Skip to content
2000
image of Application of Artificial Intelligence in Stem Cells and Gene Therapy for Gynecological Cancers

Abstract

The application of artificial intelligence (AI) in stem cell and gene therapy offers significant advancements in the treatment of gynecological cancers, including breast, ovarian, and cervical cancers. This review explores how machine learning (ML) enhances both diagnostic and therapeutic strategies in regenerative medicine. AI integration allows for more accurate disease progression predictions, identification of therapeutic targets, and optimization of personalized treatment plans. Additionally, AI improves the efficacy and safety of stem cell and gene therapy approaches by facilitating the identification of biomarkers and genetic variations, enabling tailored therapies for individual patients. The use of AI-supported analytics in combined treatment strategies presents new avenues for effective cancer management. Furthermore, AI-driven regenerative medicine optimizes stem cell functions, refines treatment protocols, and contributes to the identification of less frequent biomarkers, improving prognostic algorithms and therapy outcomes. As ML targets specific molecular changes in cancer cells, they enhance the precision of gene silencing and anti-aging interventions, offering new possibilities for combined therapies. These innovations position AI as a transformative tool in the development of personalized and effective treatments for women's cancers, with future studies likely to expand the scope and impact of AI-driven strategies.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X374002250707044343
2025-07-15
2025-12-31
Loading full text...

Full text loading...

References

  1. Kataki A.C. Epidemiology of gynaecological cancers. Fundamentals in Gynaecologic Malignancy. Cham Springer 2023 1 8 10.1007/978‑981‑19‑5860‑1_1
    [Google Scholar]
  2. Benoit M.F. Williams-Brown M.Y. Edwards C.L. Gynecologic oncology handbook: An evidence-based clinical guide. Cham Springer Publishing Company 2023 10.1891/9780826155986
    [Google Scholar]
  3. González-Ruiz I. Ramos-García P. Ruiz-Ávila I. González-Moles M.Á. Early diagnosis of oral cancer: A complex polyhedral problem with a difficult solution. Cancers 2023 15 13 3270 10.3390/cancers15133270 37444379
    [Google Scholar]
  4. Ali A.T. Al-ani O. Al-ani F. Epidemiology and risk factors for ovarian cancer. Przegl. Menopauz. 2023 22 2 93 104 10.5114/pm.2023.128661 37674925
    [Google Scholar]
  5. Rasool S. Innovations in AI-powered healthcare: Transforming cancer treatment with innovative methods. 2024 Available from: https://journal.mediapublikasi.id/index.php/bullet/article/view/4094
  6. Hunter B. Hindocha S. Lee R.W. The role of artificial intelligence in early cancer diagnosis. Cancers 2022 14 6 1524 10.3390/cancers14061524 35326674
    [Google Scholar]
  7. Natelauri E. Cervical Cancer London, UK, IntechOpen 2023 10.5772/intechopen.110131
    [Google Scholar]
  8. Shah S. Thanki R.M. Diwan A. Artificial Intelligence for Early Detection and Diagnosis of Cervical Cancer Cham Springer 2024 10.1007/978‑3‑031‑69666‑4
    [Google Scholar]
  9. Ramesh P. Munjal P. Colposcopy and cervical cancer screening. InnovAiT 2023 16 1 7 13 10.1177/17557380221132297
    [Google Scholar]
  10. Changhez J. James S. Jamala F. Khan S. Khan M.Z. Gul S. Zainab I. Evaluating the efficacy and accuracy of ai-assisted diagnostic techniques in endometrial carcinoma: A systematic review. Cureus 2024 16 5 60973 10.7759/cureus.60973 38910646
    [Google Scholar]
  11. Prabhakar P.K. Biomedical research developments for improved healthcare. 2024 Available from: https://www.igi-global.com/book/biomedical-research-developments-improved-healthcare/330970
  12. Schubert M. Bauerschlag D.O. Muallem M.Z. Maass N. Alkatout I. Challenges in the diagnosis and individualized treatment of cervical cancer. Medicina 2023 59 5 925 10.3390/medicina59050925 37241157
    [Google Scholar]
  13. Farooqi H.A. Ahmed H.B. Nabi R.J.E.J.S.O. Enhancing vulvar cancer care: Integrating biomarkers and AI for better outcomes. Eur. J. Surg. Oncol. 2024 51 3 108776 10.1016/j.ejso.2024.108776
    [Google Scholar]
  14. Abdullahi H. Ayogu M. Pattern and relative frequencies of gynecological malignancies at the University of Abuja Teaching Hospital, Abuja. Trop. J. Obstet. Gynaecol. 2020 37 1 177 181 10.4103/TJOG.TJOG_99_19
    [Google Scholar]
  15. Stewart H. Ashmore L. Kragh-Furbo M. Singleton V. Hutton D. Ghosts in the machinery: Living with and beyond radiotherapy treatment for gynaecological cancer. Health 2024 28 1 90 107 10.1177/13634593221114749 35900050
    [Google Scholar]
  16. Yim W.W.Y. Wee F. Ho Z.Y. Feng X. Zhang M. Lee S. Zlobec I. Yeong J. Lau M.C. Advances in ai-enhanced biomedical imaging for cancer immunology. World Scient. Annual Rev. Cancer Immunol. 2024 1 2430004 10.1142/S2972389224300044
    [Google Scholar]
  17. Foser S. Maiese K. Digumarthy S.R. Puig-Butille J.A. Rebhan C. Looking to the future of early detection in cancer: Liquid biopsies, imaging, and artificial intelligence. Clin. Chem. 2024 70 1 27 32 10.1093/clinchem/hvad196 38175601
    [Google Scholar]
  18. Vela-Vallespín C. Medina-Perucha L. Jacques-Aviñó C. Codern-Bové N. Harris M. Borras J.M. Marzo-Castillejo M. Women’s experiences along the ovarian cancer diagnostic pathway in Catalonia: A qualitative study. Health Expect. 2023 26 1 476 487 10.1111/hex.13681 36447409
    [Google Scholar]
  19. Dong X. Liu H. Tong T. Wu L. Wang J. You T. Wei Y. Yi X. Yang H. Hu J. Wang H. Wang X. Li M.J. Personalized prediction of anticancer potential of non-oncology drugs through learning from genome derived molecular pathways. NPJ Precis. Oncol. 2025 9 1 36 10.1038/s41698‑025‑00813‑z 39905223
    [Google Scholar]
  20. Rahman M. Application of robotics in modern surgery and critical operations: Current status, challenges, and future directions. INNOSC Theranost. Pharmacol. Sci. 2025 4664 10.36922/itps.4664
    [Google Scholar]
  21. Kaushik P. Artificial intelligence accelerated transformation in the healthcare industry. Amity J. Prof. Prac. 2023 3 01 1 9 10.55054/ajpp.v3i01.630
    [Google Scholar]
  22. Elsebakhi E. Large-scale machine learning based on functional networks for biomedical big data with high performance computing platforms. J. Computat. Sci. 2015 11 69 81 10.1016/j.jocs.2015.09.008
    [Google Scholar]
  23. Waring J. Lindvall C. Umeton R. Automated machine learning: Review of the state-of-the-art and opportunities for healthcare. Artif. Intell. Med. 2020 104 101822 10.1016/j.artmed.2020.101822 32499001
    [Google Scholar]
  24. Coronato A. Naeem M. De Pietro G. Paragliola G. Reinforcement learning for intelligent healthcare applications: A survey. Artif. Intell. Med. 2020 109 101964 10.1016/j.artmed.2020.101964 34756216
    [Google Scholar]
  25. Yousefpoor M.S. Yousefpoor E. Barati H. Barati A. Movaghar A. Hosseinzadeh M. Secure data aggregation methods and countermeasures against various attacks in wireless sensor networks: A comprehensive review. J. Netw. Comput. Appl. 2021 190 103118 10.1016/j.jnca.2021.103118
    [Google Scholar]
  26. Rahmani A.M. Machine learning (ML) in medicine: Review, applications, and challenges. Expert Opin. Biol. Ther. 2021 9 22
    [Google Scholar]
  27. Yu K.H. Beam A.L. Kohane I.S. Artificial intelligence in healthcare. Nat. Biomed. Eng. 2018 2 10 719 731 10.1038/s41551‑018‑0305‑z 31015651
    [Google Scholar]
  28. Berry M.W. Mohamed A. Yap B.W. Supervised and unsupervised learning for data science. Cham Springer 2019 10.1007/978‑3‑030‑22475‑2_1
    [Google Scholar]
  29. Forsch N. Govil S. Perry J.C. Hegde S. Young A.A. Omens J.H. McCulloch A.D. Computational analysis of cardiac structure and function in congenital heart disease: Translating discoveries to clinical strategies. J. Comput. Sci. 2021 52 101211 10.1016/j.jocs.2020.101211 34691293
    [Google Scholar]
  30. Mabrouk E. Immune system programming for medical image segmentation. J. Computat. Sci. 2019 31 111 125 10.1016/j.jocs.2019.01.002
    [Google Scholar]
  31. Surendar P.J.J.C.S. Diagnosis of lung cancer using hybrid deep neural network with adaptive sine cosine crow search algorithm. Expert Opin. Biol. Ther. 2021 53 101374
    [Google Scholar]
  32. Belciug S. Era of intelligent systems in healthcare. 2020 1 55 10.1007/978‑3‑030‑14354‑1_1
    [Google Scholar]
  33. Dulhare U.N. Ahmad K. Ahmad K.A.B. Machine learning and big data: Concepts, algorithms, tools and applications. Hoboken, New Jersey John Wiley & sons 2020 10.1002/9781119654834
    [Google Scholar]
  34. Zhang X.D. A matrix algebra approach to artificial intelligence. Expert Opin. Biol. Ther. 2020 1 6 10.1007/978‑981‑15‑2770‑8
    [Google Scholar]
  35. Alsuliman T. Humaidan D. Sliman L. Machine learning and artificial intelligence in the service of medicine: Necessity or potentiality? Curr. Res. Transl. Med. 2020 68 4 245 251 10.1016/j.retram.2020.01.002 32029403
    [Google Scholar]
  36. Kandhway P. Bhandari A.K. Singh A. A novel reformed histogram equalization based medical image contrast enhancement using krill herd optimization. Biomed. Signal Process. Control 2020 56 101677 10.1016/j.bspc.2019.101677
    [Google Scholar]
  37. Zerouaoui H. Idri A. Reviewing machine learning and image processing based decision-making systems for breast cancer imaging. J. Med. Syst. 2021 45 1 8 10.1007/s10916‑020‑01689‑1 33404910
    [Google Scholar]
  38. Datta S. Barua R. Application of artificial intelligence in modern healthcare system London, UK, IntechOpen 2019
    [Google Scholar]
  39. Nilius H. Machine learning applications in precision medicine: Overcoming challenges and unlocking potential. TrAC Trends Analyt. Chem. 2024 179 117872 10.1016/j.trac.2024.117872
    [Google Scholar]
  40. Saxena A. Bias in medical big data and machine learning algorithms. Artif. Intellig. Mach. Learn. Healthcare 2021 217 228 10.1007/978‑981‑16‑0811‑7_10
    [Google Scholar]
  41. Pucchio A. Eisenhauer E.A. Moraes F.Y. Medical students need artificial intelligence and machine learning training. Nat. Biotechnol. 2021 39 3 388 389 10.1038/s41587‑021‑00846‑2 33692507
    [Google Scholar]
  42. Denecke K. Baudoin C.R. A review of artificial intelligence and robotics in transformed health ecosystems. Front. Med. 2022 9 795957 10.3389/fmed.2022.795957 35872767
    [Google Scholar]
  43. Zhou S. Neurosurgical robots in China: State of the art and future prospect. iScience 2023 26 11 107983 10.1016/j.isci.2023.107983
    [Google Scholar]
  44. Assaf D. Rayman S. Segev L. Neuman Y. Zippel D. Goitein D. Improving pre-bariatric surgery diagnosis of hiatal hernia using machine learning models. Minim. Invasive Ther. Allied Technol. 2022 31 5 760 767 10.1080/13645706.2021.1901120 33779469
    [Google Scholar]
  45. De Bruyne S. Speeckaert M.M. Van Biesen W. Delanghe J.R. Recent evolutions of machine learning applications in clinical laboratory medicine. Crit. Rev. Clin. Lab. Sci. 2021 58 2 131 152 10.1080/10408363.2020.1828811 33045173
    [Google Scholar]
  46. Ahsan M.M. Luna S.A. Siddique Z. Machine-learning-based disease diagnosis: A comprehensive review. Healthcare 2022 10 3 541 10.3390/healthcare10030541
    [Google Scholar]
  47. Srivastava R.J.E.R. Medicine. Applicat. Artif. Intellig. Med. 2024 9 2 138 146 10.3390/healthcare10030541
    [Google Scholar]
  48. Rana M. Bhushan M. Machine learning and deep learning approach for medical image analysis: Diagnosis to detection. Multimedia Tools Appl. 2023 82 17 26731 26769 10.1007/s11042‑022‑14305‑w 36588765
    [Google Scholar]
  49. Rai H.M. Yoo J. Razaque A.J.E.S.A. Comparative analysis of machine learning and deep learning models for improved cancer detection: A comprehensive review of recent advancements in diagnostic techniques. 2024 124838 10.1016/j.eswa.2024.124838
    [Google Scholar]
  50. Quazi S. Artificial intelligence and machine learning in precision and genomic medicine. Med. Oncol. 2022 39 8 120 10.1007/s12032‑022‑01711‑1 35704152
    [Google Scholar]
  51. Jayaraman P. Desman J. Sabounchi M. Nadkarni G.N. Sakhuja A. A primer on reinforcement learning in medicine for clinicians. NPJ Digit. Med. 2024 7 1 337 10.1038/s41746‑024‑01316‑0 39592855
    [Google Scholar]
  52. Babu A. Boddu S.B. Pharmacy S. BERT-based medical chatbot: Enhancing healthcare communication through natural language understanding. Explorat. Res. Clin. Soc. Pharma. 2024 13 13 100419 10.1016/j.rcsop.2024.100419 38495953
    [Google Scholar]
  53. Nosrati H. Nosrati M. Artificial intelligence in regenerative medicine: Applications and implications. Biomimetics 2023 8 5 442 10.3390/biomimetics8050442 37754193
    [Google Scholar]
  54. Yang K. Zhang Y. Ding J. Li Z. Zhang H. Zou F. Autoimmune CD8+ T cells in type 1 diabetes: From single-cell RNA sequencing to T-cell receptor redirection. Front. Endocrinol. 2024 15 1377322 10.3389/fendo.2024.1377322 38800484
    [Google Scholar]
  55. Gangwal A. Ansari A. Ahmad I. Azad A.K. Kumarasamy V. Subramaniyan V. Wong L.S. Generative artificial intelligence in drug discovery: Basic framework, recent advances, challenges, and opportunities. Front. Pharmacol. 2024 15 1331062 10.3389/fphar.2024.1331062 38384298
    [Google Scholar]
  56. Sivangi K.B. Amilpur S. Dasari C.M. ReGen-DTI: A novel generative drug target interaction model for predicting potential drug candidates against SARS-COV2. Comput. Biol. Chem. 2023 106 107927 10.1016/j.compbiolchem.2023.107927 37499436
    [Google Scholar]
  57. Loewa A. Feng J.J. Hedtrich S. Human disease models in drug development. Nat. Rev. Bioeng. 2023 1 8 1 15 37359774
    [Google Scholar]
  58. Toma M. Wei O.C. Predictive modeling in medicine. Encyclopedia 2023 3 2 590 601 10.3390/encyclopedia3020042
    [Google Scholar]
  59. Rajput D.S. Gupta N. Singh S. Sharma B. A comprehensive review: Personalized medicine for rare disease cancer treatment. Chung Kuo Ying Yung Sheng Li Hsueh Tsa Chih 2023 39 20230008 10.62958/j.cjap.2023.008 38830754
    [Google Scholar]
  60. Khan M.U.A. Aslam M.A. Bin Abdullah M.F. Hasan A. Shah S.A. Stojanović G.M. Recent perspective of polymeric biomaterial in tissue engineering– a review. Mater. Today Chem. 2023 34 101818 10.1016/j.mtchem.2023.101818
    [Google Scholar]
  61. Khan M.U.A. Stojanović G.M. Abdullah M.F.B. Dolatshahi-Pirouz A. Marei H.E. Ashammakhi N. Hasan A. Fundamental properties of smart hydrogels for tissue engineering applications: A review. Int. J. Biol. Macromol. 2024 254 Pt 3 127882 10.1016/j.ijbiomac.2023.127882 37951446
    [Google Scholar]
  62. Zhang P. Zhang G. Wan X. Challenges and new technologies in adoptive cell therapy. J. Hematol. Oncol. 2023 16 1 97 10.1186/s13045‑023‑01492‑8 37596653
    [Google Scholar]
  63. Ogunjobi T.T. Bioinformatics applications in chronic diseases: A comprehensive review of genomic, transcriptomics, proteomic, metabolomics, and machine learning approaches. Depart. Biochem. Lad. Akint. Univer. Technol. 2024 1 8 10.47852/bonviewMEDIN42022335
    [Google Scholar]
  64. Fiste O. Liontos M. Zagouri F. Stamatakos G. Dimopoulos M.A. Machine learning applications in gynecological cancer: A critical review. Crit. Rev. Oncol. Hematol. 2022 179 103808 10.1016/j.critrevonc.2022.103808 36087852
    [Google Scholar]
  65. Zhang B. Shi H. Wang H.J.J.h. Machine learning and AI in cancer prognosis, prediction, and treatment selection: A critical approach. 2023 1779 1791 10.2147/JMDH.S410301
    [Google Scholar]
  66. Alharbi F. Vakanski A. Machine learning methods for cancer classification using gene expression data. Bioengineering 2023 10 2 173 10.3390/bioengineering10020173 36829667
    [Google Scholar]
  67. Kourou K. Machine learning applications in cancer prognosis and prediction. Comput. Struct. Biotechnol. J. 2015 13 8 17 10.1016/j.csbj.2014.11.005
    [Google Scholar]
  68. Huang S. Cai N. Pacheco P.P. Narrandes S. Wang Y. Xu W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom. Proteom. 2018 15 1 41 51 10.21873/cgp.20063 29275361
    [Google Scholar]
  69. Liao J. Li X. Gan Y. Han S. Rong P. Wang W. Li W. Zhou L. Artificial intelligence assists precision medicine in cancer treatment. Front. Oncol. 2023 12 998222 10.3389/fonc.2022.998222 36686757
    [Google Scholar]
  70. Goel N. Khandnor P.J.M.T.P. TCGA: A multi-genomics material repository for cancer research. Materia. Prod. 2020 28 Part 3 1492 1495 10.1016/j.matpr.2020.04.827
    [Google Scholar]
  71. Khandakar S. Unveiling early detection and prevention of cancer: Machine learning and deep learning approaches. Expert Opin. Biol. Ther. 2024 30 5 14614 14628 10.53555/kuey.v30i5.7014
    [Google Scholar]
  72. Wang H. Xu S. Fang K. Dai Z.S. Wei G.Z. Chen L.F. Contrast-enhanced magnetic resonance image segmentation based on improved U-Net and Inception-ResNet in the diagnosis of spinal metastases. J. Bone Oncol. 2023 42 100498 10.1016/j.jbo.2023.100498 37670740
    [Google Scholar]
  73. Ekundayo F. Nyavor H. AI-driven predictive analytics in cardiovascular diseases: Integrating big data and machine learning for early diagnosis and risk prediction. Inter. J. Res. Publicat. Rev. 2024 1 8 10.55248/gengpi.5.1224.3437
    [Google Scholar]
  74. Mahema S. Molecular Regulator Driving Endometriosis Towards Endometrial Cancer: A Multi-Scale Computational Investigation to Repurpose Anti-Cancer drugs Cham Springer 2024 1 15 10.1007/s12013‑024‑01420‑8
    [Google Scholar]
  75. Chakraborty D. Ivan C. Amero P. Khan M. Rodriguez-Aguayo C. Başağaoğlu H. Lopez-Berestein G. Explainable artificial intelligence reveals novel insight into tumor microenvironment conditions linked with better prognosis in patients with breast cancer. Cancers 2021 13 14 3450 10.3390/cancers13143450 34298668
    [Google Scholar]
  76. Rahimi M. Akbari A. Asadi F. Emami H. Cervical cancer survival prediction by machine learning algorithms: A systematic review. BMC Cancer 2023 23 1 341 10.1186/s12885‑023‑10808‑3 37055741
    [Google Scholar]
  77. Zhang Z. Zhang Y. Transcriptional regulation of cancer stem cell: Regulatory factors elucidation and cancer treatment strategies. J. Exp. Clin. Cancer Res. 2024 43 1 99 10.1186/s13046‑024‑03021‑y 38561775
    [Google Scholar]
  78. Janitri V. ArulJothi K.N. Ravi Mythili V.M. Singh S.K. Prasher P. Gupta G. Dua K. Hanumanthappa R. Kaliappan K. Anand K. The roles of patient‐derived xenograft models and artificial intelligence toward precision medicine. MedComm 2024 5 10 745 10.1002/mco2.745 39329017
    [Google Scholar]
  79. Poon D.J.J. Improving the therapeutic ratio of radiotherapy against radioresistant cancers: Leveraging on novel artificial intelligence-based approaches for drug combination discovery. Cancer Lett. 2021 511 56 67 10.1016/j.canlet.2021.04.019
    [Google Scholar]
  80. El-Tanani M. Rabbani S.A. Satyam S.M. Rangraze I.R. Wali A.F. El-Tanani Y. Aljabali A.A.A. Deciphering the role of cancer stem cells: Drivers of tumor evolution, therapeutic resistance, and precision medicine strategies. Cancers 2025 17 3 382 10.3390/cancers17030382 39941751
    [Google Scholar]
  81. Uchikov P. Khalid U. Dedaj-Salad G.H. Ghale D. Rajadurai H. Kraeva M. Kraev K. Hristov B. Doykov M. Mitova V. Bozhkova M. Markov S. Stanchev P. Artificial intelligence in breast cancer diagnosis and treatment: Advances in imaging, pathology, and personalized care. Life 2024 14 11 1451 10.3390/life14111451 39598249
    [Google Scholar]
  82. Lučić I. Kurtović M. Mlinarić M. Piteša N. Čipak Gašparović A.Č. Sabol M. Milković L. Deciphering common traits of breast and ovarian cancer stem cells and possible therapeutic approaches. Int. J. Mol. Sci. 2023 24 13 10683 10.3390/ijms241310683 37445860
    [Google Scholar]
  83. Komalasari R. Transformative insights: Harnessing artificial intelligence for enhanced ovarian cancer prediction and prognosis. Biomedical Research Developments for Improved Healthcare. Prabhakar P.K. Hershey, PA, USA IGI Global 2024 184 207 10.4018/979‑8‑3693‑1922‑2.ch010
    [Google Scholar]
  84. Perkins R.B. Wentzensen N. Guido R.S. Schiffman M. Cervical cancer screening: A review. JAMA 2023 330 6 547 558 10.1001/jama.2023.13174 37552298
    [Google Scholar]
  85. Obeagu E. Obeagu G. An update on premalignant cervical lesions and cervical cancer screening services among HIV positive women. J Pub Health Nutri 2023 6 2 1 2 10.35841/aajphn‑6.2.141
    [Google Scholar]
  86. Drakopoulou E. Anagnou N.P. Pappa K.I. Gene therapy for malignant and benign gynaecological disorders: A systematic review of an emerging success story. Cancers 2022 14 13 3238 10.3390/cancers14133238 35805007
    [Google Scholar]
  87. Áyen Á. Jiménez Martínez Y. Marchal J.A. Boulaiz H. Recent progress in gene therapy for ovarian cancer. Int. J. Mol. Sci. 2018 19 7 1930 10.3390/ijms19071930 29966369
    [Google Scholar]
  88. Áyen Á. Jiménez Martínez Y. Boulaiz H. Targeted gene delivery therapies for cervical cancer. Cancers 2020 12 5 1301 10.3390/cancers12051301 32455616
    [Google Scholar]
  89. Brooks R.A. Fleming G.F. Lastra R.R. Lee N.K. Moroney J.W. Son C.H. Tatebe K. Veneris J.L. Current recommendations and recent progress in endometrial cancer. CA Cancer J. Clin. 2019 69 4 258 279 10.3322/caac.21561 31074865
    [Google Scholar]
  90. Taghdiri M. Mussolino C. Viral and Non-Viral Systems to Deliver Gene Therapeutics to Clinical Targets. Int. J. Mol. Sci. 2024 25 13 7333 10.3390/ijms25137333 39000440
    [Google Scholar]
  91. Zhang X.W. Wu Y.S. Xu T.M. Cui M.H. CAR-T cells in the treatment of ovarian cancer: A promising cell therapy. Biomolecules 2023 13 3 465 10.3390/biom13030465 36979400
    [Google Scholar]
  92. Shams A. Leveraging state-of-the-art ai algorithms in personalized oncology: From transcriptomics to treatment. Diagnostics 2024 14 19 2174 10.3390/diagnostics14192174 39410578
    [Google Scholar]
  93. Khoshandam M. CRISPR/Cas and artificial intelligence to improve precision medicine: Future perspectives and potential limitations. Human Gene 2024 42 201356 10.1016/j.humgen.2024.201356
    [Google Scholar]
  94. Akter S. Rahman M.A. Hasan M.N. Akhter H. Noor P. Islam R. Shin Y. Rahman M.D.H. Gazi M.S. Huda M.N. Nam N.M. Chung J. Han S. Kim B. Kang I. Ha J. Choe W. Choi T.G. Kim S.S. Recent advances in ovarian cancer: Therapeutic strategies, potential biomarkers, and technological improvements. Cells 2022 11 4 650 10.3390/cells11040650 35203301
    [Google Scholar]
  95. Oswald A.J. Gourley C. Low-grade epithelial ovarian cancer. Curr. Opin. Oncol. 2015 27 5 412 419 10.1097/CCO.0000000000000216 26241347
    [Google Scholar]
  96. Sokouti M. Sokouti B. Cancer genetics and deep learning applications for diagnosis, prognosis, and categorization. J. Biol. Methods 2024 11 3 99010017 10.14440/jbm.2024.0016 39544183
    [Google Scholar]
  97. Deng Y. Han Q. Mei S. Li H. Yang F. Wang J. Ge S. Jing X. Xu H. Zhang T. Cyclin‑dependent kinase subunit 2 overexpression promotes tumor progression and predicts poor prognosis in uterine leiomyosarcoma. Oncol. Lett. 2019 18 3 2845 2852 10.3892/ol.2019.10668 31452763
    [Google Scholar]
  98. Li Y. Qiang W. Griffin B.B. Gao T. Chakravarti D. Bulun S. Kim J.J. Wei J.J. HMGA2-mediated tumorigenesis through angiogenesis in leiomyoma. Fertil. Steril. 2020 114 5 1085 1096 10.1016/j.fertnstert.2020.05.036 32868105
    [Google Scholar]
  99. Greeshma V. Impact of artificial intelligence in gene therapy. Intern. J. Scient. Res. Tech. 2024 1 11 185 201 10.5281/zenodo.14233536
    [Google Scholar]
  100. Anuyah S. Singh M.K. Nyavor H.J.a.p.a. Advancing clinical trial outcomes using deep learning and predictive modelling: Bridging precision medicine and patient-centered care. World J. Adv. Res. Rev. 2024 24 3 1 5 10.30574/wjarr.2024.24.3.3671
    [Google Scholar]
  101. Rawlinson J.W. Adenoviral-delivered HE4-HSV-tk sensitizes ovarian cancer cells to ganciclovir. 2013 Available from: https://pubmed.ncbi.nlm.nih.gov/26005395/
  102. Zhou X.L. Shi Y.L. Li X. Inhibitory effects of the ultrasound-targeted microbubble destruction-mediated herpes simplex virus-thymidine kinase/ganciclovir system on ovarian cancer in mice. Exp. Ther. Med. 2014 8 4 1159 1163 10.3892/etm.2014.1877 25187815
    [Google Scholar]
  103. Mei C. Gong W. Wang X. Lv Y. Zhang Y. Wu S. Zhu C. Anti-angiogenic therapy in ovarian cancer: Current understandings and prospects of precision medicine. Front. Pharmacol. 2023 14 1147717 10.3389/fphar.2023.1147717 36959862
    [Google Scholar]
  104. Yetkin-Arik B. Kastelein A.W. Klaassen I. Jansen C.H.J.R. Latul Y.P. Vittori M. Biri A. Kahraman K. Griffioen A.W. Amant F. Lok C.A.R. Schlingemann R.O. van Noorden C.J.F. Angiogenesis in gynecological cancers and the options for anti-angiogenesis therapy. Biochim. Biophys. Acta Rev. Cancer 2021 1875 1 188446 10.1016/j.bbcan.2020.188446 33058997
    [Google Scholar]
  105. Xiong Z. Cloning of WWOX gene and its growth-inhibiting effects on ovarian cancer cells. J. Huazhong Univ. Sci. Technol. 2010 30 365 369 10.1007/s11596‑010‑0358‑z
    [Google Scholar]
  106. Yue W. Ma J. Xiao Y. Wang P. Gu X. Xie B. Li M. The apoptotic resistance of BRCA1-deficient ovarian cancer cells is mediated by cAMP. Front. Cell Dev. Biol. 2022 10 889656 10.3389/fcell.2022.889656 35517499
    [Google Scholar]
  107. Hu W. Wang J. Dou J. He X. Zhao F. Jiang C. Yu F. Hu K. Chu L. Li X. Gu N. Augmenting therapy of ovarian cancer efficacy by secreting IL-21 human umbilical cord blood stem cells in nude mice. Cell Transplant. 2011 20 5 669 680 10.3727/096368910X536509 21054951
    [Google Scholar]
  108. Liu T. Li Y. Wang X. Yang X. Fu Y. Zheng Y. Gong H. He Z. The role of interferons in ovarian cancer progression: Hinderer or promoter? Front. Immunol. 2022 13 1087620 10.3389/fimmu.2022.1087620 36618371
    [Google Scholar]
  109. Heo M.Y. Abrogation of estrogen receptor signaling augments cytotoxicity of anticancer drugs on CaSki cervical cancer cells. 2008 Available from: https://pubmed.ncbi.nlm.nih.gov/18751393/
  110. Au W.W. Abdou-Salama S. Al-Hendy A. Inhibition of growth of cervical cancer cells using a dominant negative estrogen receptor gene. Gynecol. Oncol. 2007 104 2 276 280 10.1016/j.ygyno.2006.10.015 17137618
    [Google Scholar]
  111. Hao Y. Proliferation inhibition and apoptosis enhancement of human cervical cancer cells by ultrasound-targeted microbubble destruction delivered double suicide genes. 2014 Available from: https://pubmed.ncbi.nlm.nih.gov/25664039/
  112. Zhang Y. Short interfering RNA targeting Net1 reduces the angiogenesis and tumor growth of in vivo cervical squamous cell carcinoma through VEGF down-regulation. Hum. Pathol. 2017 65 113 122 10.1016/j.humpath.2017.04.021
    [Google Scholar]
  113. Yang L.L. Wang B.Q. Chen L.L. Luo H.Q. Wu J.B. CXCL10 enhances radiotherapy effects in HeLa cells through cell cycle redistribution. Oncol. Lett. 2012 3 2 383 386 10.3892/ol.2011.472 22740916
    [Google Scholar]
  114. Lu X. Ying Y. Zhang W. Li R. Wang W. Identification of stemness subtypes and features to improve endometrial cancer treatment using machine learning. Artif. Cells Nanomed. Biotechnol. 2023 51 1 57 73 10.1080/21691401.2023.2172027 36748358
    [Google Scholar]
  115. Gillespie M.S. Ward C.M. Davies C.C. DNA repair and therapeutic strategies in cancer stem cells. Cancers 2023 15 6 1897 10.3390/cancers15061897 36980782
    [Google Scholar]
  116. Sowmiya M. Sakthi Priyadarsini S. Kamaraj R. Research trends in science and technology. 2023 Available from: https://www.researchgate.net/publication/373102801
  117. Shamai G. Binenbaum Y. Slossberg R. Duek I. Gil Z. Kimmel R. Artificial intelligence algorithms to assess hormonal status from tissue microarrays in patients with breast cancer. JAMA Netw. Open 2019 2 7 197700 10.1001/jamanetworkopen.2019.7700 31348505
    [Google Scholar]
  118. Jin C. Yu H. Ke J. Ding P. Yi Y. Jiang X. Duan X. Tang J. Chang D.T. Wu X. Gao F. Li R. Predicting treatment response from longitudinal images using multi-task deep learning. Nat. Commun. 2021 12 1 1851 10.1038/s41467‑021‑22188‑y 33767170
    [Google Scholar]
  119. Liu S. Zhou J. Zhang X. Liu Y. Chen J. Hu B. Song J. Zhang Y. Strategies to optimize adult stem cell therapy for tissue regeneration. Int. J. Mol. Sci. 2016 17 6 982 10.3390/ijms17060982 27338364
    [Google Scholar]
  120. Lee J. Choi M.K. Song I.S. Recent advances in doxorubicin formulation to enhance pharmacokinetics and tumor targeting. Pharmaceuticals 2023 16 6 802 10.3390/ph16060802 37375753
    [Google Scholar]
  121. Shi P. Cheng Z. Zhao K. Chen Y. Zhang A. Gan W. Zhang Y. Active targeting schemes for nano-drug delivery systems in osteosarcoma therapeutics. J. Nanobiotechnology 2023 21 1 103 10.1186/s12951‑023‑01826‑1 36944946
    [Google Scholar]
  122. Ahmad R.M. Ali B.R. Al-Jasmi F. Sinnott R.O. Al Dhaheri N. Mohamad M.S. A review of genetic variant databases and machine learning tools for predicting the pathogenicity of breast cancer. Brief. Bioinform. 2023 25 1 bbad479 10.1093/bib/bbad479 38149678
    [Google Scholar]
  123. Lee C.M. Cradick T.J. Fine E.J. Bao G. Nuclease target site selection for maximizing on-target activity and minimizing off-target effects in genome editing. Mol. Ther. 2016 24 3 475 487 10.1038/mt.2016.1 26750397
    [Google Scholar]
  124. Gray S.J. Samulski R.J. Optimizing gene delivery vectors for the treatment of heart disease. Expert Opin. Biol. Ther. 2008 8 7 911 922 10.1517/14712598.8.7.911 18549322
    [Google Scholar]
  125. Pires S. Patient stratification using clinical and patient profiles: Targeting personalized prognostic prediction in ALS. International Work-Conference on Bioinformatics and Biomedical Engineering. Cham Springer 2020 529 541 10.1007/978‑3‑030‑45385‑5_47
    [Google Scholar]
  126. Vora L.K. Gholap A.D. Jetha K. Thakur R.R.S. Solanki H.K. Chavda V.P. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics 2023 15 7 1916 10.3390/pharmaceutics15071916 37514102
    [Google Scholar]
  127. Mount N.M. Ward S.J. Kefalas P. Hyllner J. Cell-based therapy technology classifications and translational challenges. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015 370 1680 20150017 10.1098/rstb.2015.0017 26416686
    [Google Scholar]
  128. Liu Z. Cheung H.H. Stem cell-based therapies for Parkinson disease. Int. J. Mol. Sci. 2020 21 21 8060 10.3390/ijms21218060 33137927
    [Google Scholar]
  129. Kim M. Hong S. Integrating artificial intelligence to biomedical science: New applications for innovative stem cell research and drug development. Technologies 2024 12 7 95 10.3390/technologies12070095
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X374002250707044343
Loading
/content/journals/cscr/10.2174/011574888X374002250707044343
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test