Skip to content
2000
image of The Efficacy of Umbilical Cord (UC) Serum, Human Platelet Lysate, and the Synergistic Effect of Nano-curcumin and Crocin as Supplements in the Proliferation and Survival of Human UC-derived Mesenchymal Stromal Cells (MSCs)

Abstract

Introduction

Fetal Bovine Serum (FBS), the conventional supplement for Mesenchymal Stromal Cell (MSC) culture, presents ethical issues, batch variability, and risks of pathogen transmission. This study aimed to evaluate human-derived Umbilical Cord Serum (UCS) and Human Platelet Lysate (HPL) as xeno-free alternatives to FBS and to assess the synergistic effects of nano-curcumin and crocin as supplements to enhance the proliferation and survival of human umbilical cord-derived MSCs.

Methods

Human umbilical cord-derived MSCs were cultured in media supplemented with 10% FBS (control), UCS, or HPL. These groups were further treated with nano-curcumin (0.3 µM) or crocin (2.5 µM), either individually or in combination. Cell proliferation was measured using the MTT assay, apoptosis was assessed by Annexin V/PI flow cytometry, and pluripotency gene expression (Sox2, Nanog, Oct4) was analyzed by RT-qPCR.

Results

UCS and HPL supplements significantly increased MSC proliferation compared to the FBS control ( < 0.001). Specifically, UCS reduced the population doubling time by approximately 50%. Supplementation with crocin reduced apoptosis by up to 30% (p = 0.04) and significantly enhanced the expression of the pluripotency genes Sox2 and Nanog, particularly in cultures supplemented with HPL. In contrast, nano-curcumin inhibited MSC proliferation and increased apoptosis across all tested conditions.

Discussion

The results demonstrate that UCS and HPL are effective, viable alternatives to FBS, promoting superior MSC expansion. The anti-apoptotic and stemness-enhancing properties of crocin highlight its potential as a valuable additive for improving culture quality and cell survival. The cytotoxic effects observed with nano-curcumin underscore a critical need for dose-optimization studies. The primary limitation of this study is the use of fixed concentrations for the supplements, which warrants further investigation across a range of doses.

Conclusion

UCS and HPL are robust, ethically sound replacements for FBS in MSC biomanufacturing. Crocin can further enhance culture outcomes by improving cell survival and maintaining stemness. These findings support the development of optimized, xeno-free culture systems for scalable MSC production, which is crucial for advancing regenerative medicine therapies.

Loading

Article metrics loading...

/content/journals/cscr/10.2174/011574888X372692250918112149
2025-09-24
2025-12-28
Loading full text...

Full text loading...

References

  1. Kobolak J. Dinnyes A. Memic A. Khademhosseini A. Mobasheri A. Mesenchymal stem cells: Identification, phenotypic characterization, biological properties and potential for regenerative medicine through biomaterial micro-engineering of their niche. Methods 2016 99 62 68 10.1016/j.ymeth.2015.09.016 26384580
    [Google Scholar]
  2. Zhan X.S. El-Ashram S. Luo D.Z. A comparative study of biological characteristics and transcriptome profiles of mesenchymal stem cells from different canine tissues. Int. J. Mol. Sci. 2019 20 6 1485 10.3390/ijms20061485 30934541
    [Google Scholar]
  3. Shang Y. Guan H. Zhou F. Biological characteristics of umbilical cord mesenchymal stem cells and its therapeutic potential for hematological disorders. Front. Cell Dev. Biol. 2021 9 34012958 10.3389/fcell.2021.570179
    [Google Scholar]
  4. Kern S. Eichler H. Stoeve J. Klüter H. Bieback K. Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 2006 24 5 1294 1301 10.1634/stemcells.2005‑0342 16410387
    [Google Scholar]
  5. Zhang W. Ling Q. Wang B. Comparison of therapeutic effects of mesenchymal stem cells from umbilical cord and bone marrow in the treatment of type 1 diabetes. Stem Cell Res. Ther. 2022 13 1 406 10.1186/s13287‑022‑02974‑1 35941696
    [Google Scholar]
  6. Grégoire C Ritacco C Hannon M Seidel L Delens L Belle L Comparison of mesenchymal stromal cells from different origins for the treatment of graft-vs.-host-disease in a humanized mouse model. Front Immunol 2019 10 619 10.3389/fimmu.2019.00619 31001253
    [Google Scholar]
  7. Calcat-i-Cervera S. Rendra E. Scaccia E. Amadeo F. Hanson V. Wilm B. Multicentre comparison of biological and functional properties of mesenchymal stromal cells from different sources cultivated using a harmonised manufacturing workflow. bioRxiv 2022 2022.09 10.1101/2022.09.14.507944
    [Google Scholar]
  8. Bacakova L. Zarubova J. Travnickova M. Stem cells: Their source, potency and use in regenerative therapies with focus on adipose-derived stem cells – a review. Biotechnol. Adv. 2018 36 4 1111 1126 10.1016/j.biotechadv.2018.03.011 29563048
    [Google Scholar]
  9. Guiotto M. Raffoul W. Hart A.M. Riehle M.O. di Summa P.G. Human platelet lysate to substitute fetal bovine serum in hMSC expansion for translational applications: A systematic review. J. Transl. Med. 2020 18 1 351 10.1186/s12967‑020‑02489‑4 32933520
    [Google Scholar]
  10. Ahad Mir P.R.I.N.C.E. Hussain M.S. Ahmad Khanday M. Mohi-ud-din R, Pottoo FH, Hasssan Mir R. Immunomodulatory Roles of Mesenchymal Stem Cell-derived Extracellular Vesicles: A Promising Therapeutic Approach for Autoimmune Diseases. Curr. Stem Cell Res. Ther. 2024 20 10.2174/011574888X341781241216044130 39757602
    [Google Scholar]
  11. Gupta G. Hussain M.S. Thapa R. Hope on the horizon: Wharton’s jelly mesenchymal stem cells in the fight against COVID-19. Regen. Med. 2023 18 9 675 678 10.2217/rme‑2023‑0077 37554111
    [Google Scholar]
  12. Schallmoser K. Henschler R. Gabriel C. Koh M.B.C. Burnouf T. Production and quality requirements of human platelet lysate: A position statement from the working party on cellular therapies of the international society of blood transfusion. Trends Biotechnol. 2020 38 1 13 23 10.1016/j.tibtech.2019.06.002 31326128
    [Google Scholar]
  13. Doucet C. Ernou I. Zhang Y. Platelet lysates promote mesenchymal stem cell expansion: A safety substitute for animal serum in cell-based therapy applications. J. Cell. Physiol. 2005 205 2 228 236 10.1002/jcp.20391 15887229
    [Google Scholar]
  14. Shirzad N. Bordbar S. Goodarzi A. Umbilical cord blood platelet lysate as serum substitute in expansion of human mesenchymal stem cells. Cell J. 2017 19 3 403 414 28836402
    [Google Scholar]
  15. Hassan G. Kasem I. Soukkarieh C. Aljamali M. A simple method to isolate and expand human umbilical cord derived mesenchymal stem cells: Using explant method and umbilical cord blood serum. Int. J. Stem Cells 2017 10 2 184 192 10.15283/ijsc17028 28844128
    [Google Scholar]
  16. Caseiro A.R. Ivanova G. Pedrosa S.S. Human umbilical cord blood plasma as an alternative to animal sera for mesenchymal stromal cells in vitro expansion – A multicomponent metabolomic analysis. PLoS One 2018 13 10 0203936 10.1371/journal.pone.0203936 30304014
    [Google Scholar]
  17. Shetty P. Bharucha K. Tanavde V. Human umbilical cord blood serum can replace fetal bovine serum in the culture of mesenchymal stem cells. Cell Biol. Int. 2007 31 3 293 298 10.1016/j.cellbi.2006.11.010 17208468
    [Google Scholar]
  18. Ang L.P.K. Do T.P. Thein Z.M. Ex vivo expansion of conjunctival and limbal epithelial cells using cord blood serum-supplemented culture medium. Invest. Ophthalmol. Vis. Sci. 2011 52 9 6138 6147 10.1167/iovs.10‑6527 21474776
    [Google Scholar]
  19. Palombella S. Perucca Orfei C. Castellini G. Systematic review and meta-analysis on the use of human platelet lysate for mesenchymal stem cell cultures: Comparison with fetal bovine serum and considerations on the production protocol. Stem Cell Res. Ther. 2022 13 1 142 10.1186/s13287‑022‑02815‑1 35379348
    [Google Scholar]
  20. Mohamed H.E. Asker M.E. Kotb N.S. Habab A.M.E. Human platelet lysate efficiency, stability, and optimal heparin concentration required in culture of mammalian cells. Blood Res. 2020 55 1 35 43 10.5045/br.2020.55.1.35 32269973
    [Google Scholar]
  21. Kachroo U. Zachariah S.M. Thambaiah A. Comparison of human platelet lysate versus fetal bovine serum for expansion of human articular cartilage–derived chondroprogenitors. Cartilage 2021 13 2_suppl 107S 116S 10.1177/1947603520918635 32406256
    [Google Scholar]
  22. Seo E.J. Efferth T. Panossian A. Curcumin downregulates expression of opioid-related nociceptin receptor gene (OPRL1) in isolated neuroglia cells. Phytomedicine 2018 50 285 299 10.1016/j.phymed.2018.09.202 30466988
    [Google Scholar]
  23. Yang M. Akbar U. Mohan C. Curcumin in autoimmune and rheumatic diseases. Nutrients 2019 11 5 1004 10.3390/nu11051004 31052496
    [Google Scholar]
  24. Zhang Z. Leong D.J. Xu L. Curcumin slows osteoarthritis progression and relieves osteoarthritis-associated pain symptoms in a post-traumatic osteoarthritis mouse model. Arthritis Res. Ther. 2016 18 1 128 10.1186/s13075‑016‑1025‑y 27260322
    [Google Scholar]
  25. Aggarwal B.B. Harikumar K.B. Potential therapeutic effects of curcumin, the anti-inflammatory agent, against neurodegenerative, cardiovascular, pulmonary, metabolic, autoimmune and neoplastic diseases. Int. J. Biochem. Cell Biol. 2009 41 1 40 59 10.1016/j.biocel.2008.06.010 18662800
    [Google Scholar]
  26. Hsu C-H. Cheng A-L. Clinical studies with curcumin. The Molecular Targets and Therapeutic Uses of Curcumin in Health and Disease. Aggarwal B.B. Surh Y.J. Shishodia S. Boston, MA Springer 2007 595 10.1007/978‑0‑387‑46401‑5_21
    [Google Scholar]
  27. Sterzi S. Giordani L. Morrone M. The efficacy and safety of a combination of glucosamine hydrochloride, chondroitin sulfate and bio-curcumin with exercise in the treatment of knee osteoarthritis: A randomized, double-blind, placebo-controlled study. Eur. J. Phys. Rehabil. Med. 2016 52 3 321 330 26937646
    [Google Scholar]
  28. Zhang R. Zhang Q. Zou Z. Curcumin supplementation enhances bone marrow mesenchymal stem cells to promote the anabolism of articular chondrocytes and cartilage repair. Cell Transplant. 2021 30 0963689721993776 10.1177/0963689721993776 33588606
    [Google Scholar]
  29. Yousefi F. Arab F.L. Rastin M. Tabasi N.S. Nikkhah K. Mahmoudi M. Comparative assessment of immunomodulatory, proliferative, and antioxidant activities of crocin and crocetin on mesenchymal stem cells. J. Cell. Biochem. 2021 122 1 29 42 10.1002/jcb.29826 32951264
    [Google Scholar]
  30. Bukhari S.I. Manzoor M. Dhar M.K. A comprehensive review of the pharmacological potential of Crocus sativus and its bioactive apocarotenoids. Biomed. Pharmacother. 2018 98 733 745 10.1016/j.biopha.2017.12.090 29306211
    [Google Scholar]
  31. Sabouni N. Mohammadi M. Boroumand A.R. Palizban S. Tavakol Afshari J. Stimulating effect of nanocurcumin and crocin on proliferation and pluripotency of bone marrow-derived mesenchymal stem cells. Iran. J. Basic Med. Sci. 2024 27 9 1187 1196 39055876
    [Google Scholar]
  32. Amini E. Baharvand Z. Niknejad A. Tabari Y. Shemshadi S. The Protective Effect of Crocin on Rat Bone Marrow Mesenchymal Stem Cells Exposed to Aluminum Chloride as an Endocrine Disruptor. Avicenna J. Med. Biotechnol. 2024 16 2 81 87 10.18502/ajmb.v16i2.14858 38618511
    [Google Scholar]
  33. Salimi A. Khezri S. Amani M. Badrinezhad N. Hosseiny S. Saadati R. Crocin and gallic acid attenuate ethanol-induced mitochondrial dysfunction via suppression of ROS formation and inhibition of mitochondrial swelling in pancreatic mitochondria. Mol. Cell. Biochem. 2025 480 6 3669 3682 10.1007/s11010‑024‑05180‑0 39754004
    [Google Scholar]
  34. Yousefsani B.S. Mehri S. Pourahmad J. Hosseinzadeh H. Protective Effect of Crocin against Mitochondrial Damage and Memory Deficit Induced by Beta-amyloid in the Hippocampus of Rats. Iran. J. Pharm. Res. 2021 20 2 79 94 34567148
    [Google Scholar]
  35. Veisi A. Akbari G. Mard S.A. Badfar G. Zarezade V. Mirshekar M.A. Role of crocin in several cancer cell lines: An updated review. Iran. J. Basic Med. Sci. 2020 23 1 3 12 32405344
    [Google Scholar]
  36. Thaweesapphithak S. Tantrawatpan C. Kheolamai P. Tantikanlayaporn D. Roytrakul S. Manochantr S. Human serum enhances the proliferative capacity and immunomodulatory property of MSCs derived from human placenta and umbilical cord. Stem Cell Res. Ther. 2019 10 1 79 10.1186/s13287‑019‑1175‑3 30845980
    [Google Scholar]
  37. Yousefi F. Lavi Arab F. Jaafari M.R. Immunoregulatory, proliferative and anti-oxidant effects of nanocurcuminoids on adipose-derived mesenchymal stem cells. EXCLI J. 2019 18 405 421 31338010
    [Google Scholar]
  38. Kaffash Farkhad N. Sedaghat A. Reihani H. Mesenchymal stromal cell therapy for COVID-19-induced ARDS patients: A successful phase 1, control-placebo group, clinical trial. Stem Cell Res. Ther. 2022 13 1 283 10.1186/s13287‑022‑02920‑1 35765103
    [Google Scholar]
  39. Burnouf T. Strunk D. Koh M.B.C. Schallmoser K. Human platelet lysate: Replacing fetal bovine serum as a gold standard for human cell propagation? Biomaterials 2016 76 371 387 10.1016/j.biomaterials.2015.10.065 26561934
    [Google Scholar]
  40. Hofbauer P. Riedl S. Witzeneder K. Human platelet lysate is a feasible candidate to replace fetal calf serum as medium supplement for blood vascular and lymphatic endothelial cells. Cytotherapy 2014 16 9 1238 1244 10.1016/j.jcyt.2014.04.009 24927718
    [Google Scholar]
  41. Sordillo P.P. Helson L. Curcumin and cancer stem cells: Curcumin has asymmetrical effects on cancer and normal stem cells. Anticancer Res. 2015 35 2 599 614 25667437
    [Google Scholar]
  42. Cheng T. Zhao Y. Li B. Cheng M. Wang J. Zhang X. Curcumin attenuation of wear particle‐induced osteolysis via RANKL signaling pathway suppression in mouse calvarial model. Mediators Inflamm. 2017 2017 1 1 11 10.1155/2017/5784374 29085185
    [Google Scholar]
  43. Liu Y. An S. Yang T. Xiao Y. Wang L. Hu Y. Protection effect of curcumin for macrophage-involved polyethylene wear particle-induced inflammatory osteolysis by increasing the cholesterol efflux. Med. Sci. Monit. 2019 25 10 20 10.12659/MSM.914197 30599093
    [Google Scholar]
  44. Salama R.M. Abdel-Latif G.A. Abbas S.S. El Magdoub H.M. Schaalan M.F. Neuroprotective effect of crocin against rotenone-induced Parkinson’s disease in rats: Interplay between PI3K/Akt/mTOR signaling pathway and enhanced expression of miRNA-7 and miRNA-221. Neuropharmacology 2020 164 107900 10.1016/j.neuropharm.2019.107900 31811872
    [Google Scholar]
  45. Kim D.S. Lee M.W. Lee T.H. Sung K.W. Koo H.H. Yoo K.H. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells. Biomed. Rep. 2017 6 3 300 306 10.3892/br.2017.845 28451390
    [Google Scholar]
/content/journals/cscr/10.2174/011574888X372692250918112149
Loading
/content/journals/cscr/10.2174/011574888X372692250918112149
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error
Please enter a valid_number test