
    [Google Scholar]
  81. Malchesky P.S. Artificial organs 2019: A year in review. Artif. Organs 2020 44 3 314 338 10.1111/aor.13650 31965582
    [Google Scholar]
  82. Tsakiridis A. Huang Y. Blin G. Skylaki S. Wymeersch F. Osorno R. Economou C. Karagianni E. Zhao S. Lowell S. Wilson V. Distinct Wnt-driven primitive streak-like populations reflect in vivo lineage precursors. Development 2015 142 4 809 10.1242/dev.122093 25670799
    [Google Scholar]
  83. Jennings R.E. Berry A.A. Strutt J.P. Gerrard D.T. Hanley N.A. Human pancreas development. Development 2015 142 18 3126 3137 10.1242/dev.120063 26395141
    [Google Scholar]
  84. Yuan S. Schoenwolf G.C. Islet-1 marks the early heart rudiments and is asymmetrically expressed during early rotation of the foregut in the chick embryo. Anat. Rec. 2000 260 2 204 207 10.1002/1097‑0185(20001001)260:2<204::AID‑AR90>3.0.CO;2‑5 10993956
    [Google Scholar]
  85. Zhou Q. Melton D.A. Pancreas regeneration. Nature 2018 557 7705 351 358 10.1038/s41586‑018‑0088‑0 29769672
    [Google Scholar]
  86. Habener J.F. Kemp D.M. Thomas M.K. Minireview: Transcriptional regulation in pancreatic development. Endocrinology 2005 146 3 1025 1034 10.1210/en.2004‑1576 15604203
    [Google Scholar]
  87. Sherwood R.I. Chen T.Y.A. Melton D.A. Transcriptional dynamics of endodermal organ formation. Dev. Dyn. 2009 238 1 29 42 10.1002/dvdy.21810 19097184
    [Google Scholar]
  88. Shih H.P. Wang A. Sander M. Pancreas organogenesis: From lineage determination to morphogenesis. Annu. Rev. Cell Dev. Biol. 2013 29 1 81 105 10.1146/annurev‑cellbio‑101512‑122405 23909279
    [Google Scholar]
  89. Mailand E. Özelçi E. Kim J. Rüegg M. Chaliotis O. Märki J. Bouklas N. Sakar M.S. Tissue engineering with mechanically induced solid‐fluid transitions. Adv. Mater. 2022 34 2 2106149 10.1002/adma.202106149 34648197
    [Google Scholar]
  90. Gjorevski N. Sachs N. Manfrin A. Giger S. Bragina M.E. Ordóñez-Morán P. Clevers H. Lutolf M.P. Designer matrices for intestinal stem cell and organoid culture. Nature 2016 539 7630 560 564 10.1038/nature20168 27851739
    [Google Scholar]
  91. Soetedjo A.A.P. Lee J.M. Lau H.H. Goh G.L. An J. Koh Y. Yeong W.Y. Teo A.K.K. Tissue engineering and 3D printing of bioartificial pancreas for regenerative medicine in diabetes. Trends Endocrinol. Metab. 2021 32 8 609 622 10.1016/j.tem.2021.05.007 34154916
    [Google Scholar]
  92. Li Y. Chen M. Hu J. Sheng R. Lin Q. He X. Guo M. Volumetric compression induces intracellular crowding to control intestinal organoid growth via Wnt/β- catenin signaling. Cell. Stem. Cell. 2021 28 1 170 172 10.1016/j.stem.2020.12.003 33417868
    [Google Scholar]
  93. Yap K.K. Gerrand Y.W. Dingle A.M. Yeoh G.C. Morrison W.A. Mitchell G.M. Liver sinusoidal endothelial cells promote the differentiation and survival of mouse vascularised hepatobiliary organoids. Biomaterials 2020 251 120091 10.1016/j.biomaterials.2020.120091 32408048
    [Google Scholar]
  94. Jung D.J. Byeon J.H. Jeong G.S. Flow enhances phenotypic and maturation of adult rat liver organoids. Biofabrication 2020 12 4 045035 10.1088/1758‑5090/abb538 33000764
    [Google Scholar]
  95. Liu Z. Fu J. Yuan H. Ma B. Cao Z. Chen Y. Xing C. Niu X. Li N. Wang H. An H. Polyisocyanide hydrogels with tunable nonlinear elasticity mediate liver carcinoma cell functional response. Acta Biomater. 2022 148 152 162 10.1016/j.actbio.2022.06.022 35718101
    [Google Scholar]
  96. Hua H. Wang Y. Wang X. Wang S. Zhou Y. Liu Y. Liang Z. Ren H. Lu S. Wu S. Jiang Y. Pu Y. Zheng X. Tang C. Shen Z. Li C. Du Y. Deng H. Remodeling ceramide homeostasis promotes functional maturation of human pluripotent stem cell-derived β cells. Cell Stem Cell 2024 31 6 850 865.e10 10.1016/j.stem.2024.04.010 38697109
    [Google Scholar]
  97. Li Y. Zheng R. Jiang L. Yan C. Liu R. Chen L. Jin W. Luo Y. Zhang X. Tang J. Dai Z. Jiang W. A noncoding variant confers pancreatic differentiation defect and contributes to diabetes susceptibility by recruiting RXRA. Nat. Commun. 2024 15 1 9771 10.1038/s41467‑024‑54151‑y 39532884
    [Google Scholar]
  98. Maghsoudi S. Taghavi Shahraki B. Rameh F. Nazarabi M. Fatahi Y. Akhavan O. Rabiee M. Mostafavi E. Lima E.C. Saeb M.R. Rabiee N. A review on computer‐aided chemogenomics and drug repositioning for rational COVID ‐19 drug discovery. Chem. Biol. Drug Des. 2022 100 5 699 721 10.1111/cbdd.14136 36002440
    [Google Scholar]
  99. Kung Y.T. Du Y.C. Huang W.T. Chen C.C. Ke L.T. Total synthesis of crystalline bovine insulin. Sci. Sin. 1965 14 11 1710 1716 5881570
    [Google Scholar]
  100. Verhoeff K. Marfil-Garza B.A. Shapiro A.M.J. Update on islet cell transplantation. Curr. Opin. Organ Transplant. 2021 26 4 397 404 10.1097/MOT.0000000000000891 34148980
    [Google Scholar]
  101. Peloso A. Citro A. Zoro T. Cobianchi L. Kahler-Quesada A. Bianchi C.M. Andres A. Berishvili E. Piemonti L. Berney T. Toso C. Oldani G. Regenerative medicine and diabetes: Targeting the extracellular matrix beyond the stem cell approach and encapsulation technology. Front. Endocrinol. 2018 9 445 10.3389/fendo.2018.00445 30233489
    [Google Scholar]
  102. Bruni A. Gala-Lopez B. Pepper A.R. Abualhassan N.S. Shapiro A.J. Islet cell transplantation for the treatment of type 1 diabetes: Recent advances and future challenges. Diabetes Metab. Syndr. Obes. 2014 7 211 223 25018643
    [Google Scholar]
  103. Wang S. Du Y. Zhang B. Meng G. Liu Z. Liew S.Y. Liang R. Zhang Z. Cai X. Wu S. Gao W. Zhuang D. Zou J. Huang H. Wang M. Wang X. Wang X. Liang T. Liu T. Gu J. Liu N. Wei Y. Ding X. Pu Y. Zhan Y. Luo Y. Sun P. Xie S. Yang J. Weng Y. Zhou C. Wang Z. Wang S. Deng H. Shen Z. Transplantation of chemically induced pluripotent stem-cell-derived islets under abdominal anterior rectus sheath in a type 1 diabetes patient. Cell 2024 187 22 6152 6164.e18 10.1016/j.cell.2024.09.004 39326417
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X383245250617052324
Loading
/content/journals/cscr/10.2174/011574888X383245250617052324
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test