Skip to content
2000
image of FGF2-regulated Osteogenic Differentiation of Human Bone Marrow Stromal Cells

Abstract

Introduction

Fibroblast growth factor 2 (FGF2) plays a crucial role in regulating the osteogenic differentiation of progenitor cells. However, the process by which this occurs is not yet fully understood. In this study, we aimed to investigate whether FGF2 stimulates the osteogenesis of precursor cells through the yes-associated protein (YAP) and large tumor suppressor kinases 1/2 (LATS1/2).

Methods

Human bone marrow stromal cells (hBMSCs) were cultured in osteogenic medium supplemented with FGF2 at concentrations of 2 ng/mL, 10 ng/mL, and 50 ng/mL for 2, 7, or 21 days. Alizarin red staining was performed to identify mineralization after 21 days of culture. RT-qPCR was conducted to detect the mRNA expression of , , , , and . Immunofluorescence staining was carried out to detect the protein expression of YAP and LATS1/2. Data was analyzed with a p-value set at 0.05.

Results

Mineralization was most significant at 10 ng/ml of FGF2 for 7 days and increased with concentrations of FGF2 from 0 ng/ml to 10 ng/ml for 7 days (p < 0.05) but decreased at the high concentration of 50 ng/ml for 2 days (p < 0.05). mRNA expression of , , and increased in concordance with the increasing mineralization levels, but mRNA decreased. mRNA expression levels were dose-dependent when FGF2 was added for 7 days (p < 0.05) and time-dependent when FGF2 concentration was at 10 ng/ml (p < 0.05). At the protein level, YAP increased while LATS1/2 decreased, indicating that LATS1/2 decreased, and YAP increased at higher mineralization levels when hBMSCs were cultured with 10 ng/ml of FGF2 for 7 days.

Discussion

Consistent with our results, prior research has also indicated that lower concentrations of FGF2 enhance cell proliferation, thereby increasing the cell population for later osteogenic differentiation. However, excessive expansion can negatively affect differentiation. The mechanism of FGF2 regulation in stem cell osteogenic differentiation needs more exploration.

Conclusion

Optimal concentrations and durations of FGF2 are critical for the osteogenic differentiation of hBMSCs. Moreover, it has been observed that mineralization correlates well with increasing YAP and decreasing LATS1/2 during osteogenic differentiation.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X374305250703110356
2025-07-24
2025-09-16
Loading full text...

Full text loading...

References

  1. Chu D.T. Phuong T.N.T. Tien N.L.B. An update on the progress of isolation, culture, storage, and clinical application of human bone marrow mesenchymal stem/stromal cells. Int. J. Mol. Sci. 2020 21 3 708 10.3390/ijms21030708 31973182
    [Google Scholar]
  2. Gao Q. Wang L. Wang S. Huang B. Jing Y. Su J. Bone marrow mesenchymal stromal cells: Identification, classification, and differentiation. Front. Cell Dev. Biol. 2022 9 787118 10.3389/fcell.2021.787118 35047499
    [Google Scholar]
  3. Zheng Z. Liu H. Liu S. Luo E. Liu X. Mesenchymal stem cells in craniofacial reconstruction: A comprehensive review. Front. Mol. Biosci. 2024 11 1362338 10.3389/fmolb.2024.1362338 38690295
    [Google Scholar]
  4. Aithal A.P. Bairy L.K. Seetharam R.N. Safety and therapeutic potential of human bone marrow-derived mesenchymal stromal cells in regenerative medicine. Stem Cell Investig. 2021 8 10 10.21037/sci‑2020‑036 34124233
    [Google Scholar]
  5. Ebrahimi F. Pirouzmand F. Cosme Pecho R.D. Application of mesenchymal stem cells in regenerative medicine: A new approach in modern medical science. Biotechnol. Prog. 2023 39 6 3374 10.1002/btpr.3374 37454344
    [Google Scholar]
  6. Deans R.J. Moseley A.B. Mesenchymal stem cells: Biology and potential clinical uses. Exp. Hematol. 2000 28 8 875 884 10.1016/S0301‑472X(00)00482‑3 10989188
    [Google Scholar]
  7. Xue N. Ding X. Huang R. Bone tissue engineering in the treatment of bone defects. Pharmaceuticals 2022 15 7 879 10.3390/ph15070879 35890177
    [Google Scholar]
  8. Rady D. Abbass M.M.S. El-Rashidy A.A. Mesenchymal stem/progenitor cells: The prospect of human clinical translation. Stem Cells Int. 2020 2020 1 45 10.1155/2020/8837654 33953753
    [Google Scholar]
  9. Lyu Z. Xin M. Oyston D.R. Cause and consequence of heterogeneity in human mesenchymal stem cells: Challenges in clinical application. Pathol. Res. Pract. 2024 260 155354 10.1016/j.prp.2024.155354 38870711
    [Google Scholar]
  10. Zhidu S. Ying T. Rui J. Chao Z. Translational potential of mesenchymal stem cells in regenerative therapies for human diseases: Challenges and opportunities. Stem Cell Res. Ther. 2024 15 1 266 10.1186/s13287‑024‑03885‑z 39183341
    [Google Scholar]
  11. Zhao C. Lin K. Wang X. Maintenance and modulation of stem cells stemness based on biomaterial designing via chemical and physical signals. Appl. Mater. Today 2020 19 100614 10.1016/j.apmt.2020.100614
    [Google Scholar]
  12. Dhanasekaran M. Indumathi S. Lissa R.P. Harikrishnan R. Rajkumar J.S. Sudarsanam D. A comprehensive study on optimization of proliferation and differentiation potency of bone marrow derived mesenchymal stem cells under prolonged culture condition. Cytotechnology 2013 65 2 187 197 10.1007/s10616‑012‑9471‑0 22729554
    [Google Scholar]
  13. Eom Y.W. Oh J.E. Lee J.I. The role of growth factors in maintenance of stemness in bone marrow-derived mesenchymal stem cells. Biochem. Biophys. Res. Commun. 2014 445 1 16 22 10.1016/j.bbrc.2014.01.084 24491556
    [Google Scholar]
  14. Teng Y. Hu Y. Li X.S. Wang Z. Wang R. Telomerase reverse transcriptase mediated immortalization of human bone marrow stromal cells. Braz. Arch. Biol. Technol. 2014 57 1 37 44 10.1590/S1516‑89132014000100006
    [Google Scholar]
  15. Huang G.P. Pan Z.J. Huang J.P. Proteomic analysis of human bone marrow mesenchymal stem cells transduced with human telomerase reverse transcriptase gene during proliferation. Cell Prolif. 2008 41 4 625 644 10.1111/j.1365‑2184.2008.00543.x 18616696
    [Google Scholar]
  16. Zhang B. Li M. McDonald T. Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt–β-catenin signaling. Blood 2013 121 10 1824 1838 10.1182/blood‑2012‑02‑412890 23299311
    [Google Scholar]
  17. Shenaq D.S. Teven C.M. Seitz I.A. Characterization of reversibly immortalized calvarial mesenchymal progenitor cells. J. Craniofac. Surg. 2015 26 4 1207 1213 10.1097/SCS.0000000000001717 26080159
    [Google Scholar]
  18. Zhang Y. Xu C. Huang Y. Establishment of immortalized rabbit bone marrow mesenchymal stem cells and a preliminary study of their osteogenic differentiation capability. Animal Model. Exp. Med. 2024 7 6 824 834 10.1002/ame2.12513 39592420
    [Google Scholar]
  19. Gao X. Ruzbarsky J.J. Layne J.E. Xiao X. Huard J. Stem cells and bone tissue engineering. Life 2024 14 3 287 10.3390/life14030287 38541613
    [Google Scholar]
  20. Donsante S. Palmisano B. Serafini M. Robey P.G. Corsi A. Riminucci M. From stem cells to bone-forming cells. Int. J. Mol. Sci. 2021 22 8 3989 10.3390/ijms22083989 33924333
    [Google Scholar]
  21. Kanczler J.M. Oreffo R.O.C. Osteogenesis and angiogenesis: The potential for engineering bone. Eur. Cell. Mater. 2008 15 100 114 10.22203/eCM.v015a08 18454418
    [Google Scholar]
  22. Zhang X. Zhang S. Wang T. How the mechanical microenvironment of stem cell growth affects their differentiation: A review. Stem Cell Res. Ther. 2022 13 1 415 10.1186/s13287‑022‑03070‑0 35964140
    [Google Scholar]
  23. Lin X. Patil S. Gao Y.G. Qian A. The bone extracellular matrix in bone formation and regeneration. Front. Pharmacol. 2020 11 757 10.3389/fphar.2020.00757 32528290
    [Google Scholar]
  24. Padhi A. Nain A.S. ECM in differentiation: A review of matrix structure, composition and mechanical properties. Ann. Biomed. Eng. 2020 48 3 1071 1089 10.1007/s10439‑019‑02337‑7 31485876
    [Google Scholar]
  25. Borciani G. Montalbano G. Baldini N. Cerqueni G. Vitale-Brovarone C. Ciapetti G. Co–culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater. 2020 108 22 45 10.1016/j.actbio.2020.03.043 32251782
    [Google Scholar]
  26. Tamma R. Ribatti D. Bone niches, hematopoietic stem cells, and vessel formation. Int. J. Mol. Sci. 2017 18 1 151 10.3390/ijms18010151 28098778
    [Google Scholar]
  27. Chan W.C.W. Tan Z. To M.K.T. Chan D. Regulation and role of transcription factors in osteogenesis. Int. J. Mol. Sci. 2021 22 11 5445 10.3390/ijms22115445 34064134
    [Google Scholar]
  28. Adam K. Gousopoulou E. Bakopoulou A. Characterization of cells derived from inflamed intra-bony periodontal defects. Dtsch Zahnärztl Z Int 2019 1 182 194
    [Google Scholar]
  29. Genasan K. Mehrali M. Veerappan T. Calcium-silicate-incorporated gellan-chitosan induced osteogenic differentiation in mesenchymal stromal cells. Polymers 2021 13 19 3211 10.3390/polym13193211 34641027
    [Google Scholar]
  30. Marie P.J. Miraoui H. Sévère N. FGF/FGFR signaling in bone formation: Progress and perspectives. Growth Factors 2012 30 2 117 123 10.3109/08977194.2012.656761 22292523
    [Google Scholar]
  31. Du X. Xie Y. Xian C.J. Chen L. Role of FGFs/FGFRs in skeletal development and bone regeneration. J. Cell. Physiol. 2012 227 12 3731 3743 10.1002/jcp.24083 22378383
    [Google Scholar]
  32. Liu Q. Huang J. Yan W. Liu Z. Liu S. Fang W. FGFR families: Biological functions and therapeutic interventions in tumors. MedComm 2023 4 5 367 10.1002/mco2.367 37750089
    [Google Scholar]
  33. Wu Z. Li W. Jiang K. Regulation of bone homeostasis: Signaling pathways and therapeutic targets. MedComm 2024 5 8 657 10.1002/mco2.657 39049966
    [Google Scholar]
  34. Hurley M.M. Adams D.J. Wang L. Accelerated fracture healing in transgenic mice overexpressing an anabolic isoform of fibroblast growth factor 2. J. Cell. Biochem. 2016 117 3 599 611 10.1002/jcb.25308 26252425
    [Google Scholar]
  35. Novais A. Chatzopoulou E. Chaussain C. Gorin C. The potential of FGF-2 in craniofacial bone tissue engineering: A review. Cells 2021 10 4 932 10.3390/cells10040932 33920587
    [Google Scholar]
  36. Kovar H. Bierbaumer L. Radic-Sarikas B. The YAP/TAZ pathway in osteogenesis and bone sarcoma pathogenesis. Cells 2020 9 4 972 10.3390/cells9040972 32326412
    [Google Scholar]
  37. Sato A. Suzuki S. Yuan H. Pharmacological activation of YAP/TAZ by targeting LATS1/2 enhances periodontal tissue regeneration in a murine model. Int. J. Mol. Sci. 2023 24 2 970 10.3390/ijms24020970 36674487
    [Google Scholar]
  38. Azad T. Nouri K. Janse van Rensburg H.J. A gain-of-functional screen identifies the Hippo pathway as a central mediator of receptor tyrosine kinases during tumorigenesis. Oncogene 2020 39 2 334 355 10.1038/s41388‑019‑0988‑y 31477837
    [Google Scholar]
  39. Dawes L.J. Shelley E.J. McAvoy J.W. Lovicu F.J. A role for Hippo/YAP-signaling in FGF-induced lens epithelial cell proliferation and fibre differentiation. Exp. Eye Res. 2018 169 122 133 10.1016/j.exer.2018.01.014 29355736
    [Google Scholar]
  40. Abdallah B.M. Haack-Sørensen M. Burns J.S. Maintenance of differentiation potential of human bone marrow mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene despite of extensive proliferation. Biochem. Biophys. Res. Commun. 2005 326 3 527 538 10.1016/j.bbrc.2004.11.059 15596132
    [Google Scholar]
  41. Iwamoto S. Mihara K. Downing J.R. Pui C.H. Campana D. Mesenchymal cells regulate the response of acute lymphoblastic leukemia cells to asparaginase. J. Clin. Invest. 2007 117 4 1049 1057 10.1172/JCI30235 17380207
    [Google Scholar]
  42. Jing S. Zhou H. Zou C. Application of telomere biology and telomerase in mesenchymal stem cells. Nano TransMed 2022 1 2-4 9130007 10.26599/NTM.2022.9130007
    [Google Scholar]
  43. Satija N.K. Gurudutta G.U. Sharma S. Mesenchymal stem cells: Molecular targets for tissue engineering. Stem Cells Dev. 2007 16 1 7 24 10.1089/scd.2006.9998 17348802
    [Google Scholar]
  44. Luna G.L.F. Oehlmeyer T.L. Brandão G. Use of human bone marrow mesenchymal stem cells immortalized by the expression of telomerase in wound healing in diabetic rats. Braz. J. Med. Biol. Res. 2021 54 11 11352 10.1590/1414‑431x2021e11352 34495249
    [Google Scholar]
  45. Elsafadi M. Shinwari T. Al-Malki S. Convergence of TGFβ and BMP signaling in regulating human bone marrow stromal cell differentiation. Sci. Rep. 2019 9 1 4977 10.1038/s41598‑019‑41543‑0 30899078
    [Google Scholar]
  46. Andersen R.K. Zaher W. Larsen K.H. Association between in vivo bone formation and ex vivo migratory capacity of human bone marrow stromal cells. Stem Cell Res. Ther. 2015 6 1 196 10.1186/s13287‑015‑0188‑9 26450135
    [Google Scholar]
  47. Lian W.S. Wu R.W. Chen Y.S. MicroRNA-29a mitigates osteoblast senescence and counteracts bone loss through oxidation resistance-1 control of FoxO3 methylation. Antioxidants 2021 10 8 1248 10.3390/antiox10081248 34439496
    [Google Scholar]
  48. Feng L. Yang Z. Hou N. Long non-coding RNA Malat1 increases the rescuing effect of quercetin on tnfα-impaired bone marrow stem cell osteogenesis and ovariectomy-induced osteoporosis. Int. J. Mol. Sci. 2023 24 6 5965 10.3390/ijms24065965 36983039
    [Google Scholar]
  49. Lin Y.T. Hsu T.T. Liu Y.W. Kao C.T. Huang T.H. Bidirectional differentiation of human-derived stem cells induced by biomimetic calcium silicate-reinforced gelatin methacrylate bioink for odontogenic regeneration. Biomedicines 2021 9 8 929 10.3390/biomedicines9080929 34440133
    [Google Scholar]
  50. Gothard D. Greenhough J. Ralph E. Oreffo R.O.C. Prospective isolation of human bone marrow stromal cell subsets: A comparative study between Stro-1-, CD146- and CD105-enriched populations. J. Tissue Eng. 2014 5 2041731414551763 10.1177/2041731414551763 25383172
    [Google Scholar]
  51. Rambhia K.J. Sun H. Feng K. Nanofibrous 3D scaffolds capable of individually controlled BMP and FGF release for the regulation of bone regeneration. Acta Biomater. 2024 190 50 63 10.1016/j.actbio.2024.10.044 39486780
    [Google Scholar]
  52. Sagaradze G.D. Basalova N.A. Efimenko A.Y. Tkachuk V.A. Mesenchymal stromal cells as critical contributors to tissue regeneration. Front. Cell Dev. Biol. 2020 8 576176 10.3389/fcell.2020.576176 33102483
    [Google Scholar]
  53. Chaudhary L.R. Hofmeister A.M. Hruska K.A. Differential growth factor control of bone formation through osteoprogenitor differentiation. Bone 2004 34 3 402 411 10.1016/j.bone.2003.11.014 15003788
    [Google Scholar]
  54. Quarto N. Longaker M.T. FGF-2 inhibits osteogenesis in mouse adipose tissue-derived stromal cells and sustains their proliferative and osteogenic potential state. Tissue Eng. 2006 12 6 1405 1418 10.1089/ten.2006.12.1405 16846339
    [Google Scholar]
  55. Lee J.H. Um S. Jang J.H. Seo B.M. Effects of VEGF and FGF-2 on proliferation and differentiation of human periodontal ligament stem cells. Cell Tissue Res. 2012 348 3 475 484 10.1007/s00441‑012‑1392‑x 22437875
    [Google Scholar]
  56. Quarto N. Wan D.C. Longaker M.T. Molecular mechanisms of FGF-2 inhibitory activity in the osteogenic context of mouse adipose-derived stem cells (mASCs). Bone 2008 42 6 1040 1052 10.1016/j.bone.2008.01.026 18420480
    [Google Scholar]
  57. Mansukhani A. Bellosta P. Sahni M. Basilico C. Signaling by fibroblast growth factors (FGF) and fibroblast growth factor receptor 2 (FGFR2)-activating mutations blocks mineralization and induces apoptosis in osteoblasts. J. Cell Biol. 2000 149 6 1297 1308 10.1083/jcb.149.6.1297 10851026
    [Google Scholar]
  58. Kyono A. Avishai N. Ouyang Z. Landreth G.E. Murakami S. FGF and ERK signaling coordinately regulate mineralization-related genes and play essential roles in osteocyte differentiation. J. Bone Miner. Metab. 2012 30 1 19 30 10.1007/s00774‑011‑0288‑2 21678127
    [Google Scholar]
  59. Ling L. Murali S. Dombrowski C. Sulfated glycosaminoglycans mediate the effects of FGF2 on the osteogenic potential of rat calvarial osteoprogenitor cells. J. Cell. Physiol. 2006 209 3 811 825 10.1002/jcp.20760 16972247
    [Google Scholar]
  60. Luo J. Li P. Context-dependent transcriptional regulations of YAP/TAZ in stem cell and differentiation. Stem Cell Res. Ther. 2022 13 1 10 10.1186/s13287‑021‑02686‑y 35012640
    [Google Scholar]
  61. Aubin J.E. Triffitt J.T. Mesenchymal stem cells and osteoblast differentiation. Principles of bone biology. Elsevier 2002 59 81 10.1016/B978‑012098652‑1.50106‑2
    [Google Scholar]
  62. Komori T. Regulation of bone development and extracellular matrix protein genes by RUNX2. Cell Tissue Res. 2010 339 1 189 195 10.1007/s00441‑009‑0832‑8 19649655
    [Google Scholar]
  63. Kitamura M. Akamatsu M. Machigashira M. FGF-2 stimulates periodontal regeneration: Results of a multi-center randomized clinical trial. J. Dent. Res. 2011 90 1 35 40 10.1177/0022034510384616 21059869
    [Google Scholar]
  64. de Santana R.B. de Santana C.M.M. Human intrabony defect regeneration with rh FGF ‐2 and hyaluronic acid – A randomized controlled clinical trial. J. Clin. Periodontol. 2015 42 7 658 665 10.1111/jcpe.12406 25933201
    [Google Scholar]
  65. Cochran D.L. Oh T.J. Mills M.P. A randomized clinical trial evaluating rh-FGF-2/β-TCP in periodontal defects. J. Dent. Res. 2016 95 5 523 530 10.1177/0022034516632497 26908630
    [Google Scholar]
  66. Khoshkam V. Chan H.L. Lin G.H. Outcomes of regenerative treatment with rh PDGF ‐ BB and rh FGF ‐2 for periodontal intra‐bony defects: A systematic review and meta‐analysis. J. Clin. Periodontol. 2015 42 3 272 280 10.1111/jcpe.12354 25605424
    [Google Scholar]
  67. Li F. Yu F. Xu X. Evaluation of recombinant human FGF-2 and PDGF-BB in periodontal regeneration: A systematic review and meta-analysis. Sci. Rep. 2017 7 1 65 10.1038/s41598‑017‑00113‑y 28246406
    [Google Scholar]
  68. Gulati K. Ding C. Guo T. Guo H. Yu H. Liu Y. Craniofacial therapy: Advanced local therapies from nano-engineered titanium implants to treat craniofacial conditions. Int. J. Oral Sci. 2023 15 1 15 10.1038/s41368‑023‑00220‑9 36977679
    [Google Scholar]
  69. Shi H. Kowalczewski A. Vu D. Organoid intelligence: Integration of organoid technology and artificial intelligence in the new era of in vitro models. Med Nov Technol Devices 2024 21 100276 10.1016/j.medntd.2023.100276 38646471
    [Google Scholar]
  70. Kurniawan D.W. Booijink R. Pater L. Fibroblast growth factor 2 conjugated superparamagnetic iron oxide nanoparticles (FGF2-SPIONs) ameliorate hepatic stellate cells activation in vitro and acute liver injury in vivo. J. Control. Release 2020 328 640 652 10.1016/j.jconrel.2020.09.041 32979454
    [Google Scholar]
  71. Kuroda Y. Kawai T. Goto K. Matsuda S. Clinical application of injectable growth factor for bone regeneration: A systematic review. Inflamm. Regen. 2019 39 1 20 10.1186/s41232‑019‑0109‑x 31660090
    [Google Scholar]
  72. Xie Y. Zinkle A. Chen L. Mohammadi M. Fibroblast growth factor signalling in osteoarthritis and cartilage repair. Nat. Rev. Rheumatol. 2020 16 10 547 564 10.1038/s41584‑020‑0469‑2 32807927
    [Google Scholar]
  73. Kitamura M. Nakashima K. Kowashi Y. Periodontal tissue regeneration using fibroblast growth factor-2: Randomized controlled phase II clinical trial. PLoS One 2008 3 7 2611 10.1371/journal.pone.0002611 18596969
    [Google Scholar]
  74. Park J.S. Kim D.Y. Hong H.S. FGF2/HGF priming facilitates adipose-derived stem cell-mediated bone formation in osteoporotic defects. Heliyon 2024 10 2 24554 10.1016/j.heliyon.2024.e24554 38304814
    [Google Scholar]
  75. Siddappa R. Licht R. van Blitterswijk C. de Boer J. Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. J. Orthop. Res. 2007 25 8 1029 1041 10.1002/jor.20402 17469183
    [Google Scholar]
  76. Todeschi M.R. El Backly R. Capelli C. Transplanted umbilical cord mesenchymal stem cells modify the in vivo microenvironment enhancing angiogenesis and leading to bone regeneration. Stem Cells Dev. 2015 24 13 1570 1581 10.1089/scd.2014.0490 25685989
    [Google Scholar]
  77. Tanavde V. Vaz C. Rao M.S. Vemuri M.C. Pochampally R.R. Research using mesenchymal stem/stromal cells: Quality metric towards developing a reference material. Cytotherapy 2015 17 9 1169 1177 10.1016/j.jcyt.2015.07.008 26276001
    [Google Scholar]
  78. Ivanovski S. Han P. Peters O.A. Sanz M. Bartold P.M. The therapeutic use of dental mesenchymal stem cells in human clinical trials. J. Dent. Res. 2024 103 12 1173 1184 10.1177/00220345241261900 39370700
    [Google Scholar]
  79. Dupree M.A. Pollack S.R. Levine E.M. Laurencin C.T. Fibroblast growth factor 2 induced proliferation in osteoblasts and bone marrow stromal cells: A whole cell model. Biophys. J. 2006 91 8 3097 3112 10.1529/biophysj.106.087098 16861274
    [Google Scholar]
  80. Li K. Liu L. Liu H. Xing J. Hu P. Song J. LATS1/YAP1 axis controls bone regeneration on distraction osteogenesis by activating wnt/β-catenin. Tissue Eng. Part A 2024 30 3-4 154 167 10.1089/ten.tea.2023.0091 37930731
    [Google Scholar]
  81. Al-Nbaheen M vishnubalaji R Ali D Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev. Rep. 2013 9 1 32 43 10.1007/s12015‑012‑9365‑8 22529014
    [Google Scholar]
  82. Ali D. Chalisserry E.P. Manikandan M. Romidepsin promotes osteogenic and adipocytic differentiation of human mesenchymal stem cells through inhibition of histondeacetylase activity. Stem Cells Int. 2018 2018 1 12 10.1155/2018/2379546 29731773
    [Google Scholar]
  83. Mihara K. Imai C. Coustan-Smith E. Development and functional characterization of human bone marrow mesenchymal cells immortalized by enforced expression of telomerase. Br. J. Haematol. 2003 120 5 846 849 10.1046/j.1365‑2141.2003.04217.x 12614220
    [Google Scholar]
  84. Takeuchi M. Higashino A. Takeuchi K. Transcriptional dynamics of immortalized human mesenchymal stem cells during transformation. PLoS One 2015 10 5 0126562 10.1371/journal.pone.0126562 25978455
    [Google Scholar]
  85. Burns J.S. Rasmussen P.L. Larsen K.H. Schrøder H.D. Kassem M. Parameters in three-dimensional osteospheroids of telomerized human mesenchymal (stromal) stem cells grown on osteoconductive scaffolds that predict in vivo bone-forming potential. Tissue Eng. Part A 2010 16 7 2331 2342 10.1089/ten.tea.2009.0735 20196644
    [Google Scholar]
  86. Yamaguchi D.T. “Ins” and “Outs” of mesenchymal stem cell osteogenesis in regenerative medicine. World J. Stem Cells 2014 6 2 94 110 10.4252/wjsc.v6.i2.94 24772237
    [Google Scholar]
  87. Yamaoka E. Hiyama E. Sotomaru Y. Neoplastic transformation by TERT in FGF-2-expanded human mesenchymal stem cells. Int. J. Oncol. 2011 39 1 5 11 [PMID: 21573488
    [Google Scholar]
  88. Simonsen J.L. Rosada C. Serakinci N. Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat. Biotechnol. 2002 20 6 592 596 10.1038/nbt0602‑592 12042863
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X374305250703110356
Loading
/content/journals/cscr/10.2174/011574888X374305250703110356
Loading

Data & Media loading...


  • Article Type:
    Research Article
Keywords: LATS1/2 ; YAP ; bone marrow stromal cells ; FGF2 ; Osteogenic differentiation ; bone regeneration
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test