Skip to content
2000
image of Therapeutic Potential of PSC-derived Cell Transplantation in Parkinson's Disease: A Systematic Review and Meta-analysis of Preclinical Studies

Abstract

Background

Parkinson's disease (PD) is a chronic progressive neurodegenerative disease with debilitating clinical presentations. Common therapeutic approaches for symptomatic improvement are often effective for a temporary period of time, after which patients often experience progressive disabilities. Cell replacement therapy is a potential therapeutic method that aims to replace depleted mesencephalic dopaminergic (DA) neurons, which may control symptoms and halt disease progression. Preclinical studies have investigated the efficacy of these PSC-derived DA cells in animal models of PD.

Methods

In this study, we comprehensively examine preclinical data on the therapeutic effect of primate PSC-derived DA progenitors on motor deficits in animal models of PD as a precursor for conducting human clinical trials. Relevant articles published before August 14th, 2023, were obtained from PubMed, Scopus, and Web of Science.

Results

Through several rounds of screening, 46 studies that met our inclusion criteria were included in this study. The quality of each study was assessed using CAMARADES and SYRCLE approaches. Although no included studies were judged to have an overall high risk of bias, several studies exhibited domain-specific methodological limitations. The analyzed studies demonstrate that cell therapy significantly improves motor dysfunction in rodent and non-human primate models of PD.

Conclusion

This systematic review and meta-analysis demonstrate that PSC-based cell therapy significantly improves motor dysfunction in rodent and NHP models of PD and could be a promising approach for halting disease progression, improving behavioral manifestations of the disease, and increasing the overall quality of life in PD.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X374086250602050549
2025-06-11
2025-09-15
Loading full text...

Full text loading...

References

  1. Rocca W.A. The burden of Parkinson’s disease: A worldwide perspective. Lancet Neurol. 2018 17 11 928 929 10.1016/S1474‑4422(18)30355‑7 30287052
    [Google Scholar]
  2. Balestrino R. Schapira A.H.V. Parkinson disease. Eur. J. Neurol. 2020 27 1 27 42 10.1111/ene.14108 31631455
    [Google Scholar]
  3. Bandres-Ciga S. Diez-Fairen M. Kim J.J. Singleton A.B. Genetics of Parkinson’s disease: An introspection of its journey towards precision medicine. Neurobiol. Dis. 2020 137 104782 10.1016/j.nbd.2020.104782 31991247
    [Google Scholar]
  4. Tran J. Anastacio H. Bardy C. Genetic predispositions of Parkinson’s disease revealed in patient-derived brain cells. NPJ Parkinsons Dis. 2020 6 1 8 10.1038/s41531‑020‑0110‑8 32352027
    [Google Scholar]
  5. De Miranda B.R. Greenamyre J.T. Trichloroethylene, a ubiquitous environmental contaminant in the risk for Parkinson’s disease. Environ. Sci. Process. Impacts 2020 22 3 543 554 10.1039/C9EM00578A 31996877
    [Google Scholar]
  6. Ullah I. Zhao L. Hai Y. Metal nlms and pesticides as risk factors for Parkinson’s disease: A review. Toxicol. Rep. 2021 8 607 616 10.1016/j.toxrep.2021.03.009 33816123
    [Google Scholar]
  7. Agnihotri A. Aruoma O.I. Alzheimer’s disease and parkinson’s disease: A nutritional toxicology perspective of the impact of oxidative stress, mitochondrial dysfunction, nutrigenomics and environmental chemicals. J. Am. Coll. Nutr. 2020 39 1 16 27 [PMID: 31829802
    [Google Scholar]
  8. Coskuner O. Intrinsically disordered proteins in various hypotheses on the pathogenesis of Alzheimer’s and Parkinson’s diseases. Prog. Mol. Biol. Transl. Sci. 2019 166 145 223 10.1016/bs.pmbts.2019.05.007
    [Google Scholar]
  9. Kalia L.V. Lang A.E. Parkinson’s disease. Lancet 2015 386 9996 896 912 [PMID: 25904081
    [Google Scholar]
  10. Parmar M. Grealish S. Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat. Rev. Neurosci. 2020 21 2 103 115 [PMID: 31907406
    [Google Scholar]
  11. Armstrong M.J. Okun M.S. Diagnosis and treatment of parkinson disease: A review. JAMA 2020 323 6 548 560 [PMID: 32044947
    [Google Scholar]
  12. Xu S. Wang W. Chen S. Deep brain stimulation complications in patients With Parkinson’s disease and surgical modifications: A single-center retrospective analysis. Front. Hum. Neurosci. 2021 15 684895 [PMID: 34177503
    [Google Scholar]
  13. Sharma V.D. Patel M. Miocinovic S. Surgical treatment of Parkinson’s disease: Devices and lesion approaches. Neurotherapeutics 2020 17 4 1525 1538 [PMID: 33118132
    [Google Scholar]
  14. LeWitt P.A. Rezai A.R. Leehey M.A. AAV2-GAD gene therapy for advanced Parkinson’s disease: A double-blind, sham-surgery controlled, randomised trial. Lancet Neurol. 2011 10 4 309 319 [PMID: 21419704
    [Google Scholar]
  15. Axelsen T.M. Woldbye D.P.D. Gene therapy for Parkinson’s disease, an update. J. Parkinsons Dis. 2018 8 2 195 215 10.3233/JPD‑181331 29710735
    [Google Scholar]
  16. Richardson R.M. Bankiewicz K.S. Christine C.W. Data-driven evolution of neurosurgical gene therapy delivery in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 2020 91 11 1210 1218 10.1136/jnnp‑2020‑322904 32732384
    [Google Scholar]
  17. Iqubal A. Iqubal M.K. Khan A. Ali J. Baboota S. Haque S.E. Gene therapy, a novel therapeutic tool for neurological disorders: Current progress, challenges and future prospective. Curr. Gene Ther. 2020 20 3 184 194 10.2174/1566523220999200716111502 32674730
    [Google Scholar]
  18. Amin M.M. Rambe A.S. Ritarwan K. Parkinson’s disease and gene therapy. Open Access Maced. J. Med. Sci. 2021 9 T3 60 63 10.3889/oamjms.2021.6321
    [Google Scholar]
  19. Tan E.K. Chao Y.X. West A. Chan L.L. Poewe W. Jankovic J. Parkinson disease and the immune system — associations, mechanisms and therapeutics. Nat. Rev. Neurol. 2020 16 6 303 318 10.1038/s41582‑020‑0344‑4 32332985
    [Google Scholar]
  20. Stoessl A.J. Immunotherapy for Parkinson’s disease: Stay tuned. Lancet Neurol. 2020 19 7 561 562 10.1016/S1474‑4422(20)30175‑7 32562672
    [Google Scholar]
  21. Kim T.W. Koo S.Y. Studer L. Pluripotent stem cell therapies for parkinson disease: Present challenges and future opportunities. Front. Cell Dev. Biol. 2020 8 729 10.3389/fcell.2020.00729 32903681
    [Google Scholar]
  22. Fan Y. Winanto, Ng SY. Replacing what’s lost: A new era of stem cell therapy for Parkinson’s disease. Transl. Neurodegener. 2020 9 2
    [Google Scholar]
  23. Yamanaka S. Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell 2020 27 4 523 531 [PMID: 33007237
    [Google Scholar]
  24. Okano H. Sipp D. New trends in cellular therapy. Development 2020 147 18 dev192567 [PMID: 32943426
    [Google Scholar]
  25. Hallett P.J. Deleidi M. Astradsson A. Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson’s disease. Cell Stem Cell 2015 16 3 269 274 [PMID: 25732245
    [Google Scholar]
  26. Doi D. Magotani H. Kikuchi T. Pre-clinical study of induced pluripotent stem cell-derived dopaminergic progenitor cells for Parkinson’s disease. Nat. Commun. 2020 11 1 3369 [PMID: 32632153
    [Google Scholar]
  27. Chen Z.Z. Niu Y.Y. Stem cell therapy for Parkinson’s disease using non-human primate models. Zool. Res. 2019 40 5 349 357 [PMID: 31343853
    [Google Scholar]
  28. Park H. Chang K.A. Therapeutic potential of repeated intravenous transplantation of human adipose-derived stem cells in subchronic MPTP-induced parkinson’s disease mouse model. Int. J. Mol. Sci. 2020 21 21 8129 [PMID: 33143234
    [Google Scholar]
  29. Zhang Y Ge M Hao Q Dong B Induced pluripotent stem cells in rat models of Parkinson's disease: A systematic review and meta-analysis. Biomed Rep 2018 8 3 289 10.3892/br.2018.1049
    [Google Scholar]
  30. Karimi A. Elmi M. Shiri Z. Baharvand H. Therapeutic potential of pluripotent stem cell-derived dopaminergic progenitors in Parkinson’s disease: A systematic review protocol. Syst. Rev. 2021 10 1 188 [PMID: 34172098
    [Google Scholar]
  31. Shamseer L. Moher D. Clarke M. Ghersi D. Liberati A. Petticrew M. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: Elaboration and explanation. BMJ 2015 349 g7647 g7
    [Google Scholar]
  32. Macleod M.R. O’Collins T. Howells D.W. Donnan G.A. Pooling of animal experimental data reveals influence of study design and citation bias. Stroke 2004 35 5 1203 1208 [PMID: 15060322
    [Google Scholar]
  33. Hooijmans C.R. Rovers M.M. de Vries R.B.M. Leenaars M. Ritskes-Hoitinga M. Langendam M.W. SYRCLE’s risk of bias tool for animal studies. BMC Med. Res. Methodol. 2014 14 1 43 10.1186/1471‑2288‑14‑43 24667063
    [Google Scholar]
  34. Ben-Hur T. Idelson M. Khaner H. Transplantation of human embryonic stem cell-derived neural progenitors improves behavioral deficit in Parkinsonian rats. Stem Cells 2004 22 7 1246 1255 10.1634/stemcells.2004‑0094 15579643
    [Google Scholar]
  35. Yang D. Zhang Z.J. Oldenburg M. Ayala M. Zhang S.C. Human embryonic stem cell-derived dopaminergic neurons reverse functional deficit in parkinsonian rats. Stem Cells 2008 26 1 55 63 10.1634/stemcells.2007‑0494 17951220
    [Google Scholar]
  36. Geeta R. Ramnath R.L. Rao H.S. Chandra V. One year survival and significant reversal of motor deficits in parkinsonian rats transplanted with hESC derived dopaminergic neurons. Biochem. Biophys. Res. Commun. 2008 373 2 258 264 10.1016/j.bbrc.2008.06.022 18565328
    [Google Scholar]
  37. Chiba S. Lee Y.M. Zhou W. Freed C.R. Noggin enhances dopamine neuron production from human embryonic stem cells and improves behavioral outcome after transplantation into Parkinsonian rats. Stem Cells 2008 26 11 2810 2820 10.1634/stemcells.2008‑0085 18772316
    [Google Scholar]
  38. Ko J.Y. Lee H.S. Park C.H. Koh H.C. Lee Y.S. Lee S.H. Conditions for tumor-free and dopamine neuron-enriched grafts after transplanting human ES cell-derived neural precursor cells. Mol. Ther. 2009 17 10 1761 1770 10.1038/mt.2009.148 19603007
    [Google Scholar]
  39. Hargus G. Cooper O. Deleidi M. Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc. Natl. Acad. Sci. USA 2010 107 36 15921 15926 10.1073/pnas.1010209107 20798034
    [Google Scholar]
  40. Kriks S. Shim J.W. Piao J. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson’s disease. Nature 2011 480 7378 547 551 10.1038/nature10648 22056989
    [Google Scholar]
  41. Kang X. Xu H. Teng S. Dopamine release from transplanted neural stem cells in Parkinsonian rat striatum in vivo. Proc. Natl. Acad. Sci. USA 2014 111 44 15804 15809 10.1073/pnas.1408484111 25331880
    [Google Scholar]
  42. Grealish S. Diguet E. Kirkeby A. Human ESC-derived dopamine neurons show similar preclinical efficacy and potency to fetal neurons when grafted in a rat model of Parkinson’s disease. Cell Stem Cell 2014 15 5 653 665 10.1016/j.stem.2014.09.017 25517469
    [Google Scholar]
  43. Doi D. Samata B. Katsukawa M. Isolation of human induced pluripotent stem cell-derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Reports 2014 2 3 337 350 10.1016/j.stemcr.2014.01.013 24672756
    [Google Scholar]
  44. Peng J. Liu Q. Rao M.S. Zeng X. Survival and engraftment of dopaminergic neurons manufactured by a good manufacturing practice-compatible process. Cytotherapy 2014 16 9 1305 1312 10.1016/j.jcyt.2014.06.002 25065637
    [Google Scholar]
  45. Steinbeck J.A. Choi S.J. Mrejeru A. Optogenetics enables functional analysis of human embryonic stem cell–derived grafts in a Parkinson’s disease model. Nat. Biotechnol. 2015 33 2 204 209 10.1038/nbt.3124 25580598
    [Google Scholar]
  46. Han F. Wang W. Chen B. Human induced pluripotent stem cell–derived neurons improve motor asymmetry in a 6-hydroxydopamine–induced rat model of Parkinson’s disease. Cytotherapy 2015 17 5 665 679 10.1016/j.jcyt.2015.02.001 25747741
    [Google Scholar]
  47. Samata B. Doi D. Nishimura K. Purification of functional human ES and iPSC-derived midbrain dopaminergic progenitors using LRTM1. Nat. Commun. 2016 7 1 13097 10.1038/ncomms13097 27739432
    [Google Scholar]
  48. Niclis J.C. Gantner C.W. Hunt C.P.J. A PITX3 -EGFP reporter line reveals connectivity of dopamine and non-dopamine neuronal subtypes in grafts generated from human embryonic stem cells. Stem Cell Reports 2017 9 3 868 882 10.1016/j.stemcr.2017.08.002 28867345
    [Google Scholar]
  49. Kikuchi T. Morizane A. Doi D. Idiopathic Parkinson’s disease patient-derived induced pluripotent stem cells function as midbrain dopaminergic neurons in rodent brains. J. Neurosci. Res. 2017 95 9 1829 1837 [PMID: 28233934
    [Google Scholar]
  50. Wakeman D.R. Hiller B.M. Marmion D.J. Cryopreservation maintains functionality of human iPSC dopamine neurons and rescues parkinsonian phenotypes in vivo. Stem Cell Reports 2017 9 1 149 161 [PMID: 28579395
    [Google Scholar]
  51. Fathi A. Mirzaei M. Dolatyar B. Discovery of novel cell surface markers for purification of embryonic dopamine progenitors for transplantation in parkinson’s disease animal models. Mol. Cell. Proteomics 2018 17 9 1670 1684 [PMID: 29848781
    [Google Scholar]
  52. Leitner D. Ramamoorthy M. Dejosez M. Zwaka T.P. Immature mDA neurons ameliorate motor deficits in a 6-OHDA Parkinson’s disease mouse model and are functional after cryopreservation. Stem Cell Res. (Amst.) 2019 41 101617 [PMID: 31731178
    [Google Scholar]
  53. de Luzy I.R. Niclis J.C. Gantner C.W. Isolation of LMX1a ventral midbrain progenitors improves the safety and predictability of human pluripotent stem cell-derived neural transplants in parkinsonian disease. J. Neurosci. 2019 39 48 9521 9531 [PMID: 31641054
    [Google Scholar]
  54. Song B. Cha Y. Ko S. Human autologous iPSC-derived dopaminergic progenitors restore motor function in Parkinson’s disease models. J. Clin. Invest. 2020 130 2 904 920 [PMID: 31714896
    [Google Scholar]
  55. Goggi J.L. Qiu L. Liao M.C. Dopamine transporter neuroimaging accurately assesses the maturation of dopamine neurons in a preclinical model of Parkinson’s disease. Stem Cell Res. Ther. 2020 11 1 347 [PMID: 32771055
    [Google Scholar]
  56. Kim T.W. Piao J. Koo S.Y. Biphasic activation of WNT signaling facilitates the derivation of midbrain dopamine neurons from hESCs for translational use. Cell Stem Cell 2021 28 2 343 355.e5 10.1016/j.stem.2021.01.005 33545081
    [Google Scholar]
  57. Piao J. Zabierowski S. Dubose B.N. Preclinical efficacy and safety of a human embryonic stem cell-derived midbrain dopamine progenitor product, MSK-DA01. Cell Stem Cell 2021 28 2 217 229.e7 10.1016/j.stem.2021.01.004 33545080
    [Google Scholar]
  58. Brot S. Thamrin N.P. Bonnet M.L. Long-term evaluation of intranigral transplantation of human iPSC-derived dopamine neurons in a Parkinson’s Disease mouse model. Cells 2022 11 10 1596 10.3390/cells11101596 35626637
    [Google Scholar]
  59. de Luzy I.R. Pavan C. Moriarty N. Identifying the optimal developmental age of human pluripotent stem cell-derived midbrain dopaminergic progenitors for transplantation in a rodent model of Parkinson’s disease. Exp. Neurol. 2022 358 114219 10.1016/j.expneurol.2022.114219 36055392
    [Google Scholar]
  60. Hiller B.M. Marmion D.J. Thompson C.A. Optimizing maturity and dose of iPSC-derived dopamine progenitor cell therapy for Parkinson’s disease. NPJ Regen. Med. 2022 7 1 24 10.1038/s41536‑022‑00221‑y 35449132
    [Google Scholar]
  61. Hiramatsu S. Morizane A. Kikuchi T. Doi D. Yoshida K. Takahashi J. Cryopreservation of induced pluripotent stem cell-derived dopaminergic neurospheres for clinical application. J. Parkinsons Dis. 2022 12 3 871 884 10.3233/JPD‑212934 34958047
    [Google Scholar]
  62. Li H. Jiang H. Li H. Li L. Yan Z. Feng J. Generation of human A9 dopaminergic pacemakers from induced pluripotent stem cells. Mol. Psychiatry 2022 27 11 4407 [https://www.nature.com/articles/s41380-022-01628-1
    [Google Scholar]
  63. Hills R. Mossman J.A. Bratt-Leal A.M. Neurite outgrowth and gene expression profile correlate with efficacy of human induced pluripotent stem cell-derived dopamine neuron grafts. Stem Cells Dev. 2023 32 13-14 387 397 [PMID: 37166357
    [Google Scholar]
  64. Naderi S. Shiri Z. Zarei-Kheirabadi M. Cryopreserved clinical-grade human embryonic stem cell-derived dopaminergic progenitors function in Parkinson’s disease models. Life Sci. 2023 329 121990 [PMID: 37524159
    [Google Scholar]
  65. Nakamura R. Nonaka R. Oyama G. A defined method for differentiating human iPSCs into midbrain dopaminergic progenitors that safely restore motor deficits in Parkinson’s disease. Front. Neurosci. 2023 17 1202027 10.3389/fnins.2023.1202027 37502682
    [Google Scholar]
  66. Park T.Y. Jeon J. Lee N. Co-transplantation of autologous Treg cells in a cell therapy for Parkinson’s disease. Nature 2023 619 7970 606 615 10.1038/s41586‑023‑06300‑4 37438521
    [Google Scholar]
  67. Ferrari D. Sanchez-Pernaute R. Lee H. Studer L. Isacson O. Transplanted dopamine neurons derived from primate ES cells preferentially innervate DARPP‐32 striatal progenitors within the graft. Eur. J. Neurosci. 2006 24 7 1885 1896 10.1111/j.1460‑9568.2006.05093.x 17067292
    [Google Scholar]
  68. Sanchez-Pernaute R. Lee H. Patterson M. Parthenogenetic dopamine neurons from primate embryonic stem cells restore function in experimental Parkinson’s disease. Brain 2008 131 8 2127 2139 10.1093/brain/awn144 18669499
    [Google Scholar]
  69. Sundberg M. Bogetofte H. Lawson T. Improved cell therapy protocols for Parkinson’s disease based on differentiation efficiency and safety of hESC-, hiPSC-, and non-human primate iPSC-derived dopaminergic neurons. Stem Cells 2013 31 8 1548 1562 10.1002/stem.1415 23666606
    [Google Scholar]
  70. Li F. Zhang A. Li M. Induced neural stem cells from Macaca fascicularis show potential of dopaminergic neuron specification and efficacy in a mouse Parkinson’s disease model. Acta Histochem. 2022 124 6 151927 [PMID: 35792494
    [Google Scholar]
  71. Doi D. Morizane A. Kikuchi T. Prolonged maturation culture favors a reduction in the tumorigenicity and the dopaminergic function of human ESC-derived neural cells in a primate model of Parkinson’s disease. Stem Cells 2012 30 5 935 945 [PMID: 22328536
    [Google Scholar]
  72. Gonzalez R. Garitaonandia I. Poustovoitov M. Neural stem cells derived from human parthenogenetic stem cells engraft and promote recovery in a nonhuman primate model of parkinson’s disease. Cell Transplant. 2016 25 11 1945 1966 [PMID: 27213850
    [Google Scholar]
  73. Kikuchi T. Morizane A. Doi D. Human iPS cell-derived dopaminergic neurons function in a primate Parkinson’s disease model. Nature 2017 548 7669 592 596 [PMID: 28858313
    [Google Scholar]
  74. Wang Y.K. Zhu W.W. Wu M.H. Human clinical-grade parthenogenetic ESC-derived dopaminergic neurons recover locomotive defects of nonhuman primate models of Parkinson’s Disease. Stem Cell Reports 2018 11 1 171 182 [PMID: 29910127
    [Google Scholar]
  75. Takagi Y. Takahashi J. Saiki H. Dopaminergic neurons generated from monkey embryonic stem cells function in a Parkinson primate model. J. Clin. Invest. 2005 115 1 102 109 [PMID: 15630449
    [Google Scholar]
  76. Wang S. Zou C. Fu L. Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson’s disease model. Cell Discov. 2015 1 1 15012 [PMID: 27462412
    [Google Scholar]
  77. Wianny F. Dzahini K. Fifel K. Induced cognitive impairments reversed by grafts of neural precursors: A longitudinal study in a Macaque Model of Parkinson’s Disease. Adv. Sci. (Weinh.) 2022 9 10 e2103827 [PMID: 35137562
    [Google Scholar]
  78. Backlund E.O. Granberg P.O. Hamberger B. Transplantation of adrenal medullary tissue to striatum in parkinsonism. First clinical trials. J. Neurosurg. 1985 62 2 169 173 [PMID: 2578558
    [Google Scholar]
  79. Katolikova N.V. Malashicheva A.B. Gainetdinov R.R. Cell replacement therapy in parkinson’s disease-history of development and prospects for use in clinical practice. Mol. Biol. (Mosk.) 2020 54 6 939 954 [PMID: 33276357
    [Google Scholar]
  80. Jankovic J. Grossman R. Goodman C. Clinical, biochemical, and neuropathologic findings following transplantation of adrenal medulla to the caudate nucleus for treatment of Parkinson’s disease. Neurology 1989 39 9 1227 1234 [PMID: 2475820
    [Google Scholar]
  81. Freed C.R. Greene P.E. Breeze R.E. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N. Engl. J. Med. 2001 344 10 710 719 [PMID: 11236774
    [Google Scholar]
  82. Ma Y. Feigin A. Dhawan V. Dyskinesia after fetal cell transplantation for parkinsonism: A PET study. Ann. Neurol. 2002 52 5 628 634 [PMID: 12402261
    [Google Scholar]
  83. Grealish S. Jönsson M.E. Li M. Kirik D. Björklund A. Thompson L.H. The A9 dopamine neuron component in grafts of ventral mesencephalon is an important determinant for recovery of motor function in a rat model of Parkinson’s disease. Brain 2010 133 Pt 2 482 495 [PMID: 20123725
    [Google Scholar]
  84. Schweitzer J.S. Song B. Leblanc P.R. Feitosa M. Carter B.S. Kim K.S. Columnar injection for intracerebral cell therapy. Oper. Neurosurg. (Hagerstown) 2020 18 3 321 328 [PMID: 31214702
    [Google Scholar]
  85. Thomson J.A. Itskovitz-Eldor J. Shapiro S.S. Embryonic stem cell lines derived from human blastocysts. Science 1998 282 5391 1145 1147 10.1126/science.282.5391.1145 9804556
    [Google Scholar]
  86. Takahashi K. Okita K. Nakagawa M. Yamanaka S. Induction of pluripotent stem cells from fibroblast cultures. Nat. Protoc. 2007 2 12 3081 3089 10.1038/nprot.2007.418 18079707
    [Google Scholar]
  87. Liu Q. Pedersen O.Z. Peng J. Couture L.A. Rao M.S. Zeng X. Optimizing dopaminergic differentiation of pluripotent stem cells for the manufacture of dopaminergic neurons for transplantation. Cytotherapy 2013 15 8 999 1010 10.1016/j.jcyt.2013.03.006 23664011
    [Google Scholar]
  88. Sonntag K.C. Pruszak J. Yoshizaki T. van Arensbergen J. Sanchez-Pernaute R. Isacson O. Enhanced yield of neuroepithelial precursors and midbrain-like dopaminergic neurons from human embryonic stem cells using the bone morphogenic protein antagonist noggin. Stem Cells 2007 25 2 411 418 10.1634/stemcells.2006‑0380 17038668
    [Google Scholar]
  89. Cooper O. Hargus G. Deleidi M. Differentiation of human ES and Parkinson’s disease iPS cells into ventral midbrain dopaminergic neurons requires a high activity form of SHH, FGF8a and specific regionalization by retinoic acid. Mol. Cell. Neurosci. 2010 45 3 258 266 10.1016/j.mcn.2010.06.017 20603216
    [Google Scholar]
  90. Kirkeby A. Grealish S. Wolf D.A. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Rep. 2012 1 6 703 714 10.1016/j.celrep.2012.04.009 22813745
    [Google Scholar]
  91. Gonzalez R. Garitaonandia I. Abramihina T. Deriving dopaminergic neurons for clinical use. A practical approach. Sci. Rep. 2013 3 1 1463 10.1038/srep01463 23492920
    [Google Scholar]
  92. Goetz C.G. Olanow C.W. Koller W.C. Multicenter study of autologous adrenal medullary transplantation to the corpus striatum in patients with advanced Parkinson’s disease. N. Engl. J. Med. 1989 320 6 337 341 10.1056/NEJM198902093200601 2643770
    [Google Scholar]
  93. Skinner E.C. Boyd S.D. Apuzzo M.L.J. Technique of left adrenalectomy for autotransplantation to the caudate nucleus in Parkinson’s disease. J. Urol. 1990 144 4 838 840 10.1016/S0022‑5347(17)39604‑0 2204727
    [Google Scholar]
  94. Velasco F. Velasco M. Cuevas H.R. Jurado J. Olvera J. Jiménez F. Autologous adrenal medullary transplants in advanced Parkinson’s disease with particular attention to the selective improvement in symptoms. Stereotact. Funct. Neurosurg. 1991 57 4 195 212 10.1159/000099579 1842977
    [Google Scholar]
  95. López-Lozano J.J. Bravo G. Abascal J. Grafting of perfused adrenal medullary tissue into the caudate nucleus of patients with Parkinson’s disease. J. Neurosurg. 1991 75 2 234 243 10.3171/jns.1991.75.2.0234 2072160
    [Google Scholar]
  96. Porena M. Parziani S. Costantini E. Vespasiani G. Micall F. Autologous adrenal medullary transplant in Parkinson’s disease: Critical review of our results in 13 patients. Neurourol. Urodyn. 1996 15 3 195 201 10.1002/(SICI)1520‑6777(1996)15:3<195:AID‑NAU4>3.0.CO;2‑A 8732986
    [Google Scholar]
  97. Freed C.R. Breeze R.E. Rosenberg N.L. Survival of implanted fetal dopamine cells and neurologic improvement 12 to 46 months after transplantation for Parkinson’s disease. N. Engl. J. Med. 1992 327 22 1549 1555 10.1056/NEJM199211263272202 1435881
    [Google Scholar]
  98. Hauser R.A. Freeman T.B. Snow B.J. Long-term evaluation of bilateral fetal nigral transplantation in Parkinson disease. Arch. Neurol. 1999 56 2 179 187 10.1001/archneur.56.2.179 10025423
    [Google Scholar]
  99. Jacques D.B. Kopyov O.V. Eagle K.S. Carter T. Lieberman A. Outcomes and complications of fetal tissue transplantation in Parkinson’s disease. Stereotact. Funct. Neurosurg. 1999 72 2-4 219 224 10.1159/000029729 10853081
    [Google Scholar]
  100. Brundin P. Pogarell O. Hagell P. Bilateral caudate and putamen grafts of embryonic mesencephalic tissue treated with lazaroids in Parkinson’s disease. Brain 2000 123 7 1380 1390 10.1093/brain/123.7.1380 10869050
    [Google Scholar]
  101. Olanow C.W. Goetz C.G. Kordower J.H. A double‐blind controlled trial of bilateral fetal nigral transplantation in Parkinson’s disease. Ann. Neurol. 2003 54 3 403 414 10.1002/ana.10720 12953276
    [Google Scholar]
  102. Bhatia K.P. Marsden C.D. The behavioural and motor consequences of focal lesions of the basal ganglia in man. Brain 1994 117 4 859 876 10.1093/brain/117.4.859 7922471
    [Google Scholar]
  103. Holthoff-Detto VA Kessler J Herholz K Functional effects of striatal dysfunction in Parkinson disease. Arch Neurol 54 2 145 10.1001/archneur.1997.00550140025008.
    [Google Scholar]
  104. Hagell P. Schrag A. Piccini P. Sequential bilateral transplantation in Parkinson’s disease: Effects of the second graft. Brain 1999 122 6 1121 1132 10.1093/brain/122.6.1121 10356064
    [Google Scholar]
  105. Soderstrom K.E. Meredith G. Freeman T.B. The synaptic impact of the host immune response in a parkinsonian allograft rat model: Influence on graft-derived aberrant behaviors. Neurobiol. Dis. 2008 32 2 229 242 10.1016/j.nbd.2008.06.018 18672063
    [Google Scholar]
  106. Wenker S.D. Pitossi F.J. Cell therapy for Parkinson′s disease is coming of age: Current challenges and future prospects with a focus on immunomodulation. Gene Ther. 2020 27 1-2 6 14 10.1038/s41434‑019‑0077‑4 30992523
    [Google Scholar]
  107. Schweitzer J.S. Song B. Herrington T.M. Personalized iPSC-derived dopamine progenitor cells for parkinson’s disease. N. Engl. J. Med. 2020 382 20 1926 1932 10.1056/NEJMoa1915872 32402162
    [Google Scholar]
  108. Morizane A. Kikuchi T. Hayashi T. MHC matching improves engraftment of iPSC-derived neurons in non-human primates. Nat. Commun. 2017 8 1 385 10.1038/s41467‑017‑00926‑5 28855509
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X374086250602050549
Loading
/content/journals/cscr/10.2174/011574888X374086250602050549
Loading

Data & Media loading...

Supplements

Supplementary material is available on the publisher's website along with the published article.


  • Article Type:
    Review Article
Keywords: Parkinson's disease ; systematic review ; dopamine ; meta-analysis ; animal models ; cell therapy
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test