Skip to content
2000
image of Umbilical Cord Mesenchymal Stem Cells as a Meritorious Option to Treat Psoriasis

Abstract

Psoriasis is a chronic immune-mediated disease that affects a significant percentage of the global population. The pathogenesis of psoriasis involves the rapid turnover of skin cells and immune system dysregulation, particularly the T cell-mediated autoimmune response. Conventional treatments for Psoriasis include topical therapy, light therapy (phototherapy), and systemic medications; however, some limitations and diverse side effects have been mentioned for their usage. Therefore, increasing attention is being directed toward finding alternative therapeutic methods for psoriasis. Recently, Umbilical Cord Mesenchymal Stem Cells (UC-MSCs) have gained attention for their potential in treating various diseases, including autoimmune disorders, cardiovascular conditions, and metabolic disorders. Multiple advantages have been reported for UC-MSCs, including non-invasive collection, low immunogenicity, and minimal ethical issues. The aim of this review was to explore the potential of UC-MSCs in the treatment of psoriasis.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X382147250801101300
2025-08-11
2026-01-02
Loading full text...

Full text loading...

References

  1. Boehncke W.H. Schön M.P. Psoriasis. Lancet 2015 386 9997 983 994 10.1016/S0140‑6736(14)61909‑7 26025581
    [Google Scholar]
  2. Damiani G. Bragazzi N.L. Karimkhani Aksut C. The global, regional, and national burden of psoriasis: Results and insights from the global burden of disease 2019 study. Front. Med. 2021 8 743180 10.3389/fmed.2021.743180 34977058
    [Google Scholar]
  3. Zhao X. Li J. Li X. Association between systemic immune-inflammation index and psoriasis: A population-based study. Front. Immunol. 2024 15 1305701 10.3389/fimmu.2024.1305701 38504983
    [Google Scholar]
  4. Parisi R. Iskandar I.Y.K. Kontopantelis E. Augustin M. Griffiths C.E.M. Ashcroft D.M. National, regional, and worldwide epidemiology of psoriasis: Systematic analysis and modelling study. BMJ 2020 369 m1590 10.1136/bmj.m1590 32467098
    [Google Scholar]
  5. Rendon A. Schäkel K. Psoriasis pathogenesis and treatment. Int. J. Mol. Sci. 2019 20 6 1475 10.3390/ijms20061475 30909615
    [Google Scholar]
  6. Armstrong A.W. Read C. Pathophysiology, clinical presentation, and treatment of psoriasis: A review. JAMA 2020 323 19 1945 1960 10.1001/jama.2020.4006 32427307
    [Google Scholar]
  7. Tomura M. Honda T. Tanizaki H. Activated regulatory T cells are the major T cell type emigrating from the skin during a cutaneous immune response in mice. J. Clin. Invest. 2010 120 3 883 893 10.1172/JCI40926 20179354
    [Google Scholar]
  8. Nestle F.O. Kaplan D.H. Barker J. Psoriasis. N. Engl. J. Med. 2009 361 5 496 509 10.1056/NEJMra0804595 19641206
    [Google Scholar]
  9. Ortonne J. Chimenti S. Luger T. Puig L. Reid F. Trüeb R. Scalp psoriasis: European consensus on grading and treatment algorithm. Wiley Online Library 2009
    [Google Scholar]
  10. Onoufriadis A. Simpson M.A. Pink A.E. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis. Am. J. Hum. Genet. 2011 89 3 432 437 10.1016/j.ajhg.2011.07.022 21839423
    [Google Scholar]
  11. Hoegler K.M. John A.M. Handler M.Z. Schwartz R.A. Generalized pustular psoriasis: A review and update on treatment. J. Eur. Acad. Dermatol. Venereol. 2018 32 10 1645 1651 10.1111/jdv.14949 29573491
    [Google Scholar]
  12. Gladman D.D. Clinical features and diagnostic considerations in psoriatic arthritis. Rheum. Dis. Clin. North Am. 2015 41 4 569 579 10.1016/j.rdc.2015.07.003 26476219
    [Google Scholar]
  13. Veale D.J. Fearon U. The pathogenesis of psoriatic arthritis. Lancet 2018 391 10136 2273 2284 10.1016/S0140‑6736(18)30830‑4 29893226
    [Google Scholar]
  14. Wang A. Zhang J. Causal role of immune cells in psoriasis: A Mendelian randomization analysis. Front. Immunol. 2024 15 1326717 10.3389/fimmu.2024.1326717 38558803
    [Google Scholar]
  15. Dhabale A. Nagpure S. Types of psoriasis and their effects on the immune system. Cureus 2022 14 9 29536 10.7759/cureus.29536 36312680
    [Google Scholar]
  16. Singh A. Easwari T.S. Recent advances in psoriasis therapy: Trends and future prospects. Curr. Drug Targets 2021 22 15 1760 1771 10.2174/1389450122666210118103455 33461464
    [Google Scholar]
  17. Bocheńska K. Smolińska E. Moskot M. Jakóbkiewicz-Banecka J. Gabig-Cimińska M. Models in the research process of psoriasis. Int. J. Mol. Sci. 2017 18 12 2514 10.3390/ijms18122514 29186769
    [Google Scholar]
  18. Merola J.F. Parish L.C. Guenther L. Efficacy and safety of apremilast in patients with moderate-to-severe genital psoriasis: Results from DISCREET, a phase 3 randomized, double-blind, placebo-controlled trial. J. Am. Acad. Dermatol. 2024 90 3 485 493 10.1016/j.jaad.2023.10.020 37852306
    [Google Scholar]
  19. Ibrahim S. Amer A. Nofal H. Abdellatif A. Practical compendium for psoriasis management. Dermatol. Ther. 2020 33 2 13243 10.1111/dth.13243 32022374
    [Google Scholar]
  20. Zhang P. Wu M.X. A clinical review of phototherapy for psoriasis. Lasers Med. Sci. 2018 33 1 173 180 10.1007/s10103‑017‑2360‑1 29067616
    [Google Scholar]
  21. Balak D.M.W. Gerdes S. Parodi A. Salgado-Boquete L. Long-term safety of oral systemic therapies for psoriasis: A comprehensive review of the literature. Dermatol. Ther. 2020 10 4 589 613 10.1007/s13555‑020‑00409‑4 32529393
    [Google Scholar]
  22. Pinter A. van de Kerkhof P. The role of topical therapies along the psoriasis patient journey: An overview from the Symposium ‘ Tailoring topical psoriasis treatments to patients’ needs and expectations’ of the 30th EADV Congress 2021. J Eur Acad Dermatol Venereol 2023 37 S1 3 8.(Suppl. 1) 10.1111/jdv.18761 36546464
    [Google Scholar]
  23. Sharma A.A. Rakshita M. Pradhan P.P. Prasad K. Mishra S. Jayanthi K. Noninvasive treatment of psoriasis and skin rejuvenation using an akermanite-type narrowband emitting phosphor. Luminescence 2023 38 9 1668 1677 10.1002/bio.4554
    [Google Scholar]
  24. Liu M. Huang Y.Y.M. Hsu S. Kass J.S. Neurological and neuropsychiatric adverse effects of dermatologic medications. CNS Drugs 2016 30 12 1149 1168 10.1007/s40263‑016‑0392‑x 27832476
    [Google Scholar]
  25. Yuan X. Xin T. Yu H. Transcription factor IRF7 is involved in psoriasis development and response to guselkumab treatment. J. Inflamm. Res. 2024 17 1039 1055 10.2147/JIR.S450048 38375022
    [Google Scholar]
  26. Jahani S. Zare N. Mirzaei Y. Mesenchymal stem cells and ovarian cancer: Is there promising news? J. Cell. Biochem. 2023 124 10 1437 1448 10.1002/jcb.30471 37682985
    [Google Scholar]
  27. ArefNezhad R. Rezaei-Tazangi F. Roghani-Shahraki H. Human umbilical cord mesenchymal stem cells: Heralding an effective treatment against esophageal cancer? Cell Biol. Int. 2023 47 4 714 719 10.1002/cbin.11991 36718080
    [Google Scholar]
  28. ArefNezhad R Motedayyen H. Therapeutic features of mesenchymal stem cells and human amniotic epithelial cells in multiple sclerosis. Biochemistry. IntechOpen 2023 10.5772/intechopen.110221
    [Google Scholar]
  29. Pouryousefi-koodehi T. Shayegan S. Hashemi S. Can mesenchymal stem cells derived from adipose tissue and their conditioned medium improve ovarian functions? A mini-review. Zygote 2022 30 5 589 592 10.1017/S0967199422000235 35730554
    [Google Scholar]
  30. Rezaei-Tazangi F. Alidadi H. Samimi A. Karimi S. Kahorsandi L. Effects of Wharton’s jelly mesenchymal stem cells-derived secretome on colon carcinoma HT-29 cells. Tissue Cell 2020 67 101413 10.1016/j.tice.2020.101413 32835945
    [Google Scholar]
  31. Bahmanpour S. Talaei Khozani T. Rezaei Tazangi F. Evaluation of the capability of the Wharton’s jelly mesenchymal stem cell aggregates to express the markers of three germ cell lineages. Arch. Iran Med. 2019 22 2 85 90 30980644
    [Google Scholar]
  32. Kumar R. Mishra N. Tran T. Kumar M. Vijayaraghavalu S. Gurusamy N. Emerging strategies in mesenchymal stem cell-based cardiovascular therapeutics. Cells 2024 13 10 855 10.3390/cells13100855 38786076
    [Google Scholar]
  33. Diotallevi F. Di Vincenzo M. Martina E. Mesenchymal stem cells and psoriasis: Systematic review. Int. J. Mol. Sci. 2022 23 23 15080 10.3390/ijms232315080 36499401
    [Google Scholar]
  34. Paganelli A. Tarentini E. Benassi L. Kaleci S. Magnoni C. Mesenchymal stem cells for the treatment of psoriasis: A comprehensive review. Clin. Exp. Dermatol. 2020 45 7 824 830 10.1111/ced.14269 32386432
    [Google Scholar]
  35. Arefnezhad R. Helfi M. Okhravijouybari R. Umbilical cord mesenchymal stem cells and lung cancer: We should be hopeful or hopeless? Tissue Cell 2024 88 102410 10.1016/j.tice.2024.102410 38772275
    [Google Scholar]
  36. Loras A. Gil-Barrachina M. Hernando B. Association between several immune response‐related genes and the effectiveness of biological treatments in patients with moderate‐to‐severe psoriasis. Exp. Dermatol. 2024 33 1 15003 10.1111/exd.15003 38284189
    [Google Scholar]
  37. Zeng J. Luo S. Huang Y. Lu Q. Critical role of environmental factors in the pathogenesis of psoriasis. J. Dermatol. 2017 44 8 863 872 10.1111/1346‑8138.13806 28349593
    [Google Scholar]
  38. Lowes M.A. Suárez-Fariñas M. Krueger J.G. Immunology of Psoriasis. Annu. Rev. Immunol. 2014 32 1 227 255 10.1146/annurev‑immunol‑032713‑120225 24655295
    [Google Scholar]
  39. Lowes M.A. Bowcock A.M. Krueger J.G. Pathogenesis and therapy of psoriasis. Nature 2007 445 7130 866 873 10.1038/nature05663 17314973
    [Google Scholar]
  40. Harden J.L. Krueger J.G. Bowcock A.M. The immunogenetics of Psoriasis: A comprehensive review. J. Autoimmun. 2015 64 66 73 10.1016/j.jaut.2015.07.008 26215033
    [Google Scholar]
  41. Hawkes J.E. Chan T.C. Krueger J.G. Psoriasis pathogenesis and the development of novel targeted immune therapies. J. Allergy Clin. Immunol. 2017 140 3 645 653 10.1016/j.jaci.2017.07.004 28887948
    [Google Scholar]
  42. von Stebut E. Reich K. Thaçi D. Impact of secukinumab on endothelial dysfunction and other cardiovascular disease parameters in psoriasis patients over 52 weeks. J. Invest. Dermatol. 2019 139 5 1054 1062 10.1016/j.jid.2018.10.042 30508547
    [Google Scholar]
  43. Piipponen M. Li D. Landén N.X. The immune functions of keratinocytes in skin wound healing. Int. J. Mol. Sci. 2020 21 22 8790 10.3390/ijms21228790 33233704
    [Google Scholar]
  44. Sachen K.L. Arnold Greving C.N. Towne J.E. Role of IL-36 cytokines in psoriasis and other inflammatory skin conditions. Cytokine 2022 156 155897 10.1016/j.cyto.2022.155897 35679693
    [Google Scholar]
  45. Kamata M. Tada Y. Crosstalk: Keratinocytes and immune cells in psoriasis. Front. Immunol. 2023 14 1286344 10.3389/fimmu.2023.1286344 38022549
    [Google Scholar]
  46. Cui W. Liu J. Kong S. IL-17A and TNF-α-induced Dectin-1 expression may promote keratinocyte proliferation in psoriatic lesions. Eur. J. Dermatol. 2024 34 2 119 130 10.1684/ejd.2024.4662 38907541
    [Google Scholar]
  47. Mojgani N. Ashique S. Moradi M. Gut microbiota and postbiotic metabolites: biotic intervention for enhancing vaccine responses and personalized medicine for disease prevention. Probiotics Antimicrob. Proteins 2025 1 23 10.1007/s12602‑025‑10477‑7 39964413
    [Google Scholar]
  48. Dand N. Mahil S. Capon F. Smith C. Simpson M. Barker J. Psoriasis and genetics. Acta Derm. Venereol. 2020 100 3 55 65 10.2340/00015555‑3384 31971603
    [Google Scholar]
  49. Mateu-Arrom L. Puig L. Genetic and epigenetic mechanisms of psoriasis. Genes 2023 14 8 1619 10.3390/genes14081619 37628670
    [Google Scholar]
  50. Dopytalska K. Ciechanowicz P. Wiszniewski K. Szymańska E. Walecka I. The role of epigenetic factors in psoriasis. Int. J. Mol. Sci. 2021 22 17 9294 10.3390/ijms22179294 34502197
    [Google Scholar]
  51. Hussain M.S. Sharma S. Kumari A. Role of long non-coding RNAs in neurofibromatosis and Schwannomatosis: Pathogenesis and therapeutic potential. Epigenomics 2024 16 23-24 1453 1464 10.1080/17501911.2024.2430170 39601046
    [Google Scholar]
  52. Sadique Hussain M. Gupta G. Ghaboura N. Exosomal ncRNAs in liquid biopsies for lung cancer. Clin. Chim. Acta 2025 565 119983 10.1016/j.cca.2024.119983 39368685
    [Google Scholar]
  53. Duan Q. Wang G. Wang M. LncRNA RP6‐65G23.1 accelerates proliferation and inhibits apoptosis via p‐ERK1/2/p‐AKT signaling pathway on keratinocytes. J. Cell. Biochem. 2020 121 11 4580 4589 10.1002/jcb.29685 32065443
    [Google Scholar]
  54. Qu S. Liu Z. Wang B. EZH2 is involved in psoriasis progression by impairing miR-125a-5p inhibition of SFMBT1 and leading to inhibition of the TGFβ/SMAD pathway. Ther. Adv. Chronic Dis. 2021 12 2040622320987348 10.1177/2040622320987348 33948156
    [Google Scholar]
  55. Zhao J. Wang F. Tian Q. Dong J. Chen L. Hu R. Involvement of miR-214-3p/FOXM1 axis during the progression of psoriasis. Inflammation 2022 45 1 267 278 10.1007/s10753‑021‑01544‑6 34427853
    [Google Scholar]
  56. Xiao Y. Wang H. Wang C. miR-203 promotes HaCaT cell overproliferation through targeting LXR-α and PPAR-γ. Cell Cycle 2020 19 15 1928 1940 10.1080/15384101.2020.1783934 32594829
    [Google Scholar]
  57. Wang H. Xu Y. Jin M. Li H. Li S. miR-383 reduces keratinocyte proliferation and induces the apoptosis in psoriasis via disruption of LCN2-dependent JAK/STAT pathway activation. Int. Immunopharmacol. 2021 96 107587 10.1016/j.intimp.2021.107587 33819732
    [Google Scholar]
  58. Yan S. Xu Z. Lou F. NF-κB-induced microRNA-31 promotes epidermal hyperplasia by repressing protein phosphatase 6 in psoriasis. Nat. Commun. 2015 6 1 7652 10.1038/ncomms8652 26138368
    [Google Scholar]
  59. Luo Q. Zeng J. Li W. Silencing of miR 155 suppresses inflammatory responses in psoriasis through inflammasome NLRP3 regulation. Int. J. Mol. Med. 2018 42 2 1086 1095 10.3892/ijmm.2018.3677 29767259
    [Google Scholar]
  60. Magenta A. D’agostino M. Sileno S. Di Vito L. Uras C. Abeni D. The oxidative stress-induced miR-200c is upregulated in psoriasis and correlates with disease severity and determinants of cardiovascular risk. Oxid. Med. Cell. Longev. 2019 2019 8061901 10.1155/2019/8061901
    [Google Scholar]
  61. Wu R. Zeng J. Yuan J. MicroRNA-210 overexpression promotes psoriasis-like inflammation by inducing Th1 and Th17 cell differentiation. J. Clin. Invest. 2018 128 6 2551 2568 10.1172/JCI97426 29757188
    [Google Scholar]
  62. Xia P. Pasquali L. Gao C. miR ‐378a regulates keratinocyte responsiveness to interleukin‐17A in psoriasis. Br. J. Dermatol. 2022 187 2 211 222 10.1111/bjd.21232 35257359
    [Google Scholar]
  63. Ghosh D. Ganguly T. Chatterjee R. Emerging roles of non-coding RNAs in psoriasis pathogenesis. Funct. Integr. Genomics 2023 23 2 129 10.1007/s10142‑023‑01057‑5 37072609
    [Google Scholar]
  64. Yang Z. Yin X. Chen C. CircOAS3 regulates keratinocyte proliferation and psoriatic inflammation by interacting with Hsc70 via the JNK/STAT3/NF-κB signaling pathway. Inflammation 2022 45 5 1924 1935 10.1007/s10753‑022‑01664‑7 35307784
    [Google Scholar]
  65. Shi Q. Luo J. Chen W. He Q. Long J. Zhang B. Circ_0060531 knockdown ameliorates IL-22-induced keratinocyte damage by binding to miR-330-5p to decrease GAB1 expression. Autoimmunity 2022 55 4 243 253 10.1080/08916934.2022.2037127 35293807
    [Google Scholar]
  66. Qiao M. Ding J. Yan J. Li R. Jiao J. Sun Q. Circular RNA expression profile and analysis of their potential function in psoriasis. Cell. Physiol. Biochem. 2018 50 1 15 27 10.1159/000493952 30278433
    [Google Scholar]
  67. Yang L. Zhang C. Bai X. Xiao C. Dang E. Wang G. hsa_circ_0003738 inhibits the suppressive function of tregs by targeting miR-562/IL-17A and miR-490-5p/IFN-γ signaling pathway. Mol. Ther. Nucleic Acids 2020 21 1111 1119 10.1016/j.omtn.2020.08.001 32871353
    [Google Scholar]
  68. Chen C Yang Z Yin X Huang S Yan J Sun Q. CircEIF5 contributes to hyperproliferation and inflammation of keratinocytes in psoriasis via p‐NFκB and p‐STAT3 signalling pathway. Exp Dermatol 2022 31 8 exd.14565 10.1111/exd.14565 35288970
    [Google Scholar]
  69. Lu J. Xu X. Li Y. Yu N. Ding Y. Shi Y. CircRAB3B suppresses proliferation, motility, cell cycle progression and promotes the apoptosis of IL-22-induced keratinocytes depending on the regulation of miR-1228-3p/PTEN axis in psoriasis. Autoimmunity 2021 54 5 303 312 10.1080/08916934.2021.1934825 34096408
    [Google Scholar]
  70. Li J. Xu S.Q. Zhao Y.M. Yu S. Ge L.H. Xu B.H. Comparison of the biological characteristics of human mesenchymal stem cells derived from exfoliated deciduous teeth, bone marrow, gingival tissue, and umbilical cord. Mol. Med. Rep. 2018 18 6 4969 4977 10.3892/mmr.2018.9501 30272340
    [Google Scholar]
  71. Wu M. Zhang R. Zou Q. Comparison of the biological characteristics of mesenchymal stem cells derived from the human placenta and umbilical cord. Sci. Rep. 2018 8 1 5014 10.1038/s41598‑018‑23396‑1 29568084
    [Google Scholar]
  72. Kalantari L. Hajjafari A. Goleij P. Umbilical cord mesenchymal stem cells: A powerful fighter against colon cancer? Tissue Cell 2024 90 102523 10.1016/j.tice.2024.102523 39154502
    [Google Scholar]
  73. Meng X. Gao X. Chen X. Yu J. Umbilical cord derived mesenchymal stem cells exert anti fibrotic action on hypertrophic scar derived fibroblasts in co culture by inhibiting the activation of the TGF β1/Smad3 pathway. Exp. Ther. Med. 2021 21 3 210 10.3892/etm.2021.9642 33574910
    [Google Scholar]
  74. Shang Y. Guan H. Zhou F. Biological characteristics of umbilical cord mesenchymal stem cells and its therapeutic potential for hematological disorders. Front. Cell Dev. Biol. 2021 9 570179 10.3389/fcell.2021.570179 34012958
    [Google Scholar]
  75. Semenova E. Grudniak M.P. Machaj E.K. Mesenchymal stromal cells from different parts of umbilical cord: Approach to comparison & characteristics. Stem Cell Rev. Rep. 2021 17 5 1780 1795 10.1007/s12015‑021‑10157‑3 33860454
    [Google Scholar]
  76. Xie Q. Liu R. Jiang J. What is the impact of human umbilical cord mesenchymal stem cell transplantation on clinical treatment? Stem Cell Res. Ther. 2020 11 1 519 10.1186/s13287‑020‑02011‑z 33261658
    [Google Scholar]
  77. Li S. Wang Y. Guan L. Ji M. Characteristics of human umbilical cord mesenchymal stem cells during ex vivo expansion. Mol. Med. Rep. 2015 12 3 4320 4325 10.3892/mmr.2015.3999 26129933
    [Google Scholar]
  78. Martin-Rendon E. Sweeney D. Lu F. Girdlestone J. Navarrete C. Watt S.M. 5‐Azacytidine‐treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies. Vox Sang. 2008 95 2 137 148 10.1111/j.1423‑0410.2008.01076.x 18557828
    [Google Scholar]
  79. Lv F.J. Tuan R.S. Cheung K.M.C. Leung V.Y.L. Concise review: The surface markers and identity of human mesenchymal stem cells. Stem Cells 2014 32 6 1408 1419 10.1002/stem.1681 24578244
    [Google Scholar]
  80. Zhang L. Zhang X. Liu Y. Zhang W. Wu C.T. Wang L. CD146+ umbilical cord mesenchymal stem cells exhibit high immunomodulatory activity and therapeutic efficacy in septic mice. J. Inflamm. Res. 2023 16 579 594 10.2147/JIR.S396088 36818194
    [Google Scholar]
  81. Hong T. Wang R. Yang G. Human umbilical cord mesenchymal stem cells ameliorate acute graft-versus-host disease by elevating phytosphingosine. Exp. Hematol. 2023 122 19 29 10.1016/j.exphem.2023.03.002 36931619
    [Google Scholar]
  82. Melzer C. von der Ohe J. Hass R. MSC stimulate ovarian tumor growth during intercellular communication but reduce tumorigenicity after fusion with ovarian cancer cells. Cell Commun. Signal. 2018 16 1 67 10.1186/s12964‑018‑0279‑1 30316300
    [Google Scholar]
  83. Qiao Y. Xu Z. Yu Y. Single cell derived spheres of umbilical cord mesenchymal stem cells enhance cell stemness properties, survival ability and therapeutic potential on liver failure. Biomaterials 2020 227 119573 10.1016/j.biomaterials.2019.119573 31670080
    [Google Scholar]
  84. Petry F. Zitzmann J. Czermak P. Salzig D. Bioprocess development for human mesenchymal stem cell therapy products. New advances on fermentation processes. IntechOpen 2020
    [Google Scholar]
  85. Fuentes P. Torres M.J. Arancibia R. Dynamic culture of mesenchymal stromal/stem cell spheroids and secretion of paracrine factors. Front. Bioeng. Biotechnol. 2022 10 916229 10.3389/fbioe.2022.916229 36046670
    [Google Scholar]
  86. Duval K. Grover H. Han L.H. Modeling physiological events in 2D vs. 3D cell culture. Physiology 2017 32 4 266 277 10.1152/physiol.00036.2016 28615311
    [Google Scholar]
  87. Wang Z. Hu Y. Wang X. Comparative analysis of the therapeutic effects of fresh and cryopreserved human umbilical cord derived mesenchymal stem cells in the treatment of psoriasis. Stem Cell Rev. Rep. 2023 19 6 1922 1936 10.1007/s12015‑023‑10556‑8 37199874
    [Google Scholar]
  88. Kim Y.J. Yoo S.M. Park H.H. Exosomes derived from human umbilical cord blood mesenchymal stem cells stimulates rejuvenation of human skin. Biochem. Biophys. Res. Commun. 2017 493 2 1102 1108
    [Google Scholar]
  89. Sah S.K. Park K.H. Yun C.O. Kang K.S. Kim T.Y. Effects of human mesenchymal stem cells transduced with superoxide dismutase on imiquimod-induced psoriasis-like skin inflammation in mice. Antioxid. Redox Signal. 2016 24 5 233 248 10.1089/ars.2015.6368 26462411
    [Google Scholar]
  90. Pleńkowska J. Gabig-Cimińska M. Mozolewski P. Oxidative stress as an important contributor to the pathogenesis of psoriasis. Int. J. Mol. Sci. 2020 21 17 6206 10.3390/ijms21176206 32867343
    [Google Scholar]
  91. Xu J. Chen H. Qian H. Wang F. Xu Y. Advances in the modulation of ROS and transdermal administration for anti-psoriatic nanotherapies. J. Nanobiotechnology 2022 20 1 448 10.1186/s12951‑022‑01651‑y 36242051
    [Google Scholar]
  92. Cerimele F. Battle T. Lynch R. Reactive oxygen signaling and MAPK activation distinguish Epstein–Barr Virus (EBV)-positive versus EBV-negative Burkitt’s lymphoma. Proc. Natl. Acad. Sci. USA 2005 102 1 175 179 10.1073/pnas.0408381102 15611471
    [Google Scholar]
  93. Lu X. Wang H. Wang H. Indirubin combined with umbilical cord mesenchymal stem cells to relieve psoriasis-like skin lesions in BALB/c mice. Front. Immunol. 2022 13 1033498 10.3389/fimmu.2022.1033498 36466901
    [Google Scholar]
  94. Ren X. Zhong W. Li W. Human umbilical cord-derived mesenchymal stem cells alleviate psoriasis through TNF-α/NF-κB/MMP13 pathway. Inflammation 2023 46 3 987 1001 10.1007/s10753‑023‑01785‑7 36749439
    [Google Scholar]
  95. Zhou X. Zu W. Zhao L. Gong X. Jiang Q. Sodium fluoride accelerates apoptosis, oxidative stress and matrix degradation of condylar chondrocytes by upregulating MMP-13 and RANKL. Am. J. Transl. Res. 2025 17 1 634 644 10.62347/NIIL5728 39959228
    [Google Scholar]
  96. Iuliano M. Grimaldi L. Rosa P. Extracellular vescicles in psoriasis: From pathogenesis to possible roles in therapy. Front. Immunol. 2024 15 1360618 10.3389/fimmu.2024.1360618 38827737
    [Google Scholar]
  97. Khan Y. Hussain M.S. Ramalingam P.S. Exploring extracellular RNA as drivers of chemotherapy resistance in cancer. Mol. Biol. Rep. 2025 52 1 142 10.1007/s11033‑025‑10263‑2 39836259
    [Google Scholar]
  98. Yokoi A. Ochiya T. Exosomes and extracellular vesicles: Rethinking the essential values in cancer biology. Seminars in cancer biology. Elsevier 2021
    [Google Scholar]
  99. Karabay A.Z. Barar J. Hekmatshoar Y. Rahbar Saadat Y. Multifaceted therapeutic potential of plant-derived exosomes: Immunomodulation, anticancer, anti-aging, anti-melanogenesis, detoxification, and drug delivery. Biomolecules 2025 15 3 394 10.3390/biom15030394 40149930
    [Google Scholar]
  100. Ahad Mir P.R.I.N.C.E. Hussain M.S. Ahmad Khanday M. Mohi-ud-din R, Pottoo FH, Hasssan Mir R. Immunomodulatory roles of mesenchymal stem cell-derived Extracellular vesicles: A Promising Therapeutic Approach for Autoimmune diseases. Curr. Stem Cell Res. Ther. 2024 20 10.2174/011574888X341781241216044130 39757602
    [Google Scholar]
  101. Al-Masawa M. Elfawy L. Ng C.Y. Ng M.H. Law J.X. Mesenchymal stromal cell-derived extracellular vesicles in the management of atopic dermatitis: A scoping review of therapeutic opportunities and challenges. Int. J. Nanomedicine 2025 20 2673 2693 10.2147/IJN.S494574 40061879
    [Google Scholar]
  102. Yoo D. Jung S.Y. Go D. Functionalized extracellular vesicles of mesenchymal stem cells for regenerative medicine. J. Nanobiotechnology 2025 23 1 219 10.1186/s12951‑025‑03300‑6 40102934
    [Google Scholar]
  103. Zhang W. Lin J. Shi P. Small extracellular vesicles derived from MSCs have immunomodulatory effects to enhance delivery of ASO-210 for psoriasis treatment. Front. Cell Dev. Biol. 2022 10 842813 10.3389/fcell.2022.842813 35359454
    [Google Scholar]
  104. Kong T. Seo S.K. Han Y.S. Primed mesenchymal stem cells by IFN-γ and IL-1β ameliorate acute respiratory distress syndrome through enhancing homing effect and immunomodulation. Biomol. Ther. 2025 33 2 311 324 10.4062/biomolther.2025.004 39973472
    [Google Scholar]
  105. Zhang Y. Yan J. Li Z. Zheng J. Sun Q. Exosomes derived from human umbilical cord mesenchymal stem cells alleviate psoriasis-like skin inflammation. J. Interferon Cytokine Res. 2022 42 1 8 18 10.1089/jir.2021.0146 35041513
    [Google Scholar]
  106. Sieminska I. Pieniawska M. Grzywa T.M. The immunology of psoriasis—current concepts in pathogenesis. Clin. Rev. Allergy Immunol. 2024 66 2 164 191 10.1007/s12016‑024‑08991‑7 38642273
    [Google Scholar]
  107. Wu S. Jiang J. Wang D. JAK/STAT3 signaling promotes pain and depression-like behaviors in rats with bone cancer pain by regulating Th17 cell differentiation. Brain Res. Bull. 2025 221 111218 10.1016/j.brainresbull.2025.111218 39864595
    [Google Scholar]
  108. Abed Z.I. Arianejad M. Azizi Z. Mesenchymal stem cell-derived exosomes decrease Hyperplasia in Psoriasis by inducing transforming growth factor β2 (TGF-β2). Mol. Biol. Rep. 2024 51 1 635 10.1007/s11033‑024‑09337‑4 38727850
    [Google Scholar]
  109. Deng Z. Fan T. Xiao C. TGF-β signaling in health, disease and therapeutics. Signal Transduct. Target. Ther. 2024 9 1 61 10.1038/s41392‑024‑01764‑w 38514615
    [Google Scholar]
  110. Wang X. Wang Q. Yin P. Secretome of human umbilical cord mesenchymal stem cell maintains skin homeostasis by regulating multiple skin physiological function. Cell Tissue Res. 2023 391 1 111 125 10.1007/s00441‑022‑03697‑8 36241740
    [Google Scholar]
  111. Yang M. Wang L. Chen Z. Topical administration of the secretome derived from human amniotic epithelial cells ameliorates psoriasis-like skin lesions in mice. Stem Cell Res. Ther. 2022 13 1 393 10.1186/s13287‑022‑03091‑9 35922852
    [Google Scholar]
  112. Conti P. Pregliasco F.E. Bellomo R.G. Mast cell cytokines IL-1, IL-33, and IL-36 mediate skin inflammation in psoriasis: A novel therapeutic approach with the anti-inflammatory cytokines IL-37, IL-38, and IL-1Ra. Int. J. Mol. Sci. 2021 22 15 8076 10.3390/ijms22158076 34360845
    [Google Scholar]
  113. Zheng J. Mao H. Chong W.P. Editorial: Unraveling the molecular mechanisms of cytokine signaling in regulating inflammatory diseases. Front. Immunol. 2025 16 1563469 10.3389/fimmu.2025.1563469 40007545
    [Google Scholar]
  114. Chen H. Niu J.W. Ning H.M. Treatment of psoriasis with mesenchymal stem cells. Am. J. Med. 2016 129 3 e13 e14 10.1016/j.amjmed.2015.11.001 26582058
    [Google Scholar]
  115. Ahn H. Lee S.Y. Jung W.J. Pi J. Lee K.H. Psoriasis treatment using minimally manipulated umbilical cord-derived mesenchymal stem cells: A case report. World J. Clin. Cases 2021 9 23 6798 6803 10.12998/wjcc.v9.i23.6798 34447827
    [Google Scholar]
  116. Cheng L. Wang S. Peng C. Human umbilical cord mesenchymal stem cells for psoriasis: A phase 1/2a, single-arm study. Signal Transduct. Target. Ther. 2022 7 1 263 10.1038/s41392‑022‑01059‑y 35927231
    [Google Scholar]
  117. Torre P. Flores A.I. Current status and future prospects of perinatal stem cells. Genes 2020 12 1 6 10.3390/genes12010006 33374593
    [Google Scholar]
  118. Gemayel J. Chaker D. El Hachem G. Mesenchymal stem cells-derived secretome and extracellular vesicles: Perspective and challenges in cancer therapy and clinical applications. Clin. Transl. Oncol. 2023 25 7 2056 2068 10.1007/s12094‑023‑03115‑7 36808392
    [Google Scholar]
  119. He X. Yang Y. Yao M. Combination of human umbilical cord mesenchymal stem (stromal) cell transplantation with IFN-γ treatment synergistically improves the clinical outcomes of patients with rheumatoid arthritis. Ann. Rheum. Dis. 2020 79 10 1298 1304 10.1136/annrheumdis‑2020‑217798 32561603
    [Google Scholar]
  120. Aslam S. Khan I. Jameel F. Zaidi M.B. Salim A. Umbilical cord-derived mesenchymal stem cells preconditioned with isorhamnetin: Potential therapy for burn wounds. World J. Stem Cells 2020 12 12 1652 1666 10.4252/wjsc.v12.i12.1652 33505606
    [Google Scholar]
  121. Wu S. Zhou Z. Li Y. Wu R. Jiang J. Pretreatment of human umbilical cord mesenchymal stem cell-derived exosomes with quercetin enhances the healing of diabetic skin wounds by modulating host-microbiota interactions. Int. J. Nanomedicine 2024 19 12557 12581 10.2147/IJN.S491471 39619055
    [Google Scholar]
  122. Kim D.W. Choi C.H. Park J.P. Lee S.J. Nanospheres loaded with curcumin improve the bioactivity of umbilical cord blood-mesenchymal stem cells via c-Src activation during the skin wound healing process. Cells 2020 9 6 1467 10.3390/cells9061467 32549381
    [Google Scholar]
  123. Xue J. Sun N. Liu Y. Self-assembled nano-peptide hydrogels with human umbilical cord mesenchymal stem cell spheroids accelerate diabetic skin wound healing by inhibiting inflammation and promoting angiogenesis. Int. J. Nanomedicine 2022 17 2459 2474 10.2147/IJN.S363777 35669002
    [Google Scholar]
  124. Keech C. Albert G. Cho I. Phase 1–2 trial of a SARS-CoV-2 recombinant spike protein nanoparticle vaccine. N. Engl. J. Med. 2020 383 24 2320 2332 10.1056/NEJMoa2026920 32877576
    [Google Scholar]
  125. Ferreira A.L. Paris G.C. Azevedo A.D.A. Cortez E.A.C. Carvalho S.N. Carvalho L.D. Mesenchymal stem cell secretome and nanotechnology: Combining therapeutic strategies. Biocell 2022 46 8 1807 1813 10.32604/biocell.2022.019363
    [Google Scholar]
  126. Coutts M. Soriano R. Naidoo R. Torfi H. Umbilical cord blood stem cell treatment for a patient with psoriatic arthritis. World J. Stem Cells 2017 9 12 235 240 10.4252/wjsc.v9.i12.235 29321825
    [Google Scholar]
  127. Lin Y. Wang H. Jiang C. Effects of different concentrations of human umbilical cord mesenchymal stem cells to ameliorate psoriasis-like skin lesions in BALB/c mice. Ann. Transl. Med. 2022 10 2 86 10.21037/atm‑22‑4 35282132
    [Google Scholar]
  128. Chen Y. Hu Y. Zhou X. Human umbilical cord-derived mesenchymal stem cells ameliorate psoriasis-like dermatitis by suppressing IL-17-producing γδ T cells. Cell Tissue Res. 2022 388 3 549 563 10.1007/s00441‑022‑03616‑x 35347409
    [Google Scholar]
  129. Attia S.S. Rafla M. El-Nefiawy N.E. Abdel Hamid H.F. Amin M.A. Fetouh M.A. A potential role of mesenchymal stem cells derived from human umbilical cord blood in ameliorating psoriasis-like skin lesion in the rats. Folia Morphol. 2022 81 3 614 631 10.5603/FM.a2021.0076 34355785
    [Google Scholar]
  130. Chen M. Peng J. Xie Q. Mesenchymal stem cells alleviate moderate-to-severe psoriasis by reducing the production of type I interferon (IFN-I) by plasmacytoid dendritic cells (pDCs). Stem Cells Int. 2019 2019 1 13 10.1155/2019/6961052 31827531
    [Google Scholar]
  131. Lee Y.S. Sah S.K. Lee J.H. Seo K.W. Kang K.S. Kim T.Y. Human umbilical cord blood-derived mesenchymal stem cells ameliorate psoriasis-like skin inflammation in mice. Biochem. Biophys. Rep. 2017 9 281 288 10.1016/j.bbrep.2016.10.002 28956015
    [Google Scholar]
  132. Ding Y. Gong P. Jiang J. Mesenchymal stem/stromal cells primed by inflammatory cytokines alleviate psoriasis-like inflammation via the TSG-6-neutrophil axis. Cell Death Dis. 2022 13 11 996 10.1038/s41419‑022‑05445‑w 36433947
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X382147250801101300
Loading
/content/journals/cscr/10.2174/011574888X382147250801101300
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test